The Water Cycle

Lesson 6a: Conservation of Water in a Closed System

Grade 5	Length of lesson: 58 minutes	Placement of lesson in unit: 6a of 6 two-part lessons on the water cycle
Unit central questions: How does water change in the world around us? Does Earth ever run out of water?	Lesson focus question: Does Earth ever run out of water? Support your answer with evidence and reasoning.	
Main learning goal: As water changes state (liquid, solid, or gas), its mass is always conserved, which can be demonstrated mathematically.		
Science content storyline: The motion and arrangement of water molecules change as molecules move back and forth between liquid, solid, and gaseous states, but their mass never changes. By measuring the mass of three closed bottles of water, we showed that it remained constant even though one bottle was put in the freezer and the water turned to ice; one bottle was heated, causing evaporation; and one bottle remained at room temperature. Like the bottles, Earth is a closed system for water, so Earth never runs out of water. Water molecules are never lost from Earth and Earth's atmosphere, so the total mass of water molecules on Earth never changes. Even though water exists in and changes between liquid, solid, and gas forms, the total mass of water on Earth remains constant over time.		
Ideal student response to the focus question: The total amount of water on Earth never changes. Water changes forms (liquid, solid, or gas), like in evaporation and condensation, but it doesn't disappear, and its total mass never changes. It stays the same over time because Earth is a closed system for water.		

Preparation

Materials

- Science notebooks
- Water-changes-system setup (from lesson 4 b)
- 3 identical clear plastic bottles with tight caps (8-oz clear water bottles work well, labels removed)
- 4 extra clear plastic bottles (same as above)-3 for practicing the activity in advance, and 1 to fill and freeze overnight as a substitute for the first freezer bottle at the end of the experiment (see Ahead of Time for instructions)
- 1 permanent marker to label the bottles
- 1 heat-lamp setup (see photo)
- 1 heat-lamp bulb: Exo Terra Sun Glo Basking Spot Lamp, 150 watts
- 1 digital scale
- 1 graduated cylinder (25 ml)
- Water- 20 ml in each bottle

- Access to a freezer
- Oven mitt (for handling the heated bottle)

Student Handouts

- 4.2 Water-Changes System (from lesson 4b)

Ahead of Time

- Review the Water Cycle Content Background Document: part 2.
- Review the PowerPoint slides and modify them as you wish.
- Set up your water-changes system. If the water from the test tube wasn't poured back into the flask during lesson 4 b , turn on the hot plate and heat the system well before the activity-setup discussion in this lesson. If the water was previously poured back into the flask, just show the setup without turning on the system.
- The word bank should include these words: closed system, open system, molecules, mass, solid, liquid, gas, water vapor, condensation, evaporation, gain energy, lose energy.
- Perform a test run of the three-bottles experiment:
- Number and label three bottles so you can easily reference them: (1) Freezer, (2) Room Temp, (3) Heated. Important: The night before the lesson, fill an extra bottle with 20 ml of water, screw on the cap tightly, label the bottle "Freezer," record the starting mass, and place the bottle in the freezer overnight. This bottle will replace the first freezer bottle at the end of the experiment so that students can weigh it and record the ending mass after freezing. Make sure the two freezer bottles are identical so the switch will work!
- Practice setting up the heat lamp and bottle to be heated. Lay the bottle on its side and position the bulb approximately 3 inches from the side of the bottle (not toward the cap). Signs of evaporation should appear after about 10 minutes. Small drops of condensation should form on the side of the bottle opposite the heat source. When this happens, the bottle may become unstable, so make sure it doesn't roll around. Don't leave the bottle unattended while heating. As evaporation continues, the heated bottle will likely expand. Stop heating the bottle if it becomes deformed, and don't heat it for longer than 20 minutes. Handle the heated bottle with an oven mitt!

