Precessional Motion

Situation in which an axially symmetric body is seen to rotate (spin) about its own fixed axis of inertial symmetry from some intermediate, body following reference frame F.

The angular velocity of this intermediate (precessional) frame is referred to as the bodies precession rate vector

$$\vec{\Omega} = \vec{\omega}_F \; ; \; \text{precession rate vector}$$

and the angular velocity of the body relative to that frame

$$\vec{p} = p\vec{a} = \vec{\omega}_{B/F} \; ; \; \text{spin rate vector}$$

is referred to as the bodies spin rate vector.
Simple Steady State Precession

Rigid Body seen to rotate (spin) about a fixed axis of rotational (inertial) symmetry with constant angular velocity $\vec{\omega}$ by an observer in a reference frame which itself rotates (precesses) with a constant angular velocity $\vec{\Omega}$ relative to the ground.

$$\vec{\omega}_{\text{body}} = \vec{\omega}_{2} = \vec{\omega}_{2/1} + \vec{\omega}_{1} \quad \left\{ \begin{array}{l} \vec{\omega}_{2/1} = \vec{\omega} \\ \vec{\omega}_{1} = \vec{\Omega} \end{array} \right.$$

$$\vec{\omega}_{\text{body}} = \vec{\Omega} + \vec{\omega}$$

$$\vec{\alpha}_{\text{body}} = \vec{\alpha}_{2} = \vec{\alpha}_{2/1} + \vec{\alpha}_{1} + \vec{\omega}_{1} \times \vec{\omega}_{2/1} \quad \left\{ \begin{array}{l} \vec{\alpha}_{2/1} = \vec{\alpha} \\ \vec{\alpha}_{1} = \vec{\Omega} \end{array} \right.$$

$$\vec{\alpha}_{\text{body}} = \vec{\Omega} \times \vec{\omega}$$

The wheel depicted at right is in a state of simple steady precession.