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Definitions

Let (X , ∥ ∥) be a normed space, x0 ∈ U ⊆ X and J : U → R a functional.
X ′, the dual of X , is the space of linear continuous functions
L : X → R, with norm ∥L∥ := sup∥x∥≤1 ∥Lx∥.

J is differentiable at x0 if there exists L ∈ X ′ such that

lim
h→0

1
∥h∥

(J(x0 + h)− J(x0)− Lh) = 0

If L exists, it is unique and L = J ′(x0).
J ∈ C 1(U) if

J ′ : U → X ′

is continuous.
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An example

For a function u : Ω ⊆ RN → R

∇u = (∂1u, . . . , ∂Nu), the gradient of u

∆u = ∂1,1u + · · ·+ ∂N,Nu, the Laplacian of u

Let us consider:
the vector space X = C 1

0 (Ω) with the norm ∥u∥ :=
∫
Ω |∇u|2 d x

a differentiable function F : R → R with F ′ = f , and
J : X → R defined by

J(u) =

∫
Ω
(
1
2
|∇u|2 − F (u)) d x .

Then
⟨J ′(u), ϕ⟩ =

∫
Ω
(∇u · ∇ϕ− F ′(u)ϕ) d x , ϕ ∈ X .
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Integration by parts yields us to (ϕ ∈ X = C 1
0 (Ω))

⟨J ′(u), ϕ⟩ =

∫
∂Ω

(∇u · η)ϕ dS −
∫
Ω
(ϕ∆u + f (u)ϕ) d x

= −
∫
Ω
(∆u + f (u))ϕ d x

If J ′(u) = 0 (u is a critical point of J) then∫
Ω
(∆u + f (u))ϕ d x = 0 for all ϕ

Therefore
∆u + f (u) = 0

There is a relation between the critical points of J and the solutions of{
∆u + f (u) = 0 in Ω

u = 0 on ∂Ω
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In 1851 Riemann introduced the
idea of solving PDE problems
through functionals. Dirichlet
Principle.

Weierstrass pointed out the lack
of rigor of Riemann’s ideas

In 1900 Hilbert presented 23
problems in the ICM. The 20th
has to be with Riemann’s ideas
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First contribution: a definition

We say that u is a solution of{
∆u + f (u) = 0 in Ω

u = 0 on ∂Ω

if ∫
Ω
(∇u · ∇ϕ− f (u)ϕ) d x = 0 for all ϕ.

i.e. u is a critical point of

J(u) =

∫
Ω
(
1
2
|∇u|2 − F (u)) d x = 0

How to find critical points of J?
points of extreme value (minimum of maximum)
saddle points
mountain pass points
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Mountain pass theorem

Let J : X → R be a C 1 functional such that
J(0) = 0

there exist m, r > 0 such that

J(u) ⩾ m for all ∥u∥ = r

there exists ϕ ∈ X with r < ∥ϕ∥ such that

J(ϕ) ⩽ 0

J satisfies the PS condition: Every sequence (xn) that satisfies
|J(xn)| ⩽ C (is bounded) and
J ′(xn) → 0, as n → ∞.

admits a convergent subsequence.
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Mountain pass structure

Then,
c = inf

g∈Γ
max
0⩽t⩽1

J[g(t)]

is a critical value of J.
(Γ := {g : [0, 1] → X | g continuous g(0) = 0, g(1) = ϕ} )
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Fractional Sobolev Spaces

0 < s < 1
1 ⩽ p < +∞

For any measurable u : U → R, let us define

[u]ps,p :=

∫
U

∫
U

|u(x)− u(y)|p

|x − y |N+sp
d x d y

W s,p(U) :=
{
u ∈ Lp(Ω)| [u]ps,p <∞

}
∥u∥ps,p := ∥u∥pLp(U) + [u]ps,p.

The closed subspace

W s,p
0 (Ω) :=

{
u ∈ W s,p(RN)| u = 0 a.e. in RN \ Ω

}
,

equivalently renormed by setting ∥u∥ = [u]s,p.

Emer Lopera (Unal) Degree theory and mountain pass lemma October 11, 2023 10 / 26



Fractional Sobolev Spaces

0 < s < 1
1 ⩽ p < +∞

For any measurable u : U → R, let us define

[u]ps,p :=

∫
U

∫
U

|u(x)− u(y)|p

|x − y |N+sp
d x d y

W s,p(U) :=
{
u ∈ Lp(Ω)| [u]ps,p <∞

}

∥u∥ps,p := ∥u∥pLp(U) + [u]ps,p.