Lesson 6a General Outline

Time	Phase of Lesson	How the Science Content Storyline Develops
5 min	Link to previous lessons: The teacher links this lesson to previous lessons and addresses the first unit central question by having the class look at a drawing of a mountain scene and talk about all the changes water might undergo in such an environment.	- Through evaporation, condensation, freezing, and melting, water continually changes state and moves from place to place in our environment. - Scientists describe this constant change and movement as the water cycle. - In the water cycle, water can change from a liquid to a gas through evaporation, from a gas to a liquid through condensation, from a liquid to a solid by freezing, and from a solid to a liquid by melting. - These changes of state occur because of changes in the movement and arrangement of water molecules as they gain or lose energy.
3 min	Lesson focus question: The teacher introduces and elicits student ideas about the focus question, Does Earth ever run out of water? Support your answer with evidence and reasoning.	
7 min	Setup for activity: Students revisit the water-changes system from lesson 4 b and explain the changes they observed in terms of molecules, evaporation, and condensation. The teacher asks students whether the mass of water changed in this system and then introduces the concepts of open and closed systems.	- Evaporation, condensation, and precipitation can occur in one system. - Some systems are closed so that matter (such as water molecules) can't escape; other systems are open so that matter can escape.
30 min	Activity: The teacher sets up an experiment with three bottles of water to explore whether mass is lost during evaporation, condensation, or freezing in a closed system. Students record the beginning mass of all three bottles and make predictions about the ending mass using mathematical equations. Then they analyze sample data from another class that conducted the experiment and weigh their own bottles again at the end of the experiment.	- In a closed system, the total mass of the water doesn't change regardless of changes in state.
5 min	Follow-up to activity: Students share their equations representing the results of the three-bottles experiment. Then they come up with explanations for the results (claims, evidence, reasoning). The teacher highlights key science ideas related to the experiment.	
7 min	Synthesize/summarize today's lesson: Students answer the focus question in their science notebooks. Optional: Students share and critique their summaries.	- Water changes state through evaporation, condensation, and freezing because of changes in the movement and arrangement of water molecules as they gain or lose energy. - In a closed system, the total mass of the water (and the number of water molecules) doesn't change regardless of changes in state. - Earth is a closed system for water molecules, so it never runs out of water.
1 min	Link to next lesson: The teacher summarizes key science ideas and links them to the next lesson.	

Time	Phase of Lesson and How the Science Content Storyline Develops	STeLLA Strategy	Teacher Talk and Questions	Anticipated Student Responses	Possible Probe/Challenge Questions
5 min	Link to Previous Lessons Synopsis: The teacher links this lesson to previous lessons and addresses the first unit central question by having the class look at a drawing of a mountain scene and talk about all the changes water might undergo in such an environment. Main science idea(s): - Through evaporation, condensation, freezing, and melting, water continually changes state and moves from place to place in our environment. - Scientists describe this constant change and movement as the water cycle. - In the water cycle, water can change from a liquid to a gas through evaporation, from a gas to a liquid through condensation, from a liquid to a solid by freezing, and from a solid to a liquid by	Link science ideas to other science ideas.	NOTE TO TEACHER: If the water from the test tube wasn't poured back into the flask during lesson 4b, turn on the hot plate now to allow enough time for the system to heat before the activity setup. Show slides 1 and 2. In this unit, we've been studying changes of state in water to help us answer these unit central questions, How does water change in the world around us? Does Earth ever run out of water? Show slide 3. What have we learned so far about the first question? Look at the diagram on this slide for a moment and think about all the water changes you could describe. Everyone should be prepared to share an idea. Individual think time (1 min). Whole-class share-out: What water changes can you imagine happening in this diagram? I'll call on you to share your ideas using the equity sticks. NOTE TO TEACHER: During this discussion, challenge students to include the idea of molecules in their statements. Make sure they're communicating science ideas	Evaporation. Evaporation from the river happens	Put that in a complete sentence, please.

