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Abstract: Computer vision is an area of technology that has become useful in the development of autonomous vehicles, video surveillance systems, and manufacturing systems. Specifically, object detection 
is utilized in the aforementioned computer vision applications. You Only Look Once (YOLO) is a new approach to object detection that outperforms other detection methods such as Deformable Parts Models 
(DPM) and Region Convolutional Neural Network (R-CNN). This object detection method makes use of a single convolutional neural network (CNN) to predict multiple bounding boxes around objects of 
interest in an image or video frame and class probabilities for those boxes. This research project explains how YOLO works and shows the results of training the neural network on a custom dataset.

Introduction 
You Only Look Once (YOLO) sees an image to predict what objects are present 
and where they are. This object detection method is very simple. A single 
convolutional neural network (CNN) simultaneously predicts multiple bounding 
boxes and class probabilities for those boxes. YOLO trains on full images and 
directly optimizes detection performance. YOLO has several benefits over other 
traditional methods of object detection. First, YOLO is extremely fast. A neural 
network is simply run on a new image at test time to predict detections. Second, 
YOLO reasons globally about the image when making predictions. Unlike sliding 
window and region-based techniques, YOLO sees the entire image during 
training and test time so it implicitly encodes contextual information about 
classes as well as their appearance. Third, YOLO learns generalizable 
representations of objects. Since this is the case, YOLO is less likely to break 
down when applied to new domains or unexpected inputs [1].
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Overview of Convolutional Neural Networks (CNNs)
A CNN is the main system behind identifying objects with YOLO. This algorithm can take an input image, assign importance (learnable weights 
and biases) to various aspects/objects in the image and be able to differentiate one from the other.

Components of a CNN:

1. Input image. The role of a CNN is to reduce the images into a form which is easier to process, without losing features which are critical for 
getting a good prediction.

2. Convolution Layer. Below is an illustration of what happens in this step. The green section resembles a 5x5x1 input image. The element 
involved in carrying out the convolutional operation in the first part of a Convolutional Layer is called the Kernel/Filter, K, represented in 
yellow. K is selected as a 3x3x1 matrix. The Kernel shifts over the input image and performs a matrix multiplication operation between K and 
the portion P of the image over which the kernel is hovering. 

The objective of the Convolution Operation is to extract the high-level features such as edges, from the input image. The first convolutional layer 
is responsible for capturing the Low-Level features such as edges, color, gradient, orientation, etc. With added layers, the architecture adapts to 
the high-level features as well, resulting in a network which has a complete understanding of the images in the dataset.

3. Pooling Layer. This layer is responsible for reducing the spatial size of the Convolved Feature obtained in the Convolutional Layer. This is to 
decrease the computational power required to process the data through dimensionality reduction. In addition, it is useful for extracting 
dominant features which are rotational and positional invariant, thus maintaining the process of effectively training the model.

The Convolutional Layer and the Pooling Layer, together form the i-th layer of a CNN. After going through the above process, we have 
successfully enabled the model to understand the features.

4. Flatten Layer. After the image is converted into a suitable form, the image is flattened into a column vector. The flattened output is fed to a 
feed-forward neural network and backpropagation applied to every iteration of training.

5. Classification – Fully Connected Layer (FC Layer). This layer is for learning non-linear combinations of the high-level features as represented 
by the output of the convolutional layer. The Fully-Connected layer is learning a possibly non-linear function.

6. Soft-max Layer. Over a series of epochs, the model is able to distinguish between dominating and certain low-level features in images and 
classify them using the Softmax Classification technique. Basically, this provides a list of different objects that could be in the image each 
with a probability. After this stage, the object is identified [3].

Training YOLO On a Custom Dataset 
The object of interest for the YOLO real-time object detection system was a BB-8 
mug. A program called “YOLO mark” [4] was used to mark this object in a total 
of 228 images with different angles and lighting conditions. This program is a 
graphical user interface that allows you to draw a bounding box around the 
object in each image. A text file is generated for each image that has an integer 
representing the object, float values that store the center of the object relative 
to the width and height of the image, and float values that store the width and 
height of the object itself. Below is a picture of the “YOLO mark” program 
running with the bounding box highlighting the object:

Execution
The CNN used for this object detector was a pre-made neural network called 
“Darknet53” [5]. This CNN had to be trained on all of the images taken with their 
respective text file. A python program ran with the path to the weights file 
generated from training on Darknet53. The result can be seen below. The time 
taken for the object detector to identify the object (inference time) is also 
shown.

Comparison to Other Detection  Systems
Deformable Parts Models (DPM): This system uses a sliding window approach to 
object detection. DPM uses a disjoint pipeline to extract static features, classify 
regions, etc. YOLO replaces all of these disparate parts with a single CNN. The CNN 
behind YOLO performs feature extraction, bounding box prediction, non-maximal 
suppression, and contextual reasoning all concurrently.
R-CNN: This system and its variants use region proposals instead of sliding windows 
to find objects in images. Selective Search generates bounding boxes, a CNN extracts 
features, an SVM scores the boxes, a linear model adjusts the bounding boxes, and 
non-max suppression eliminates duplicate detections. Each stage of this complex 
pipeline must be precisely tuned independently and the resulting system is very slow, 
taking more than 40 seconds per image at test time [1].

YOLO CNN Architecture

Result

Description
This CNN is used for performing feature extraction for YOLO object 
detection. This network uses successive 3x3 and 1x1 convolutional layers. 
There are 53 convolutional layers in total and hence the name 
“Darknet53” for this network [2]. 

Figure 3: Darknet53 Architecture
Source: Adapted from [2]

Figure 1: Convolutional Neural Network
Source: Adapted from [3]

Figure 2: Convolution Operation
Source: Adapted from [3]
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