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Understanding the distribution of totatives is useful in bounding Lehmer approached this problem by using the following formula:

primitive rth roots of unity of imeducible polynomials when other

methods fail. D. H. Lehmer, in his paper *The Distribution of Totatives”, Elk.q.m) = o(n) — kp(k.q.7)

uses Euler's totient function to study the distribution of numbers less where k is the number of subintervals, g represents which subinterval is

::h"- and rd“::lgupl"me to, anyt:iven ?’u':"e int:er;fn. Those P::“"e being tested {g=0,1,..., k-1), nis the positive integer being examined, and
ntegers are ca e totatives of n, an number of totatives forany (| 5¢,5 i Fulers totient formuia. Euler’s totient formuia couns the
given n can be calculated by using the formula for Euler's totient number of ives less than 1 and @(k, g, ») is the number of .

function, in the qth of k subintervals.

= pFin%2 ’u___ £y
®n) =Py 'Pa'Pa’ P This excess or error formuia tells us that if E(k, g,n) = 0 then the
whenre nis the number being considered, and each p represents a distinct totatives are evenly distributed on the gth interval; if E(k, g,) > 0 then

prime factor of a. the subinterval contains too many totatives to be evenly distributed;
The question considered in Lehmer's paper is this: how are the gfa} finally, if £(k, g, %) < 0 then the subinterval contains too few totatives to
numbers of any given n distributed over the Interval f0,n] and can a be evenly distibuted.

general farmula be derived to determine under what circumstances ] o
those totatives are uniformiy distributed? The purpose of this project is Now, for the totatives to be evenly distributed, we must have

o make the math in Lehmer's paper understandable to other Etk,On)=Eik 1.0} =Ek.Zn}=—=Elkk—1m=0 (1}
undergraduate students by bridging the gaps In Lebhmer's mathematical . .
derlvations using techniques from number theory. over all k subintervals. it is also apparent that because

Ek.q,n) =@n} — kplk,gn} =0
A Distribution Test we have @ln) = kp(k,.q,n)

Let’s examine what happens when n=12. 0 we know that k divides @(n). Clearly it is necessary for @(r) to be a
0 1 2 3 4 5 6 7 8 9 10 11 12 multiple of k if we want the tolatives distributed evenly. The question is,
is it sufficient to guarantee uniform distribution?

To determine if a number is a totative of 12, we need to check the
greatest common divisor of 12 and each integer less than 12; a gcd of 1 Consider the case where n=21 and k=4. By Euler’s formula,

indicates that the two numbers are relatively prime, and the smaller 2N =7+ =p(NrpD=(7—D*+(3—1)=6+2=12
number is a totative of 12. Note that the proper divisors of 12 are 1,2,3,4 - o
Cleasty 4 divides 12, and we expect to see 3 totatives in each of the 4

and 6.
gcd (1,12)<1 gcd(2,12)=2 ¢cd(3,12)3 subintervals if k dividing @(n) is the only necessary condition for uniform
gcd(4,’12)=4 gcd(5:12)=1 gcd(6:12)=6 asumm.mmenwemph'_dves_mnoondlgmswseemat
ged(7,12)=1 gcd(8,12)=4 gcd(9,12)=3 there are not an equal number of totatives in each subinterval
gcd(10,12)=2 ged(11,12)=1 { 4:2 4 B 8 101 13 1617 1920 :
3 5 7 1 0 3 ‘67 9 | 12 1415} 18 21
0 £ & 4 J 8 & n 12 and we find that E{4,021) = E(43.21) = —4
The gcd test reveals that 1, 5, 7 and 11 are the totatives of 12. Charting E(4,1,21) = E(4,221) = 4

these numbers we can see that they are not clustered together but are
distributed over the interval. How can we determine what type of
distribution this represents?

Andl so by {1} unitorm distribution does not exist.

" ; g & p i Lehmer’s resuits reveal, among cther things, that

0 3 4 5 5 5 10 « Hnisdwisible by &* then 1's totatives are uniformly distributed with
respect to k

If we divide the interval [0,12] into equal subintervals we can see if the s @+ 16 - o
totatives fall evenly into each section. Here we have divided the interval * Ek.qm)= Eﬂ"{6+k[T] _k[ 3 D"’(E]‘ which gives us that

into 4 such subintervals. Divide 12 by 4 and you have intervals of width 3. E{k.0.m) = me(b')n (;—L)furuﬂ'lllrl’lemr is the least positive
The graph shows that each interval contains exactly one totative. When remainder when 4 is divided by k

each subinterval contains the same number of totatives, we say that the = {f a prime p of the form &x + 1 divides n. then the totatives of » are
totatives are uniformly distributed with respect to k where k represents uniformiy distributed with respect to k

the number of subintervals. = Additionally, L ehmer desives explicit formulas for determining

The goal of Lehmer’s paper was not to test every number n and every k E¢ic.g,n) forthe caseswherek = 3, k =4, andk = 6
subintervals for each n, but rather to arrive at a general formula that *  Fxplict formulas are relatively difficult to derive. Further work has

could be applied to any n. been done on this subject by Paul ). McCarthy and Panl Erdis.
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