Time	Phase of Lesson and How the Science Content Storyline Develops	STeLLA Strategy	Teacher Talk and Questions Anticipated These changes of state occur because of changes in the movement and arrangement of water molecules as they gain or lose energy.		accurately. If students make inaccurate statements, ask them challenge questions (or ask other students whether they agree or disagree with the statement and why). Probe/Challenge Questions

Time	Phase of Lesson and How the Science Content Storyline Develops	STeLLA Strategy	Teacher Talk and Questions	Anticipated Student Responses	Possible Probe/Challenge Questions
		Engage students in analyzing and interpreting data and observations.	Show slide 6. Let's consider some data to help us think about our focus question. Look again at the diagram of the water-changes system. NOTE TO TEACHER: If the water from the test tube was poured back into the flask during lesson $4 b$, just point to the actual setup throughout this discussion, as well as the diagram on the PowerPoint slide. If you didn't have time to pour water from the test tube back into the flask during that lesson, do it now. (Make sure to turn off the hot plate!) In the demonstration during lesson 4, we marked the starting line of the water on the flask. Then when we poured the water from the test tube back into the flask, we discovered that that it didn't return to the original starting line. Why didn't we have the same amount of water	We could only see when the water condensed as liquid water. We also saw precipitation when the water rolled down the tubing into the test tube.	

$\left.\begin{array}{|l|l|l|l|l|l|}\hline \text { Time } & \begin{array}{c}\text { Phase of Lesson and } \\ \text { How the Science } \\ \text { Content Storyline } \\ \text { Develops }\end{array} & \begin{array}{c}\text { STeLLA } \\ \text { Strategy }\end{array} & \begin{array}{c}\text { Teacher Talk and Questions } \\ \text { Student Responses }\end{array} & \begin{array}{c}\text { Prossible } \\ \text { Probe/Challenge } \\ \text { Questions }\end{array} \\ \hline & & \begin{array}{l}\text { in the flask at the end of the experiment as we } \\ \text { did at the beginning? Did some of it disappear, } \\ \text { change, get destroyed, or get lost? } \\ \text { Turn and Talk (1 min): Talk about these } \\ \text { questions with a partner. } \\ \text { Whole-class share-out: So why didn't we have } \\ \text { the same amount of water in the flask at the end } \\ \text { of the experiment? What happened to the water? } \\ \text { Did it disappear? }\end{array} & \begin{array}{l}\text { It didn't disappear, } \\ \text { but not all of it } \\ \text { ended up in the } \\ \text { test tube. Some of } \\ \text { the water was still } \\ \text { in the tubing. }\end{array} \\ \text { I agree, and we } \\ \text { saw some of the } \\ \text { water escape out } \\ \text { the top of the test } \\ \text { tube as steam. }\end{array} \quad \begin{array}{l}\text { Tell me more about } \\ \text { what was happening } \\ \text { when the water } \\ \text { escaped from the top } \\ \text { of the test tube. }\end{array}\right\}$

Time	Phase of Lesson and How the Science Content Storyline Develops	STeLLA Strategy	Teacher Talk and Questions	Anticipated Student Responses	Possible Probe/Challenge Questions
		Link science ideas to other science ideas. Ask questions to elicit student ideas and predictions.	Show slide 7. NOTE TO TEACHER: Explain to students why the water-changes system is an open system. The water we poured back into the flask at the end of our experiment didn't return to the starting line because some water was still in the tubing, and some escaped into the air. We call this an open system because the water molecules could escape out of the system through the test-tube opening. What if we changed the setup so that no water could escape into the air? Any ideas about how we could do that? This would make our system a closed system. Show slide 8. NOTE TO TEACHER: Make sure students can imagine this setup as a closed system. What do you think about this closed system? If we poured the water from the test tube back into the flask in this system, would the water level in the flask be the same as when we started? Turn and Talk ($\mathbf{1} \mathbf{~ m i n}$): Work with a partner to come up with a prediction and reasoning to support your prediction. Whole-class share-out: Let's hear your ideas. Do you think the water level in the closed system	Maybe cover the top of the test tube?	

