2/142 At the bottom of a loop in the vertical (r-θ) plane at an altitude of 400 m, the airplane P has a horizontal velocity of 900 km/h and no horizontal acceleration. The radius of curvature of the loop is 1200 m. For the radar tracking at O, determine the recorded values of \(r \) and \(\dot{r} \) for this instant.

![Diagram of airplane P with coordinates and distances](image)

2/145 The slider P can be moved inward by means of the string S, while the slotted arm rotates about point O. The angular position of the arm is given by \(\theta = \frac{2t}{20} \), where \(t \) in radians and \(t \) is in seconds. The slider is at \(r = 1.6 \) m when \(t = 0 \) and thereafter is drawn inward at the constant rate of 0.2 m/s. Determine the magnitude and direction (expressed by the angle \(\alpha \) relative to the x-axis) of the velocity and acceleration of the slider when \(t = 4 \) s.

\[\text{Ans.} \quad v = 0.577 \text{ m/s} \quad \alpha = 283^\circ \quad a = 0.275 \text{ m/s}^2 \quad \alpha = 19.44^\circ \]

2/150 For an interval of motion the drum of radius \(h \) turns clockwise at a constant rate \(\omega \) in radians per second and causes the carriage P to move to the right as the unwound length of the connecting cable is shortened. Use polar coordinates \(r \) and \(\theta \) and derive expressions for the velocity \(\dot{r} \) and acceleration \(\ddot{r} \) of P in the horizontal guide in terms of the angle \(\theta \). Check your solution by a direct differentiation with time of the relation \(x^2 + h^2 = r^2 \).

![Diagram of drum and carriage](image)

2/152 The piston of the hydraulic cylinder gives pin A a constant velocity \(v = 3 \) ft/sec in the direction shown for an interval of its motion. For the instant when \(\theta = 60^\circ \), determine \(\dot{r} \), \(\dot{r} \), \(\dot{\theta} \), and \(\ddot{\theta} \) where \(r = OA \).

![Diagram of hydraulic cylinder](image)

2/162 The baseball player of Prob. 2/120 is repeated here with additional information supplied. At time \(t = 0 \), the ball is thrown with an initial speed of 100 ft/sec at an angle of 30° to the horizontal. Determine the quantities \(r \), \(\dot{r} \), \(\theta \), \(\dot{\theta} \), and \(\ddot{\theta} \), all relative to the x-y coordinate system shown, at time \(t = 0.5 \) sec.

\[\text{Ans.} \quad r = 51.0 \text{ ft}, \quad \dot{r} = 94.4 \text{ ft/sec} \quad \theta = 31.9^\circ \quad \ddot{\theta} = 0.034 \text{ rad/sec}^2 \quad \dot{\theta} = 0.850 \text{ rad/sec}^2 \]

2/163 An earth satellite traveling in the elliptical orbit shown has a velocity \(v = 12,149 \) mi/hr as it passes the end of the semiminor axis A. The acceleration of the satellite at A is due to gravitational attraction and is \(32.24(8859/8400)^2 = 7.159 \text{ ft/sec}^2 \) directed from A to C. For position A calculate the values of \(\dot{r} \), \(\ddot{r} \), \(\dot{\theta} \), and \(\ddot{\theta} \).

\[\text{Ans.} \quad \dot{r} = 8910 \text{ ft/sec} \quad \ddot{r} = -1.799 \text{ ft/sec}^2 \quad \dot{\theta} = 3.46 \times 10^{-4} \text{ rad/sec} \quad \ddot{\theta} = -1.398 \times 10^{-7} \text{ rad/sec}^2 \]

![Diagram of earth satellite](image)
The small block P travels with constant speed v in the circular path of radius r on the inclined surface. If $\theta = 0$ at time $t = 0$, determine the x-, y-, and z-components of velocity and acceleration as functions of time.

An aircraft P takes off at A with a velocity v_0 of 250 km/h and climbs in the vertical y'-z' plane at the constant 15° angle with an acceleration along its flight path of 0.8 m/s2. Flight progress is monitored by radar at point O. Resolve the velocity of P into cylindrical-coordinate components 60 s after takeoff and find \dot{r}, θ, and z for that instant. (Suggestion: Draw the related x'-y' and x'-z' projections of the velocity components.)

The robotic device of Prob. 2/153 now rotates about a fixed vertical axis while its arm extends and elevates. At a given instant, $\phi = 30^\circ$, $\dot{\phi} = 10$ deg/s = constant, $l = 0.5$ m, $\dot{l} = 0.2$ m/s, $\ddot{l} = -0.3$ m/s2, and $\Omega = 20$ deg/s = constant. Determine the magnitudes of the velocity v and the acceleration a of the gripped part P.

An aircraft is flying in a horizontal circle of radius b with a constant speed u at an altitude h. A radar tracking unit is located at C. Write expressions for the components of the velocity of the aircraft in the spherical coordinates of the radar station for a given position β.

\[
\begin{align*}
\text{Ans. } &v_r = \frac{bu \sin \beta}{\sqrt{4b^2 \sin^2 \frac{\beta}{2} + h^2}}, \quad v_\phi = \frac{uh \cos \frac{\beta}{2}}{\sqrt{4b^2 \sin^2 \frac{\beta}{2} + h^2}}
\end{align*}
\]

In a design test of the actuating mechanism for a telescoping antenna on a spacecraft, the supporting shaft rotates about the fixed z-axis with an angular rate $\dot{\theta}$. Determine the R, θ, and ϕ-components of the acceleration a of the end of the antenna at the instant when $L = 1.2$ m and $\beta = 45^\circ$ if the rates $\dot{\theta} = 2$ rad/s, $\dot{\beta} = \frac{3}{2}$ rad/s, and $\dot{L} = 0.9$ m/s are constant during the motion.