The closed subspace

W s,p
0 (Ω) :=

{
u ∈ W s,p(RN)| u = 0 a.e. in RN \ Ω

}
,

equivalently renormed by setting ∥u∥ = [u]s,p.

Emer Lopera (Unal) Degree theory and mountain pass lemma October 11, 2023 10 / 26



Fractional Sobolev Spaces

0 < s < 1
1 ⩽ p < +∞

For any measurable u : U → R, let us define

[u]ps,p :=

∫
U

∫
U

|u(x)− u(y)|p

|x − y |N+sp
d x d y

W s,p(U) :=
{
u ∈ Lp(Ω)| [u]ps,p <∞

}
∥u∥ps,p := ∥u∥pLp(U) + [u]ps,p.

The closed subspace

W s,p
0 (Ω) :=

{
u ∈ W s,p(RN)| u = 0 a.e. in RN \ Ω

}
,

equivalently renormed by setting ∥u∥ = [u]s,p.
Emer Lopera (Unal) Degree theory and mountain pass lemma October 11, 2023 10 / 26



Definition: solution to fractional problem

{
(−∆)sp(u) = λf (u) in Ω

u = 0 in RN \ Ω, (1)

We say that u ∈ W s,p
0 (Ω) is a solution of this problem, if for all ϕ

∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))

|x − y |N+sp
(ϕ(x)− ϕ(y)) d x d y =

∫
Ω
f (u)ϕ d x

or ∫
R2N

ψp(u(x)− u(y))

|x − y |N+sp
(ϕ(x)− ϕ(y)) d x d y =

∫
Ω
f (u)ϕ d x

where
ψp(s) = |s|p−2s, s ∈ R
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An existence result

We want to study the existence of positive solutions to the problem{
(−∆)sp(u) = λ(uq − 1) in Ω

u = 0 in RN − Ω,
(2)

where
s ∈ (0, 1), 2 ⩽ p and sp < N and λ > 0.
In this case, f (s) = sq − 1, p − 1 < q < p∗s − 1.

We are looking for functions u such that for every ϕ∫
R2N

ψp(u(x)− u(y))

|x − y |N+sp
(ϕ(x)− ϕ(y)) d x d y − λ

∫
Ω
(uq − 1)ϕ d x = 0

As a reminder
ψp(s) = |s|p−2s
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Since the left hand side is the derivative of

Jλ(u) =
1
p

∫
R2N

|u(x)− u(y)|p

|x − y |N+sp
d x d y − λ

∫
Ω
F (u) d x (3)

where

F (t) :=

∫ t

0
(sq − 1) d s

then, we need to find critical points of Jλ.

Rewrite Jλ as

Jλ(u) =
1
p
∥u∥p − λ

∫
Ω
F (u) d x
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Our result

Theorem
Let us assume that Ω is a bounded domain with C 1,1 boundary. Then there
is λ0 > 0 such that for all λ ∈ (0, λ0) problem (2){

(−∆)sp(u) = λ(uq − 1) in Ω
u = 0 in RN − Ω,

has at least one positive weak solution uλ ∈ Cα(Ω), for some α ∈ (0, 1).

Lopera, E., López, C., & Vidal, R. E. (2023). Existence of positive
solutions for a parameter fractional p-Laplacian problem with
semipositone nonlinearity. Journal of Mathematical Analysis and
Applications, 526(2), 127350.
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Checking the mountain pass structure of J

There exist τ > 0, c1 > 0 and 0 < λ2 < 1 such that if ∥u∥ = τλ−r

then Jλ(u) ≥ c1(τλ
−r )p for all λ ∈ (0, λ2).

−rp = 1 − r(q + 1).

There exists λ1 > 0 such that if λ ∈ (0, λ1) then Jλ(λ
−rφ) ⩽ 0.

φ > 0 s.t. ∥φ∥ = c .
Let λ3 = min{λ1, λ2}. Then for all λ ∈ (0, λ3) the functional Jλ has a
critical point uλ.

The only missing part is to prove that Jλ satisfies PS.
Let (un) be a sequence s.t.

|Jλ(un)| ⩽ M and J ′λ(un) → 0
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∥un∥p can be written in terms of J(un) and ⟨J ′(un), un⟩.

