Impact of Low-Temperature Plasmas on Deinococcus radiodurans and Biomolecules

Rakesh Mogul,‡ Alexander A. Bol’shakov,‡ Suzanne L. Chan,‡ Ramsey M. Stevens,† Bishun N. Khare,‡ M. Meyyappan,# and Jonathan D. Trent†,*

Astrobiology Technology Branch, Plasma Research Group, Center for Nanotechnology, NASA Ames Research Center, Moffett Field, California 94035, Eloret Corporation, Sunnyvale, California 94087, and SETI Institute, Mountain View, California 94043

The effects of cold plasma on Deinococcus radiodurans, plasmid DNA, and model proteins were assessed using microbiological, spectrometric, and biochemical techniques. In low power O2 plasma (~25 W, ~45 mTorr, 90 min), D. radiodurans, a radiation-resistant bacterium, showed a 99.999% reduction in bioburden. In higher power O2 plasma (100 W and 500 mTorr), the reduction rate increased about 10-fold and observation by atomic force microscopy showed significant damage to the cell. Damage to cellular lipids, proteins, and chromosome was indicated by losses of infrared spectroscopic peaks at 2930, 1651, 1538, and 1245 cm⁻¹, respectively. In vitro experiments show that O2 plasmas induce DNA strand scissions and cross-linking as well as reduction of enzyme activity. The observed degradation and removal of biomolecules was power-dependent. Exposures to 200 W at 500 mTorr removed biomolecules to below detection limits in 60 s. Emission spectroscopy indicated that D. radiodurans cells were volatilized into CO2, CO, N2, and H2O, confirming that these plasmas were removing complex biological matter from surfaces. A CO2 plasma was not as effective as the O2 plasma, indicating the importance of plasma composition and the dominant role of chemical degradation. Together, these findings have implications for NASA planetary protection schemes and for the contamination of Mars.

Introduction

Surface sterilization is important in a variety of endeavors, including medicine (1, 2), some electronics, and more recently, NASA’s astrobiology missions to search for life beyond Earth (3, 4). The killing and removal of microorganisms and biomolecules from surfaces have traditionally been accomplished by techniques that use heat, chemicals, and/or various forms of radiation (5–7). Better means for detecting microorganisms and biomolecules, however, have revealed that these established techniques are less effective than previously believed (8–11) and has stimulated research into new techniques (12–15).

Sterilization methods using low-temperature plasmas have gained recognition for their efficacy and low costs (16–19). Generated in gases such as O2, N2, CF4, CO2, and air, they are generally described as nonthermal kinetic equilibrium processes that result in the production of neutral and ionic species, free electrons, and ultraviolet (UV) radiation. It is through the combined effects of plasma processes such as chemical degradation, UV photodesorption, and ion bombardment that cause the destruction of microorganisms and organic matter (19, 20). These plasmas typically induce surface temperatures of <100°C and are therefore useful in sterilizing and cleaning the surfaces of devices that are sensitive to high temperatures.

For NASA, decontamination of space probes is important both to preserve extraterrestrial environments (21, 22) and to avoid interference with experiments designed to detect life or chemical evolution beyond Earth (3, 23). Of particular concern are microorganisms, viruses, and biomolecules that can survive the low-pressure and high-radiation environments of interplanetary space or the conditions in areas of interest such as Mars or Europa. Deinococcus radiodurans can survive desiccation and ionizing radiation of 60 Gy/h for 30 h with no loss of viability (24, 25), making this microbe a plausible candidate for surviving interplanetary travel.

Whereas the biological effects of reactive oxygen species (26–28) and UV radiation (29, 30) have been studied in detail, the biomolecular effects of low-temperature plasmas have yet to be elucidated. We have studied the effects of O2 plasma on D. radiodurans and on the destruction and removal of specific biomolecules from surfaces. We measured the effects of plasma power (25–250 W) and composition (O2 and CO2) on the survival and stability of D. radiodurans cells and on the function and stability of either DNA or model proteins (bovine serum albumen and soybean lipooxygenase). The results contribute to the mechanistic understanding of low-temperature
plasma induced sterilization, degradation, and removal of biological matter from surfaces.

