

Moduli Spaces in Geometry

Juan Salinas

University of Washington

- 1. What is a Moduli Space?
- 2. Topics in Moduli
- 3. Formal Definition
- 4. Representable Moduli Functors

What is a Moduli Space?

What is Moduli Theory?

Moduli theory is the study of families of geometric objects.

Moduli theory is the study of families of geometric objects.

Informal Definition

A moduli problem is a certain class of algebro-geometric objects.

A *moduli/parameter space* is a "space" whose points are in natural bijection with isomorphism classes of objects described by a moduli problem.

A *moduli/parameter space* is a "space" whose points are in natural bijection with isomorphism classes of objects described by a moduli problem.

• In this case, we say the moduli space "solves" the moduli problem.

A *moduli/parameter space* is a "space" whose points are in natural bijection with isomorphism classes of objects described by a moduli problem.

• In this case, we say the moduli space "solves" the moduli problem.

A *moduli/parameter space* is a "space" whose points are in natural bijection with isomorphism classes of objects described by a moduli problem.

• In this case, we say the moduli space "solves" the moduli problem.

Moduli Problem: Circles in \mathbb{R}^2 centered at the origin;

Moduli Problem: Circles in \mathbb{R}^2 centered at the origin;

$$C_r: x^2 + y^2 = r^2.$$

Moduli Problem: Circles in \mathbb{R}^2 centered at the origin;

$$C_r: x^2 + y^2 = r^2.$$

• Let $\mathcal{M}_{circ} = \mathbb{R}_{>0}$. A point $r \in \mathcal{M}$ corresponds to a unique $C_r \subset \mathbb{R}^2$.

Moduli Problem: Circles in \mathbb{R}^2 centered at the origin;

$$C_r: x^2 + y^2 = r^2.$$

• Let $\mathcal{M}_{circ} = \mathbb{R}_{>0}$. A point $r \in \mathcal{M}$ corresponds to a unique $C_r \subset \mathbb{R}^2$.

Moduli Problem: Circles in \mathbb{R}^2 centered at the origin;

$$C_r: x^2 + y^2 = r^2.$$

• Let $\mathcal{M}_{circ} = \mathbb{R}_{>0}$. A point $r \in \mathcal{M}$ corresponds to a unique $C_r \subset \mathbb{R}^2$.

 $L: a_0 x + a_1 y + a_2 z = 0.$

$$L: a_0 x + a_1 y + a_2 z = 0.$$

• Admissible inputs:

$$L: a_0 x + a_1 y + a_2 z = 0.$$

• Admissible inputs: (*a*₀, *a*₁, *a*₂)

$$L: a_0 x + a_1 y + a_2 z = 0.$$

• Admissible inputs: $(a_0, a_1, a_2) \neq 0$, at least one $a_i \neq 0$.

$$L: a_0 x + a_1 y + a_2 z = 0.$$

- Admissible inputs: $(a_0, a_1, a_2) \neq 0$, at least one $a_i \neq 0$.
- Equivalence class:

$$L: a_0 x + a_1 y + a_2 z = 0.$$

- Admissible inputs: $(a_0, a_1, a_2) \neq 0$, at least one $a_i \neq 0$.
- Equivalence class: Two linear forms

$$L: a_0x + a_1y + a_2z = 0$$
 and $L': a_0'x + a_1'y + a_2'z = 0$

describe the same plane if and only if

$$L: a_0 x + a_1 y + a_2 z = 0.$$

- Admissible inputs: $(a_0, a_1, a_2) \neq 0$, at least one $a_i \neq 0$.
- Equivalence class: Two linear forms

$$L: a_0x + a_1y + a_2z = 0$$
 and $L': a'_0x + a'_1y + a'_2z = 0$

describe the same plane if and only if $a_i = \lambda a'_i$ for all *i* and some nonzero $\lambda \in k$.

$$L: a_0 x + a_1 y + a_2 z = 0.$$

- Admissible inputs: $(a_0, a_1, a_2) \neq 0$, at least one $a_i \neq 0$.
- Equivalence class: Two linear forms

$$L: a_0x + a_1y + a_2z = 0$$
 and $L': a'_0x + a'_1y + a'_2z = 0$

describe the same plane if and only if $a_i = \lambda a'_i$ for all *i* and some nonzero $\lambda \in k$.