⟨J ′λu, ϕ⟩ =
∫
R2N

ψp(u(x)− u(y))

|x − y |N+sp
(ϕ(x)− ϕ(y)) d x d y −

∫
Ω
f (u)ϕ d x

ψp(s)s = |s|p−2ss = |s|p
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∥un∥p can be written in terms of J(un) and ⟨J ′(un), un⟩.

⟨J ′(un), un⟩ = ∥un∥p −
∫
Ω
f (un)un d x

and
J(un) =

1
p
∥un∥p −

∫
Ω
F (un) d x

Thus (un) is bounded in W 1,p
0 (Ω), which is reflexive. Therefore

un ⇀ u.

Then using standard inequalities we prove that

lim
n→∞

∥un∥ = ∥u∥.

Consequently
un → u.
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Definition: Degree in RN

Let D ⊆ RN an open, bounded set and f : D → RN a continuous function
s.t. f ∈ C 1(D).

p ∈ RN is a regular value of f if

Jf (x) ̸= 0 for all x ∈ f −1(p) ∩ D.

If p /∈ f (∂D), then the Bolzano-Weierstrass theorem implies that

f −1(p) ∩ D is finite

For such regular values p of f

deg(f ,D, p) :=
∑

x∈f −1(p)∩D

sign(Jf (x)).
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Degree in infinite dimensional spaces

Let D be an open, bounded subset of a normed linear space X .

ϕ = I − F where F : D → X is continuous and compact.
p ∈ X \ ϕ(∂D).
Take ϕ̂ = I − F̂ where F̂ is a continuous mapping with finite
dimensional range and approximates F . Define

deg(ϕ,D, p) = d(ϕ̂, D̂, p)

where D̂ is contained in an appropriate finite dimensional subspace of
X .
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Theorems

Suppose that ϕ = I − F , with F : D → X continuous and compact,
p /∈ ϕ(∂D) and d(ϕ,D, p) ̸= 0, then there exists x ∈ D s.t.

ϕ(x) = p.

(Invariance under homotopy) Let h(t) be a homotopy of compact
transformations on D such that if ϕt = I − h(t), p /∈ ϕt(∂D) for all
0 ⩽ t ⩽ 1. Then

deg(ϕt ,D, p) is independent of t

If D = D1∪̇D2 then

deg(ϕ,D, p) = deg(ϕ,D1, p) + deg(ϕ,D2, p)
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Second proof

Using degree theory is proved the existence of positive solutions for{
(−∆)sp(u) = λ(uq − 1) in Ω

u = 0 in RN \ Ω. (4)

Dhanya, R., Jana, R., Kumar, U., & Tiwari, S. (2023). Positive
Solutions for Fractional p-Laplace Semipositone Problem with
Superlinear Growth. arXiv preprint arXiv:2304.10887.
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(−∆)sp(w) = wq − γq in Ω
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Fγ(w) = wq − γq
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Classical theorem: for each f ∈ C (Ω) there exists a unique
u ∈ W s,p

0 (Ω) ∩ C (Ω) such that (−∆)sp(u) = f .

K : C (Ω) → W s,p
0 (Ω) ∩ C (Ω)

f 7→ K (f ) := u

K is the inverse of the (−∆)sp.

Sγ(w) := w − K (Fγ(w))

Then, we need to be show that for all γ small enough, there is w s.t.

Sγ(w) = 0.

w = K (Fγ(w)) ⇐⇒ (−∆)spw = Fγ(w)
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There exists 0 < R1 < R2 s.t.
S0(w) ̸= 0 for all w ∈ ∂U and

deg(S0,U, 0) = −1,

where U = BR2 \ BR1 .

1 + deg(S0,U, 0) = 0.

There is γ0 s.t. for if 0 < γ < γ0, then 0 /∈ Sγ [∂U].
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By the invariance of the degree under homotopy, for every 0 < γ < γ0,
since deg(S0,U, 0) = −1, then

deg(Sγ ,U, 0) = −1.

which implies that there is w ∈ U such that Sγ(w) = 0.

Emer Lopera (Unal) Degree theory and mountain pass lemma October 11, 2023 24 / 26



References

Badiale, M., & Serra, E. (2010). Semilinear Elliptic Equations for
Beginners: Existence Results via the Variational Approach. Springer
Science & Business Media.

Fonseca, I., & Gangbo, W. (1995). Degree theory in analysis and
applications (Vol. 2). Oxford University Press.

Emer Lopera (Unal) Degree theory and mountain pass lemma October 11, 2023 25 / 26



Thanks

Emer Lopera (Unal) Degree theory and mountain pass lemma October 11, 2023 26 / 26