Experimental Procedures

Materials. *Deinococcus radiodurans* strain R1 was obtained from ATCC and stored as glycerol stocks at −80 °C. Growth media were prepared as described in Venkateswaran et al. (25). Plasmid DNA (pRcCMV2) and bovine serum albumen (BSA) were purchased from Sigma. Soybean lipoxygenase-1 (SLO) and linoleic acid were obtained from the Holman Research Group (U.C. Santa Cruz). Oxygen gas was purchased from AirGas (99.9%) and Scott Specialty Gases (99.99%). A Martian atmospheric gas analogue (MAG) containing 95.48% CO₂, 2.51% N₂, and 2.01% Ar was obtained from Matheson Gas. Hanging drop slides were obtained from Fisher Scientific. Potassium bromide optical windows (25 mm × 4 mm) were purchased from Harrick Scientific Corporation. All materials were of highest grade, and pure water (18 MΩ cm⁻¹) was used throughout.

Plasma Reactors. Two different plasma reactors were used in this study: a low power (~25 W) barrel reactor (PLASMOD, Tegal Corporation) was used for a majority of the microbiological experiments, and a custom-built reactor (ARC-PR) with optimal running conditions of ≥ 50 W was used for experiments involving molecular and structural characterizations. In all cases, the plasmas were capacitively coupled, low temperature (T_e = 5–12 eV), and powered by a 13.56 MHz radio frequency (Boškakov et al., unpublished results). The ARC-PR was constructed by the plasma research group at the NASA Ames Center for Nanotechnology and was designed to allow high-throughput exposures of biological samples through the use of two connecting chambers—a load-lock and reaction chamber—separated by a moveable gate. Typically, the biological sample was placed into the load-lock chamber, the pressure was reduced to ~20 mTorr, and the target gas was introduced to final pressure of 500 mTorr. The gate was then opened, and the sample was moved into the reaction chamber, which contained the stabilized plasma discharge. After exposure, the sample was shifted back to the load-lock chamber, the gate was closed, and the pressure was readjusted to 1 atm using dry air. Samples were then analyzed using microbiological, spectrometric, and/or biochemical techniques. A thermocouple on the lower side of the reactor was used to monitor temperature. All samples were subjected to the same plasma exposure conditions for each experiment.

Microbe Exposure. *Deinococcus radiodurans* was grown in TGY medium to mid-log phase (~10⁶ cells/mL) at 30 °C. Cells were diluted to 5 × 10⁷ cells/mL in minimal medium, and 100 μL was transferred onto a 25 mm (0.4 μm) Nuclepore membrane and dried on a 7.0 cm Whatman filter. The inoculated membrane was transferred to a glass Petri dish and inserted into the PLASMOD reactor. The pressure within the reactor was reduced to ~20 mTorr, and O₂ was introduced at a flow rate of 1.02 cm³/min to a final pressure of ~45 mTorr. The chamber was equilibrated for ~30 min, the radio frequency power was applied (~25 W), and the inactivated membrane was placed into the plasma reactor for differing durations (10–90 min). Throughout all exposures, the temperature within the plasma chamber never rose to above ~50 °C.

After each exposure, the membrane was placed into 0.5 mL of minimal medium and gently vortexed to remove the cells, and serial dilutions were plated onto TGY/agar plates. Plates were incubated for 3 days at 30°C, colonies were counted, and survival was assayed using the most probable numbers method. An additional survival experiment was performed using the ARC-PR at 100 W and 500 mTorr for 60 s. Control experiments assaying the effects of drying, reduced pressure, and O₂ flow on the survival of the cells as well as the percent recovery from the membranes were also run. All experiments were done in triplicate except for the 60- and 90-min runs using the PLASMOD, which were done in duplicate.

Atomic Force Microscopy. A mid-log phase culture of *D. radiodurans* was washed twice in water by centrifugation (10,000 rpm, 30 s). A suspension of ~7 × 10⁷ cells/mL was prepared in water, and 10 μL was transferred onto two different coupons of freshly cleaved mica (~1 cm²). The coupons were dried through absorption of the excess liquid using a lint-free wiper followed by exposure to a moderate vacuum. The dried coupons were transferred to the ARC-PR and exposed to a 100 W, 500 mTorr O₂ plasma or to 500 mTorr O₂ gas (no power) for 3 min each. Samples were then imaged with a Digital Instruments multimode atomic force microscope in tapping mode using a multiwalled carbon nanotube tip (31).