Time	Phase of Lesson and How the Science Content Storyline Develops	STeLLA Strategy		Anticipated Student Responses	Possible Probe/Challenge Questions
			would be the same as the level in the open system?	The water level would be the same because no water would escape through the opening at the top of the test tube.	Anyone agree or disagree with this idea? Anything you want to add on or ask?

Time	Phase of Lesson and How the Science Content Storyline Develops	STeLLA Strategy	Teacher Talk and Questions	Anticipated Student Responses	Possible Probe/Challenge Questions
			Show slide 9. We've heard some different ideas about what happens to water in a closed system, but we don't have enough evidence to answer our focus question. So let's gather more data!		
30 min	Activity Synopsis: The teacher sets up an experiment with three bottles of water to explore whether mass is lost during evaporation, condensation, or freezing in a closed system. Students record the beginning mass of all three bottles and make predictions about ending mass using mathematical equations. Then they analyze sample data from another class that conducted the experiment and weigh their own bottles again at the end of the experiment. Main science idea(s): - In a closed system, the total mass of the water doesn't change	Make explicit links between science ideas and activities during the activity.	NOTE TO TEACHER: This experiment should be set up so the whole class is looking at the same bottles and the same data. However, you can involve students in helping you measure, label, and weigh the three bottles as you set them up. Only the substitute freezer bottle will be filled, measured, and labeled in advance. Don't bring out this bottle until the end of the experiment. Show slide 10. To investigate our focus question, we're going to collect some data in an experiment with three bottles. Each bottle is the same size, shape, and material. And each has a cap to make it a closed system. That means any air or water inside each bottle can't get out unless we remove the cap. [Show students the bottles.] Let's add 20 milliliters of water to each bottle and then put the caps on nice and tight. What do you think happens to the mass of water when it changes states in a closed system? Let's find out!		

Time	Phase of Lesson and How the Science Content Storyline Develops	STeLLA Strategy	Teacher Talk and Questions	Anticipated Student Responses	Possible Probe/Challenge Questions
	regardless of changes in state.		NOTE TO TEACHER: Make sure the bottles are clearly labeled 1 Freezer, 2 Room Temp, and 3 Heated. Measure the water carefully and add it to each bottle. Make sure the caps are screwed on tightly. Show slide 11. First, we're going to weigh each of the three bottles and record their mass at the beginning of the experiment on a chart like the one on this slide. NOTE TO TEACHER: Have students help you weigh each bottle and record the data on a class chart. Ask students to create a similar data table in their science notebooks, where they'll record data from the beginning and the end of the experiment. They should create a table that looks like the model on the slide.		
			How can we express our results about the mass of the bottles in words?	They have the same mass. They're equal.	What's a mathematical way of saying that? What is equal? What do you mean by "they"? Does everyone agree
Grade 5 Water Cycle Lesson 6a					

Time	Phase of Lesson and How the Science Content Storyline Develops	STeLLA Strategy	Teacher Talk and Questions	Anticipated Student Responses	Possible Probe/Challenge Questions
			How could we express this idea using a mathematical equation and symbols, such as the equals sign and the less-than or more-than signs? NOTE TO TEACHER: The bottles will likely all have the same mass. But it's OK if they don't. Students should describe their results accurately using mathematical language and symbols, such as equals ($=$), less than $(<)$, and greater than (>). Help students come up with an equation similar to the following: OR $\begin{aligned} & \text { Mass } \\ & \text { Bottle } 1<\end{aligned} \begin{gathered}\text { Mass } \\ \text { Bottle } 2\end{gathered}=\begin{gathered}\text { Mass } \\ \text { Bottle 3 }\end{gathered}$ Instruct students to write the equation in their science notebooks, making sure to label it "Start of experiment." Now let's place bottle 3 near the heat lamp, turn on the lamp, and watch what happens. NOTE TO TEACHER: As the bottle heats, it may expand or become deformed. If this happens, turn off the heat lamp and allow the bottle to cool. If you handle the bottle while it's still hot, use an oven mitt!	Acceptable equations: Bottle $1=$ Bottle 2 = Bottle 3 $\begin{aligned} & 15.2 \mathrm{~g}<15.3 \mathrm{~g}= \\ & 15.3 \mathrm{~g} \end{aligned}$	that this is accurate?

