California State Polytechnic University, Pomona	
Computer Science Department

Course Title: 			Compilers and Interpreters
Course Number: 		CS 4110
Units:				3 units
CS number:			C-2
Component:			Lecture
Instructional Mode: 		Face-to-Face and web assisted
Grading Basis:			Graded only
Repeated Basis:		May be taken only once
Cross listed Course: 		N/A
Dual-listed Course: 		N/A
Major course/Service course/GE course: Major course
Date Prepared: 		March 31, 2015
Prepared by: 			Daisy Sang and Yu Sun

COURSE DESCRIPTION

I. Catalog Description

CS 4110 Compilers and Interpreters (3)

Interpreter and compiler structures. Lexical analysis. Symbol tables. Syntax analysis and parsing techniques. Syntax-directed translation. Run-time environments. Intermediate code generation and optimization. Compiler development tools.

Pre-requisite(s): CS 3110 with a grade of C or better, or consent of instructor.

II. Expected Outcomes

On successful completion of this course, students will be able to:
· Study in-depth lexical analysis, top-down and bottom-up syntax analysis including LL, LR, SLR, and LALR techniques
· Learn the theory of syntax-directed semantic analysis and its applications to type checking, code generation, and interpreter design
· Gain experience in using lexer and parser generator tools

Outcomes of this course will build student capacity in each of the following areas as defined by programmatic objectives for the computer science major.
· P-SLO 3: An ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs.
· P-SLO 9: An ability to use current techniques, skills, and tools necessary for computing practice.
· P-SLO 10: An ability to apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the tradeoffs involved in design choices.
· P-SLO 11: An ability to apply design and development principles in the construction of software systems of varying complexity.

III. Instructional Materials

Required text:
K. Cooper and L. Torczon, Engineering a Compiler, Elsevier LTD, 2011. ISBN-13: 978-0120884780. Free online book at EBSCO, California State Polytechnic University, Pomona.

References:
A.V. Aho, M.S. Lam, R. Sethi, and J.D. Ullman, Compilers - Principles, Techniques, and Tools,
2nd Edition, Addison Wesley, 2006. ISBN-13: 978-0321486813

D. Brown, J. Levine, and T. Mason, Lex and Yacc, 2nd Edition, O'Reilly, 1995.

IV. Minimum Student Material

Textbook and class handouts

V. Minimum College Facilities

A classroom with a projection system and a computer lab

VI. Course Outline

· Introduction to compiling
· Lexical analysis
· Design of a lexical analyzer and the use of Lex
· Context-free grammar normalizations
· General methods for solving the membership problem
· LL grammars, parsers, and top-down parsing
· LR grammars, parsers, and bottom-up parsing
· Implementation of a shift-reduce parsing and the use of Yacc
· Syntax directed translation
· Symbol tables implementation and scope rules
· Intermediate code generation

VII. Instructional Methods

· Lecture
· Problem-solving/Discussion
· In-class exercises
· Small group activities
· Project-based learning

VIII. Evaluation of Outcomes

A. Student Assessment
 Homework assignments, Programming projects/presentations, Midterm exam, Final exam.

B. Meaningful Writing Assignment
[bookmark: _GoBack] In courses that largely involve software design and implementation, students are expected
 to explain and document their designs. Good documentation is essential to software
 longevity, and good written communication (both in and beyond programming code) is
 necessary for good documentation. The project provides a meaningful and significant
 writing component, and supports practically all of the course learning outcomes, as shown
 in the following matrix.

C. A Matrix of Course Student Learning Outcomes vs Methods of Assessment
 If the course is being evaluated for accreditation purposes, approved department
 accreditation assessment tools will additionally be utilized.

	Course Learning Outcomes
	Methods of Assessment

	
	Homework
	Programming
Projects
	Exams

	Study in-depth lexical analysis, top-down and bottom-up syntax analysis including LL, LR, SLR, and LALR techniques
	x
	x
	x

	Learn the theory of syntax-directed semantic analysis and its applications to type checking, code generation, and interpreter design
	x
	x
	x

	Gain experience in using lexer and parser generator tools
	
	x
	