Infrared Spectroscopy. A ~40 mL mid-log phase culture of *D. radiodurans* was harvested (7000 rpm, 5 min), and the cell pellet was completely resuspended in 30 mL of 150 mM NaCl. The washing procedure was repeated twice to remove all constituents of the growth medium, and the final cell pellet was stored at ~80 °C. Suspensions of ~10¹¹ cell/mL were prepared by resuspending ca. 10–40 mg of the cells in ca. 20–70 μL of 150 mM NaCl. Microbial films were prepared onto hanging drop slides by adding 6–8 μL of the suspension, followed by drying under moderate vacuum. The dried samples (~10⁸ total cells) were exposed to O₂ or MAG plasmas in the ARC-PR at 100 W and 500 mTorr for 45 min. Control experiments using 500 mTorr of either gas with no applied power were also performed.

After exposure the dried films were resuspended in 20–30 μL of water and transferred to 1.5 mL tubes. The suspension volumes were reduced to ~5 μL using an Eppendorf Vacufuge, and 10 μL of MeOH was added to each sample. The methanolic suspensions were transferred to KBr optical windows and immediately dried under vacuum to a final pressure of ~17 mTorr before spectroscopic analysis. The infrared absorption of each sample was measured between 400 and 4000 cm⁻¹ using a Nicolet Nexus FT-IR 670 spectrophotometer (2 cm⁻¹ resolution, 64 scans). All reactions were completed in triplicate.

Elemental Analysis. *Deinococcus radiodurans* cultures (~10⁹ cell/mL) were prepared as described above and transferred onto tin disks in 10–μL aliquots (~10⁷ cells). Samples were dried and exposed to a 100 W, 500 mTorr O₂ plasma for 0, 1, 10, and 45 min. Carbon analyses on the unexposed and exposed tin disks were performed on a ThermoQuest NA 1100 protein elemental analyzer. The lower limit of detection under these conditions is ~1 μg of dried cells.

Emission Spectroscopy. A SpectraPro 300i spectrometer (Acton Research) with a SpectrUMM CCD Detector (Roper Scientific) was fixed ~35 cm in front of the reaction chamber of the ARC-PR. The light emitted from the plasma was focused using a quartz lens, and the emission spectrum was recorded between 280 and 930 nm in three steps: (1) 280–400 nm with no filter, (2) 400–700 nm with a 375 nm cutoff filter, and (3) 700–
930 nm with a 650 nm cutoff filter. The glass filters were introduced directly in front of the spectrograph slit to eliminate second-order diffraction of the grating (1200 g/mm). Inverse linear dispersion of the instrument was 2.7 nm/mm, entrance aperture ratio was 0.25 f, and slit widths were normally 0.2 mm. Emission spectra for both the O2 and MAG plasmas at 100 W and 500 mTorr were recorded.

Fresh mid-log phase cultures (2 mL) of D. radiodurans were harvested (14,000 rpm, 30 s) and thoroughly resuspended in 1 mL of water. Washing procedure was repeated three times to remove all constituents of the growth medium, and the final cell pellet was resuspended in 30 µL of water. The suspension was transferred to hanging drop slides (~10^9 total cells) and dried under moderate vacuum. Samples were exposed to the O2 plasma at 100 W and 500 mTorr in a closed system. The emission spectra were recorded 3 min after the start of each exposure.

After 40 min, the pressure within the reaction chamber had risen to ~650 mTorr, indicating conversion of the biological matter into the gas phase. A control sample was also prepared using 30 µL of water (no microbes) and exposed to the plasma. Spectra of two duplicate microbial exposures were compared for reproducibility and against the water control to reveal any background contamination.