Time	Phase of Lesson and How the Science Content Storyline Develops	STeLLA Strategy	Teacher Talk and Questions	Anticipated Student Responses	Possible Probe/Challenge Questions
		Ask questions to elicit student ideas and predictions. Ask questions to probe student ideas and predictions.	What do you think will happen as the water in this bottle heats up? NOTE TO TEACHER: Signs of evaporation should appear in the bottle after about 10 minutes of heating. You may want to have students work on the following equation task for 5-8 minutes as the bottle begins heating and then have them start observing the bottle at around 8 minutes into the heating phase so they can see condensation begin to form. Show slide 12. How do you think the mass of each bottle will change at the end of the experiment? Write your predictions in one or more equations using a combination of words and mathematical symbols. Be ready to give the reasons for your predictions. Students work on prediction equations (5 min).	The water will evaporate. The liquid will change into a gas. The liquid water molecules will gain heat energy and move farther apart into the air.	Tell me what will happen to the water molecules.

Time	Phase of Lesson and How the Science Content Storyline Develops	STeLLA Strategy	Teacher Talk and Questions	Anticipated Student Responses	Possible Probe/Challenge Questions
			NOTES TO TEACHER: Students can work with a partner on their predictions. Have them express their predictions as mathematical equations in their science notebooks. For example: Bottle 1 start $<$ Bottle 1 end. Reminders for students: - Use the symbols less than (<), greater than ($>$), or equal to ($=$). - Indicate which bottle you're talking about (1, 2, or 3) - Indicate which condition you're predicting (start or end). - You can write more than one equation. Whole-class discussion ($\mathbf{3} \mathbf{~ m i n}$): What are your predictions? What do you think will happen to the mass of each bottle after the experiment?	Bottle 1 (freezer) will weigh the most, and bottle 3 (heated) will weigh the least (e.g., Bottle $1>$ Bottle 2 > Bottle 3). Because gas is lighter than liquid water or ice, and there will be more gas in bottle 3 because of evaporation. [Misconception]	Why do you think that? Does anyone agree, disagree, or want to

Time	Phase of Lesson and How the Science Content Storyline Develops	STeLLA Strategy	Teacher Talk and Questions	Anticipated Student Responses	Possible Probe/Challenge Questions
					add on?
				And ice is heavier than liquid water.	
				I disagree because I	
				think ice is lighter	
				than liquid water because ice floats on	
				water. So I think the	
				reezer bottle will	
				weigh less at the end than at the start (e.g.,	
				Bottle 1 start >	
				Bottle 1 end).	
				The bottles will all	
				weigh the same at the end as they did	
				at the beginning	
				because it's the	
				same amount of stuff; it's just	
				changing form (e.g.,	
				Bottle 1 start =	
				Bottle 1 end; Bottle 2 start $=$ Bottle 2	
				end; and Bottle 3	
				$\text { start = Bottle } 3 \text { end). }$	
				expected finding.]	hat do the rest of
					ou thi
				I think bottle 3 will weigh less at the end than at the beginning	

