

The Minimum and Maximum Number of Stupid Dice Allowed in an Equal Relabeling

Crystal Faqih, Civil Engineering Mentor: Dr. Amber Rosin

BACKGROUND

► Given a pair of standard 6-sided dice, we can roll the following sums with the given probabilities:

sums:	2	3	4	5	6	7	8	9	10	11	12
probabilities:	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	<u>5</u> 36	$\frac{4}{36}$	$\frac{3}{36}$	<u>2</u> 36	$\frac{1}{36}$

- Can the dice be relabeled so that the sums 2 through 12 are equally likely? It is well known that this is impossible. (There are 11 sums and 36 possible outcomes and 11 does not divide 36.)
- However, seven dice result in the sums 7 through 42 (again with unequal probabilities), but in this case, a relabeling with equal probabilities is possible. (See the blue dice for such a labeling.)
- In [1], it is shown that m 6-sided dice can be relabeled in such a way that the standard sums (i.e. the sums for m standard 6-sided dice) are equally likely if and only if m has the form

$$m = \frac{6^s 2^{4t} - 1}{5}$$
 or $m = \frac{6^s 3^{4t} - 1}{5}$.

It is also shown in [1] that such relabelings always require "stupid dice," which are dice that have a 1 on every face.

How many stupid dice do we need for 7 dice?

- For 7 dice the standard sums are 7, 8, 9, ..., 42, so the number of standard sums is $36 = 2^2 3^2$.
- Since the dice are 6-sided, the number of possible outcomes is $6^7 = 2^7 3^7$.
- For the sums to be equally likely, each sum must appear $\frac{\text{number of outcomes}}{\text{number of sums}} = \frac{6^7}{6^2} = 6^5 = 2^5 3^5$ times.
- ▶ To roll a 7, we must have a 1 on each of the 7 dice. Let a_i be the number of 1's on die i.
- ▶ The number of ways to roll a sum of 7 is $a_1a_2a_3a_4a_5a_6a_7$ which must equal 6^5 .
- ▶ A stupid die results whenever $a_i = 6$.
- ▶ We need 5 2's and 5 3's in the product $a_1a_2a_3a_4a_5a_6a_7$. In other words, there are 7 slots for the 5 2's and the 5 3's, so some of the 2's and 3's will have to overlap. (This is why we have to have stupid dice.)
- ► To get the least number of stupid dice, we want the least amount of overlap for the 5 2's and 5 3's. This can be done as follows:

So 3 dice have overlap meaning we have 3 stupid dice.

- The least number of stupid dice is 3. The labeling above is an equal labeling with the least number of stupid dice.
- ► To get the greatest number of stupid dice, we want the most amount of overlap for the 5 2's and 5 3's. This can be done as follows:

So 5 dice have overlap meaning we have 5 stupid dice.

The greatest number of stupid dice is 5.

THE GENERAL CASE

- We consider the case when $m = \frac{6^s 3^{4t} 1}{5}$.
- For the sums to be equally likely, each sum must appear $\frac{\text{number of outcomes}}{\text{number of sums}} = \frac{6^m}{6^s 3^{4t}} = \frac{6^{m-s}}{3^{4t}} = \frac{3^{m-s} 2^{m-s}}{3^{4t}} = 2^{m-s} 3^{m-s-4t} \text{ times.}$
- Let a_i = the number of times 1 appears on die i.
- ightharpoonup Then the number of ways to roll the sum m must be

$$a_1 a_2 \cdots a_m = 2^{m-s} 3^{m-s-4t}$$
.

- ▶ What are the possible values for $a_1, a_2, ..., a_m$?
- Since 2 and 3 are prime, each a_i can only be made out of 1's, 2's, and 3's.
- ► Clearly since our dice have six sides, $a_i \leq 6$.
- So we know that a_i can only be 1, 2, 3, 4, or 6.
- ► Since *m* and 6*m* have to occur the same number of times, and *m* can only be rolled by using all 1's and 6*m* can only be rolled using the largest number that appears on every die, the largest number on die *i* must also appear *a_i* times.
- This actually means that a_i can only be 1, 2, 3, or 6.

THE GENERAL CASE - CONTINUED

- ▶ Die *i* is stupid if $a_i = 6$.
- ▶ We need m-s of the dice to have a 2. We also need m-s-4t of the dice to have a 3.
- ▶ To get the most amount of stupid dice, we want as much overlap as possible, so we make m s 4t of the dice have both a 2 and a 3. So the greatest possible number of stupid dice is m s 4t.
- To get the least amount of stupid dice, we want as little overlap as possible. We need m-s-4t 2's and m-s 3's. If there were no overlap, this would require m-s-4t+m-s=2m-2s-4t dice. However, we only have m dice, so 2m-2s-4t-m=m-2s-4t must overlap. So the least possible number of stupid dice is m-2s-4t.

A DICE LABELLING

- In [1] a equal relabelling of m is given using m-s-4t stupid dice, which shows that the it is actually possible to get the most amount of stupid dice found earlier.
- We will illustrate a relabelling of m dice using m-2s-4t stupid dice to show that the least number of stupid dice is also possible.

Label the first s dice as follows:

1, 1,
$$1+3^{0}$$
, $1+3^{0}$, $1+2\cdot 3^{0}$, $1+2\cdot 3^{0}$
1, 1, $1+3^{1}$, $1+3^{1}$, $1+2\cdot 3^{1}$, $1+2\cdot 3^{1}$
...
...
...
...
...
...
...
...
1, $1+3^{s-1}$, $1+3^{s-1}$, $1+2\cdot 3^{s-1}$, $1+2\cdot 3^{s-1}$

Label the next *s* dice as follows:

1, 1, 1,
$$1+3^{s} \cdot 2^{0}$$
, $1+3^{s} \cdot 2^{0}$, $1+3^{s} \cdot 2^{0}$
1, 1, 1, $1+3^{s} \cdot 2^{1}$, $1+3^{s} \cdot 2^{1}$, $1+3^{s} \cdot s^{1}$
 \vdots \vdots \vdots \vdots \vdots \vdots $1+3^{s} \cdot 2^{s-1}$, $1+3^{s} \cdot 2^{s-1}$, $1+3^{s} \cdot 2^{s-1}$

Label the next 4t dice as follows:

Label the remaining m-2s-4t dice with 1's on every face.

FURTHER QUESTIONS

- Is it possible to find equal relabelings using a number of stupid dice that is between the least and greatest possible number?
- ▶ Is the above the only equal relabeling using the least number of stupid dice?

REFERENCES

[1] Rosin, A., Swift, R.J., & Sharobiem, M. (2008), Dice Sums, The Mathematical Scientist, Vo. 33, 2, 99-109.