DNA and Protein Exposure. Plasmid DNA, BSA, and SLO were exposed to O2 or MAG plasmas at differing powers and the effects assayed using electrophoresis or spectroscopy. Plasmid DNA (pRc/CMV2, 5.5 kb) was dissolved in water to 0.5 µg/µL and added onto hanging drop slides in 2 µL aliquots. The DNA-containing slides were dried under moderate vacuum, transferred to the ARC-PR and exposed to 50–200 W of either plasma for 60 s each. Control experiments were also performed by exposing the dried DNA samples to 500 mTorr of the target gas (no power) and heating the samples to 76 or 55 °C for 60 s each. After exposure, each sample was dissolved in 12 µL of 25 mM HEPES (pH 8.0), and 10 µL was transferred to a 1.5 mL tube containing 2 µL of 6X DNA running dye. All samples were analyzed in parallel by electrophoresis at 80 V using an 0.8% agarose gel in TAE buffer with 0.25 µg/µL ethidium bromide. Gels were visualized by fluorescence (λex 302 nm), images were captured, and the DNA bands were quantified using a Swift II application software. Control experiments were determined by calculating the initial slopes using an Amersham Pharmacia Ultraspec 3300 pro UV–vis spectrophotometer. Enzymatic rates were determined by calculating the initial slopes using the most probable numbers method, we have reported the limit of detection for most probable numbers method was approximately five cells.

9.2. Kinetic reactions were initiated by addition of 100 µL of enzyme, and the change in absorbance at 234 nm was monitored using an Amersham Pharmacia Ultraspec 3300 pro UV–vis spectrophotometer. Enzymatic rates were determined by calculating the initial slopes using the ARC-PR at 100 W and 500 mTorr at low pressure and plasma-exposed cells were compared.

Results and Discussion

Microbe Exposure. Deinococcus radiodurans cultures were dried onto polycarbonate membranes and exposed to the O2 plasma (~25 W, ~45 mTorr) for 10, 20, 30, 60, and 90 min (Figure 1). Control experiments indicated 68 ± 17% recoveries from the polycarbonate membranes, with negligible effects as a result of drying and the reduced pressures in the plasma reactor (~95% survival). The cell survivability in Figure 1 is expressed in terms of percent survival compared with the control samples.

The 10-min plasma exposure yielded a ~0.1% survival, indicating a ~3-log reduction in living cells, which was further reduced to ~0.001% after 60 min. The 90-min exposure yielded no detectable colony-forming units (0% survival), indicating a complete sterilization of D. radiodurans. However, because of the lower limit of detection of five cells (out of an initial ~5 × 10^8 cells) when using the most probable numbers method, we have reported the 90 min survival as ~0.0001%. Hence, the final 90-min exposure yielded an overall ~6-log reduction in cell survivability.

The observed difference in sterilization rates between the 10- and 90-min exposures was most likely due to shielding caused by the sterilized cells or the polycarbonate membrane. The shielding effect may be the reason long exposure times are necessary to achieve the ~6-log reduction in bioburden. Using the ARC-PR at 100 W and 500 mTorr, we observed a 0.1% survival after 1 min, indicating that the sterilization rates were effectively expedited at higher power and pressure. Images of D. radiodurans were then obtained using atomic force microscopy in order to reveal the degree of structural degradation induced by the O2 plasma.

Atomic Force Microscopy. Insights into the mechanism of sterilization for D. radiodurans were obtained by atomic force microscopy. Images of the control (dried at low pressure) and plasma-exposed cells were compared.
identical conditions but without the application of power. A reference spectrum of D. radiodurans cell cluster (A) dried at 500 mTorr for 3 min and (B) after exposure to O2 plasma (100 W, 500 mTorr, 3 min). Surface topography maps of (C) the unexposed dried cell cluster and (D) the plasma-exposed cell cluster were obtained across the black line and between the inverted triangles shown in (A) and (B). High-resolution images of (E) one dried cell and (F) a plasma-exposed cell within each cluster were also obtained.

Figure 2. Atomic force microscopy images of a D. radiodurans cell cluster (A) dried at 500 mTorr for 3 min and (B) after exposure to O2 plasma (100 W, 500 mTorr, 3 min). Surface topography maps of (C) the unexposed dried cell cluster and (D) the plasma-exposed cell cluster were obtained across the black line and between the inverted triangles shown in (A) and (B). High-resolution images of (E) one dried cell and (F) a plasma-exposed cell within each cluster were also obtained.

to reveal the changes in cell structure (Figure 2A and B). In the dried unexposed D. radiodurans cell cluster the individual cells were ~1.75 µm in diameter, ~0.5 µm in height, and in direct contact with one another. In contrast, the plasma-treated cell cluster (100 W, 500 mTorr, 3 min) showed individual cells to be reduced in size, trapezoidal in shape, and clearly separated from one another. Each plasma-exposed cell was ~1.5 µm long, ~0.5 µm wide, and ≤0.2 µm high.