| Time | $\begin{array}{c}\text { Phase of Lesson and } \\ \text { How the Science } \\ \text { Content Storyline } \\ \text { Develops }\end{array}$ | $\begin{array}{c}\text { STeLLA } \\ \text { Strategy }\end{array}$ | $\begin{array}{c}\text { Anticipated } \\ \text { Student Responses }\end{array}$ | $\begin{array}{c}\text { Possible } \\ \text { Probe/Challenge } \\ \text { Questions }\end{array}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | $\begin{array}{l}\text { (e.g., Bottle 3 start }> \\ \text { Bottle 3 end). [Not } \\ \text { expected. The } \\ \text { student may be } \\ \text { thinking incorrectly } \\ \text { that water vapor has } \\ \text { less mass than water } \\ \text { in its liquid }\end{array}$ | |
| state.] | | | | |$]$

| Time | Phase of Lesson and
 How the Science
 Content Storyline
 Develops | STeLLA
 Strategy | Teacher Talk and Questions
 Anticipated
 Student Responses | Possible
 Probe/Challenge
 Questions |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | Show slide 14.
 Before we share our equations, let's finish our
 three-bottles experiment and see if our results
 match the sample data. First, we need to replace
 our freezer bottle with an identical bottle of water
 that was frozen overnight.
 Now let's weigh our three bottles again and
 record the ending mass for each bottle on our
 class data chart. | you see? | |
| Whole-class discussion: What do you notice | | | | |

Time	Phase of Lesson and How the Science Content Storyline Develops	STeLLA Strategy	Teacher Talk and Questions	Anticipated Student Responses	Possible Probe/Challenge Questions
	in state.	Engage students in constructing explanations and arguments. Engage students in communicating in scientific ways.	Show slide 16. NOTE TO TEACHER: Have students work with a partner to construct oral explanations for the results of the threebottles experiment (including the sample data). They'll work individually on written explanations during the synthesize/summarize activity. What do the results of this experiment tell us? What does the pattern mean? Turn and Talk (about 3 min): Talk about this with a partner and come up with a claim, evidence, and reasoning that answers the question on the slide: As water changes states, does its mass change? Support your answer with evidence and reasoning. Whole-class discussion: Do you think the mass of water changes when it changes states? Let's hear your claims, evidence, and reasoning. What claims can be supported by our evidence? Everyone listen and be ready to ask questions, add on, and agree or disagree with what you hear. Let's think like scientists!	Bottle 3 start - Bottle 1 end $<$ Bottle 2 end < Bottle 3 end The mass doesn't change as water changes states, because none of the bottles changed in mass even after they	
$\bigcirc 2017$ CPP and BSCS 21					RESPeC Water Cycle Lesson 6

Time	Phase of Lesson and How the Science Content Storyline Develops	STeLLA Strategy	Teacher Talk and Questions	Anticipated Student Responses	Possible Probe/Challenge Questions
			Show slide 17. NOTE TO TEACHER: Reveal the questions and answers on the slide one at a time. So we found that the mass of the bottles didn't change when the water was frozen or heated. Did the amount of water in the bottles change? Do you think the number of water molecules in each bottle changed when the water froze and became a solid or evaporated and became a gas?	frozen or liquid. No, the water just changed state. No, the number of molecules was the same; they were just in a different state. Probably there is the same number of molecules because where could they escape to? Maybe they could escape if the cap wasn't on really, really tight.	More accurately, we say they have the same mass.

Time	Phase of Lesson and How the Science Content Storyline Develops	STeLLA Strategy	Teacher Talk and Questions Student Responses	Possible Probe/Challenge Questions	
			I think there would be fewer molecules when the bottle was heated, because they would be more spread out and less crowded.		

Time	Phase of Lesson and How the Science Content Storyline Develops	STeLLA Strategy	Teacher Talk and Questions Anticipated Student Responses	Possible Probe/Challenge Questions	
1 min	Link to Next Lesson Synopsis: The teacher summarizes key science ideas and links them to the next lesson.	Summarize key science ideas.	In past lessons, we learned how water changes form through evaporation and condensation. We also learned how the energy water molecules contain can explain their arrangement and how they move when they change forms.	system for water.	
Show slide 22.					

