The circular disk B of radius r rolls without slipping in a circle of radius b on the fixed disk C. Write expressions for the angular velocity ω and the angular acceleration α of disk B if its axle rotates about the vertical z-axis at the constant angular velocity ω_0.

Problem 7/18

If disk C in Prob. 7/18 rotates clockwise with a constant angular velocity Ω about the z-axis when viewed from above and the angular rate ω_0 of OA remains unchanged, determine expressions for the angular velocity ω and angular acceleration α of disk B.

Ans. $\omega = -\frac{b}{r}(\omega_0 + \Omega)\hat{i} + \omega_0\hat{k}$

$\alpha = -\frac{b}{r}\omega_0(\omega_0 + \Omega)\hat{j}$

Problem 7/19

Two bevel gears attached to the arm C roll on the fixed gear A. The arm rotates about the z-axis at the constant angular velocity of 25 rad/s. Complement (a) the angular velocity of gear B, and (b) the angular acceleration of gear B.

The solid right-circular cone of base radius r and height h rolls on a flat surface without slipping. The center B of the circular base moves in a circular path around the z-axis with a constant speed v. Determine the angular velocity ω and the angular acceleration α of the solid cone.

Ans. $\omega = \frac{1}{\sqrt{\frac{h^2}{r^2} + \frac{h^2}{r^2}}} \hat{i}$

$\alpha = -\frac{v^2}{h^2} \left(\frac{r}{h} + \frac{h}{r} \right) \hat{j}$

Problem 7/27

The wheel of radius r is free to rotate about the bent axle CO which turns about the vertical axis at the constant rate p rad/s. If the wheel rolls without slipping on the horizontal circle of radius R, determine the expressions for the angular velocity ω and angular acceleration α of the wheel. The x-axis is always horizontal.

Ans. $\omega = p \left(\sin \theta + \frac{R}{r} \right) \hat{j}$

$\alpha = \left(\frac{p^2\cos \theta}{r} \right) \hat{i}$

Problem 7/49

Two bevel gears attached to the arm C roll on the fixed gear A. The arm rotates about the z-axis at the constant angular velocity of 25 rad/s. Complement (a) the angular velocity of gear B, and (b) the angular acceleration of gear B.

Problem 7/19

Gears A and B spin freely on the bent shaft D, whereas gear C is fixed. The shaft D rotates about the y-axis with the constant angular velocity ω_0. For the position shown, calculate the angular velocity of (a) gear A, and (b) gear B.

Fig. P19.11

Fig. P19.12