Topography maps of the unexposed and exposed cells (Figure 2C and D) further indicated the degree of surface degradation. A high-magnification image of a single cell within each cluster (Figure 2E and F) revealed that the surface layer of the unexposed cell was removed or ruptured by the plasma treatment, as indicated by the major change in morphology. The ca. 50- to 70-nm concavities produced by the plasma exposure (Figure 2D and F) are presumably results of the collapse of the degraded surface or of the complete removal of the cell wall and membrane, thereby revealing the dried interior of the cell.

The structural deformation suggested extensive chemical degradation of the microbe through the action of the O2 plasma. The extents of this molecular damage were then assessed using infrared spectroscopy.

Infrared Spectroscopy. The infrared absorption spectra of D. radiodurans (32) were measured between 400 and 4000 cm−1 (Figure 3). Dried microbial films (~3 mm²) of D. radiodurans (~10⁶ cells) were exposed to 100 W of power at 500 mTorr of either O2 or MAG for 45 min each. A reference spectrum of D. radiodurans (Figure 3A) was obtained by performing a control experiment under identical conditions but without the application of power. All spectra were normalized to correct for baseline and CO2 absorption.

Spectral comparison of the plasma-exposed samples against the control revealed three major observations: (1) an ~80% decrease in absorption for the sample exposed to O2 plasma (Figure 3B), (2) a significant change in the spectral signature between 400 and 2000 cm−1 for this sample, and (3) a lack of change for the sample exposed to MAG plasma (Figure 3C).

The ~80% decrease in absorption for the O2 plasma-treated sample was attributed to the degradation and volatilization of the microbial film as a result of the O2 plasma chemistry. The decrease in absorption at 2930 cm−1 (v3 CH2, A ~0.26 to 0.042) was attributed to primary reactions with the lipids and carotenoids of D. radiodurans.

Degradation of carotenoids and other biomolecules also correlated with the visible change in sample color and consistency upon exposure, from a red microbial film to a white crustlike material. This chemical change is further supported by the difference in the infrared (IR) spectrum between 400 and 2000 cm−1. The major decrease in absorbance in the amide I/II and conjugated alkene regions (the peaks at 1651 and 1538 cm−1) supported reactions with polypeptides and carotenoids. A major reduction in absorbance was also observed for the asymmetric PO2−1 stretch (1245 cm−1), indicating a loss of DNA or phospholipids. Reduction in absorbance for the C−O stretch and out-of-plane CH bend regions (950−1200 cm−1) also suggested destruction of carbohydrates and carotenoids, respectively.

The observation of new peaks at ~1650, 1384, 1121, and 981 cm−1 (Figure 3B) indicated the formation or appearance of additional bonds in the microbial sample. The appearance of peaks at 1384 and 1121 cm−1, however, could also be explained by the presence of residual methanol introduced during sample preparation. The respective peaks do not match those provided in the reference spectra for methanol (1450 and 1033 cm−1) and are of opposite intensities (I v5 OH 3342 cm−1 ≈ I v3 CO
1033 cm\(^{-1}\) > I \(\delta_2\) CH\(_3\) 1450 cm\(^{-1}\)) to those observed in the spectra in Figure 3B (I 1384 cm\(^{-1}\) > I 1121 cm\(^{-1}\) > I 3283 cm\(^{-1}\)) (33). Neither the spectrum for the control nor the spectrum for the MAG plasma-treated sample contained these peaks, indicating that excess methanol was removed under reduced pressure. We conclude, therefore, that the new IR peaks were resultant of the chemistry between the O\(_2\) plasma and microbial film, as a result of either new bonds forming or low-intensity IR peaks being unmasked.

The change in peak ratios from 1.2 to 1.9 at 1651 and 1538 cm\(^{-1}\) can be explained by formation of carbonyl groups on lipids and carotenoids, which would cause an increase in the relative absorbance at \(\approx 1650\) cm\(^{-1}\). Fragmentation of these molecules could also result in an increase in the CH\(_3\) bend, which is supported by the broad peak at 1384 cm\(^{-1}\). The peaks at 1384 and 1121 cm\(^{-1}\) are also suggestive of oxidation of cysteine thiols into sulfonate moieties, whereas the peaks at 1121 and 981 cm\(^{-1}\) indicate formation of new C–O bonds within the biological sample.

