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Background

Classical Mechanics:

In general, Hamiltonian mechanics is performed on a symplectic manifold (phase space)
(X, A) with X* functions (observables). Here X = T7(Q), the cotangent bundle of the
system’s configuration space, and A is a symplectic form. Using the symplectic form,
we may derive the Poisson bracket for the manifold, a skew-symmetric bilinear operator
{-,-}: X" x X* = X* We use the bracket in combination with the Hamiltonian of the
system to determine the time evolution of observables acting on the system,

Vi m+ 9

where f is an observable and H is the Hamiltonian. Equation (1) reduces to Hamilton’s
equations of motion when we use canonical coordinates and the canonical Poisson bracket.

Canonical Quantization:

A goal of quantization is to change a classical system consisting of phase space and smooth,
continuous functions into a quantum system consisting of a Hilbert space and self-adjoint
differential operators. In canonical quantization:

Classical Quantum
qg =
D — P

with Q(v) = gy and P(y) = —iha%@b, and [Q), P| = th. The last relation is the commu-
tator, a quantum analog to the Poisson bracket. But more choices are required to associate
f(p,q) with F(P, Q) since p and ¢ commute while P and ) do not commute.

Deformation Quantization:

The above problem of choice creates a need for a more well-defined theory. For example
qp” — QP”, pap — PQP = QP — ihP, p’q — P*Q = QP* — 2ihP

with the LHS’s are equivalent to one another while the RHS’s are not. Deformation quan-
tization addresses this issue by changing the multiplication to a star product. For example
choosing the order such that ) is always to the lett of P determines the product

qg*p=qgp, p*xq = qp—+th,

in the language of deformation quantization.

Star Products

We now formally introduce star products. They satisty the following properties:

L.fxg=> 1", 2—],{ P*(f, g), where P¥ is a bidifferential operator and A\ = ih/2.

2. fxg= fg+ O(h).

3.0f.9l, = frg—g*f=ih{f, g} +O(R*).

4 fxl=1%f=f

5. fxg=g% f.

When starting from the Poisson manifold (X, A), we may define the bidifferential operators

Pk(fa g) — Ailjl T Aikjk vll”&kf vjl"'jkgv (2)
where V is the covariant derivative. We also write the star product of two functions f and
g as

in Property 1 by

<=
frg=feyg
Using Property 3, the Moyal equations of motion,

df 1
d_t_ﬁ:b[f,H]*, (4)

analogous to (1) if we think of the observables as evolving in time. One solution to (4) is

fi = Exp(—) x f x Exp(tL) where
tH 1/ t\"
E — — [ = H)*
Xp(m) ;k! (zh) ()7,

and H** = H x ---x H (k times). If we can find a Fourier-Dirichlet expansion of (5),

tH - Fyt /ih
EXp (E) = ; UYAE ,

then FE. are the eigenvalues of H and 7 are the orthonormal eigenstates states.

(3)

oo

(5)

(6)

Harmonic Oscillator

R

Bica | 2

Fig. 1: Graph of the first six energy levels of the quantum harmonic oscillator.

We now perform the deformation quantization of the harmonic oscillator. Our symplectic
manifold is R? with the symplectic form

g 0O 1
-
= (5o),

so (2) becomes PF(f,g) = AWr. .- Nwx ;. f Dj...5.9, and the star product, called the
Moyal star product, is written as,

1.l.ik

frg=1Ff 6)\(%9"3;'_3?'8;')9- (7)

Letting pesky factors m = w = 1, we write the Hamiltonian as H = 1(p? + ¢*). Since (5)
is cumbersome, we want to find a closed form for Exp(¢tH /2h). First we find the recursion
relation K,,(H) = (Hx)" = HK,_(H) — (h*/4)K! _(H) — (h*/4)HK!_,(H) and prove
the following propositions:

Proposition 1

For any fixed (p, q) € R? the power series in ¢:

O O

; % (%) n K,(H(p, q))

has a radius of convergence equal to m. For |t| < 7, (8) has the closed form

(%)nKn(H(pa ) = (cos(t/2)) L exp (% tan(t/Q)) .

=1
2

Proposition 2

For fixed t € (—, m) the series (8) converges in D'(IR?) for the weak topology to

(cos(t/2)) " exp ((p 4 )tan(t/Q)) |

1h (10)

Then with the closed form (9)/(10) in hand we find the Fourier expansion as in (6):
Proposition 3

For fixed (p,q) € R* — {0}, (10) defines a periodic distribution S € D'(R). It has a

Fourier expansion,

g — Z Wn(p; q’)e—i(n—|—l/2)t7 (11)
n=0

QH%J, q)) 1L, (4H(}§, q)) |

with

(12)

(D, q) = 2 exp (

where L, = L is the usual Laguerre polynomial of degree n.

Proposition 4

For fixed t € C with Im¢ < 0 and t # (2k + 1), k € Z, we may use (9) to write

tH s .
_ —i(n+1/2)t
Exp (’ﬂi) — nE:O T E :

which converges in S’(IR?) for the weak topology:.

(13)

Thus we see that the energy levels are E,, = (n + 1/2)h, or (n + 1/2)hw if we reinsert w,
as in Fig. 1. This is identical to the result found by performing the calculation with the
usual methods.
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