Overall, these spectral differences indicated the extensive biochemical degradation and removal of D. radiodurans as a result of the O\(_2\) plasma exposure. In contrast, the IR spectrum of the sample exposed to the MAG plasma (Figure 3C) showed no detectable degradation or removal of D. radiodurans, indicating a significant dependence of degradation on plasma composition.

Elemental analysis on D. radiodurans before and after exposure to the O\(_2\) plasma was used to confirm its removal from surfaces. Emission spectroscopy was then used to identify the key reactive species in the O\(_2\) and MAG plasmas and to detect the volatile reaction products resulting from exposure to O\(_2\) plasma.

Elemental Analysis. The extent of removal of D. radiodurans from an exposed surface was estimated by elemental analysis. Tin disks were inoculated with \(\approx 50\) µg of cells and measured for carbon content. A 100 W, 500 mTorr O\(_2\) plasma removed \(\approx 40\%\) of the total carbon in 1 min, \(\approx 90\%\) in 10 min, and \(\approx 100\%\) in 45 min. Due to experimental error and instrument sensitivity, these values contain a minimum error of \(\pm 2\%\).

Emission Spectroscopy. To determine the compositions of the plasmas we placed a spectrometer directly in front of the Pyrex window of the reaction chamber of the ARC-PR and recorded the emission spectra between 280 and 930 nm before and during microbial exposure (Figure 4). The emission spectrum for the pure O\(_2\) plasma discharge (Figure 4A) indicated the presence of excited atomic oxygen, oxygen cation, dioxygen cation, and neutral excited dioxygen at 100 W and 500 mTorr.

Dried films of D. radiodurans (\(\approx 8\) mm\(^2\), \(\approx 10^9\) cells) were then exposed to the O\(_2\) plasma, and the change in the emission spectra was recorded 3 min after the beginning of the exposure (Figure 4B). Comparison of the spectra indicated the formation of several excited species as a result of the degradation of D. radiodurans:
- CO\(_2^+\) (A\(^2\Pi\) – X\(^2\Sigma^+\) system: 287–290, 312–317, 325–330, 337–344, and 351–358 nm)
- CO (b\(^2\Sigma^–\)a\(^2\Pi\) and B\(^2\Sigma^+\) – A\(^2\Pi\) systems: 282–284, 296–298, 312–314, 329–331, 347–349, 450–452, 482–484, 518–520, and 559–562 nm)
- N\(_2^+\) (C\(^2\Pi_u\) – B\(^2\Pi_g\) system: 316, 337, 357, and 380 nm)
- N\(_2^+\) (B\(^2\Sigma_u^+\) – X\(^2\Sigma_g^+\) system: 392 nm)
- OH (A\(^2\Sigma^+\) – X\(^2\Pi\) system: 306–309 nm)
- H (486 and 656 nm)

In addition, sodium (589 nm) and potassium (766 and 770 nm) emission lines were detected, suggesting possible ion bombardment (spattering) by the O\(_2\) plasma. The

![Figure 4](image-url)
The sterilization efficacy and molecular effects of low-temperature O₂ plasma exposures on D. radiodurans and model biomolecules were assessed using microbiological, spectrometric, and biochemical methods. Under very low power and pressure conditions (~25 W, ~45 mTorr, 90 min), we have demonstrated a 99.999% reduction in bioburden of D. radiodurans, which is resistant to both UV and γ radiation. This ~6-log reduction of ~10^8 viable cells reveals the deleterious effects of plasma species such as atomic oxygen.

We also found the rates of D. radiodurans killing increased ~10-fold at higher power and pressure (100 W, 500 mTorr) without the induction of high surface temperatures (~32 °C). This indicates that plasma power can be adjusted to accommodate the sterilization of both thermolabile (low power, longer exposure times) and robust (high power, shorter exposure times) equipment. Plasma studies on metal (34, 35) and medical (36, 37) materials additionally support the applicability of this technique for spacecraft sterilization.

Killing of D. radiodurans occurs as a combined result of damage to the cell surface, the chromosome, and other intracellular components. Atomic force microscopy of D. radiodurans shows that exposure to O₂ plasma completely removes or ruptures the cell wall and membrane, revealing the globular interior of the cell. Infrared spectra of the exposed cells indicate chemical degradation of the surface layer, including lipids, carbohydrates, and carotenoids. A major loss in absorbance of the DNA phosphate stretch and amide I/II regions indicates that intracellular damage also occurs.

Biochemical experiments show that low-power plasma degrades plasmid DNA via strand scissions and cross-linking to yield nicked, linear, cross-linked, and multi-fragmented plasmid DNA. Our experiments demonstrate that the rate of DNA degradation is power-dependent and...
that a 1-min exposure at 100 W degrades less than 50% of 1 μg of plasmid DNA, whereas at 200 W the DNA is no longer detectable. This finding is significant because D. radiodurans can withstand approximately 150 strand breaks with no loss in viability (38). Hence, a 100-W, 1-min exposure that yielded a ~99.9% reduction of D. radiodurans bioburden may not yield the necessary damage to the chromosome of the microbe, indicating that damage to other cellular components must also be a factor in achieving sterilization.

Model in vitro experiments also demonstrate that plasma exposures result in the rapid destruction of protein structure and abatement of enzymatic activity. Taken together, the biochemical experiments reveal a nonlinear increase in degradation rate with increasing power. In addition, they support a sterilization mechanism that proceeds through the degradation of both the surface and interior of D. radiodurans.

Our comparison of O2 and CO2 plasma experiments reveals that the role of chemical degradation is much greater than that of ion bombardment and UV photodesorption. Our compositional analyses indicate that atomic oxygen is in higher relative abundance in O2 plasma, as expected, whereas UV-B emissions are higher in MAG plasma. The considerable difference in degree of microbial degradation (O2 ≫ MAG), as measured by IR, supports the role of atomic oxygen as the dominant source of degradation. The approximate 10-fold increase in DNA cross-linking induced by the CO2 plasma, however, supports the role of UV as the main source of DNA degradation at plasma powers of 100 W. The lack of detectable degradation by the CO2 plasma then indicates that the ion bombardment and UV photodesorption processes are insufficient in imparting significant damage to a robust cell like D. radiodurans. The killing and degradation of D. radiodurans must proceed through the primary action of reactive species such as atomic oxygen, oxygen cation, and metastable dioxygen species. IR detection of carbonyl, sulfonate, and alcohol reaction products confirms the oxidative degradation of D. radiodurans by reactive oxygen species.

Emission spectroscopy experiments showed that D. radiodurans degrades into several low molecular weight gases when exposed to O2 plasma. Conversion of the microbe into CO2, CO, N2, OH, and H occurs as a result of the synergistic plasma processes discussed above. Our detection of Na and K emission lines indicate that redox chemistries of free electrons in the plasma also contribute to the observed degradation. Detection of carbon and nitrogen species in the plasma phase confirms the volatilization of biological matter and supports the observed loss of sample in the IR and biochemical experiments. Removal of D. radiodurans was further corroborated by elemental analyses, which indicated a ≥98% loss of microbial matter (50 μg) from an exposed surface (100 W, 500 mTorr, 45 min). Complete removal and volatilization of the microbes and biomolecules may be achieved by exposures with O2 plasma of sufficient duration and power. Detailed analyses of this removal process from surfaces will be the subject for future studies.

In conclusion, our results indicate that O2 plasmas are effective for removing or reducing bioburden on surfaces. These plasmas have low power requirements and can be adjusted to match material compatibility. Our DNA and protein experiments indicate that O2 plasmas have application in the sterilization and removal of viruses and protein toxins such as HIV (39) and prions (11). We have also demonstrated a significant reduction in bioburden of the chemically resistant spores of Bacillus subtilis (unpublished data), which supports the general applicability of this technique to differing microbes and biomolecules. From a NASA perspective, O2 plasma procedures may help meet the need for responsible space exploration and planetary protection. Our experiments with CO2 plasmas suggest that robust organisms such as D. radiodurans may not be significantly degraded in an ionizing Martian atmosphere, which emphasizes the prerequisite need for treating Mars-bound probes.

Acknowledgment

We thank the Mars Advanced Planning Program (NASA) and NASA Faculty Fellowship Program for support, Alessandro Airo and Hiroshi Imanaka for preliminary results, Jeff Fland for construction of the ARC-PR, Brett Cruden for valuable discussions, and Warren Belisle for the elemental analysis.

References and Notes

Accepted for publication February 5, 2003.