• Theoretical definition:

$$L: a_0 x + a_1 y + a_2 z = 0.$$

- Admissible inputs: $(a_0, a_1, a_2) \neq 0$, at least one $a_i \neq 0$.
- Equivalence class: Two linear forms

$$L: a_0x + a_1y + a_2z = 0$$
 and $L': a'_0x + a'_1y + a'_2z = 0$

describe the same plane if and only if $a_i = \lambda a'_i$ for all *i* and some nonzero $\lambda \in k$.

• Theoretical definition: $\mathbb{P}_k^2 = (k^3 \setminus 0)/k^*$.

2. Projective Plane: Picture

Over $\mathbb R,$ the projective plane $\mathbb P^2$ is "locally-euclidean".

Over \mathbb{R} , the projective plane \mathbb{P}^2 is "locally-euclidean".

Over \mathbb{R} , the projective plane \mathbb{P}^2 is "locally-euclidean".

In essence:

Over \mathbb{R} , the projective plane \mathbb{P}^2 is "locally-euclidean".

In essence:

$$\mathbb{P}^2_{\mathbb{R}} = \mathbb{R}^2 \cup \{ \text{infinity points} \}$$

Theorem (Bézouts Theorem)

Theorem (Bézouts Theorem)

Let $C, D \subset \mathbb{P}^2_k$ be two general nonsingular curves described by homogeneous polynomials $f, g \in k[x, y, z]$ over an algebraically closed field k.

Theorem (Bézouts Theorem)

Let $C, D \subset \mathbb{P}^2_k$ be two general nonsingular curves described by homogeneous polynomials $f, g \in k[x, y, z]$ over an algebraically closed field k. If $d_1 = \deg f$ and $d_2 = \deg g$, then

 $\#C \cap D =$

Theorem (Bézouts Theorem)

Let $C, D \subset \mathbb{P}^2_k$ be two general nonsingular curves described by homogeneous polynomials $f, g \in k[x, y, z]$ over an algebraically closed field k. If $d_1 = \deg f$ and $d_2 = \deg g$, then

 $\# C \cap D = d_1 \cdot d_2.$

Theorem (Bézouts Theorem)

Let $C, D \subset \mathbb{P}^2_k$ be two general nonsingular curves described by homogeneous polynomials $f, g \in k[x, y, z]$ over an algebraically closed field k. If $d_1 = \deg f$ and $d_2 = \deg g$, then

$$\#C\cap D=d_1\cdot d_2.$$

 Stated (before Bézout) in 1687 by Issac Newton in *Principia* Mathematica. Theorem (Bézouts Theorem)

Let $C, D \subset \mathbb{P}^2_k$ be two general nonsingular curves described by homogeneous polynomials $f, g \in k[x, y, z]$ over an algebraically closed field k. If $d_1 = \deg f$ and $d_2 = \deg g$, then

$$\#C\cap D=d_1\cdot d_2.$$

- Stated (before Bézout) in 1687 by Issac Newton in *Principia* Mathematica.
- Partially proven in 1779 by Étienne Bézout in Théorie générale des équations algébriques.
Theorem (Bézouts Theorem)

Let $C, D \subset \mathbb{P}^2_k$ be two general nonsingular curves described by homogeneous polynomials $f, g \in k[x, y, z]$ over an algebraically closed field k. If $d_1 = \deg f$ and $d_2 = \deg g$, then

$$\#C\cap D=d_1\cdot d_2.$$

- Stated (before Bézout) in 1687 by Issac Newton in *Principia* Mathematica.
- Partially proven in 1779 by Étienne Bézout in *Théorie générale des équations algébriques*.
- Fully proven in 1958-1965 by Jean-Pierre Serre in *Algèbre locale et multiplicités*.

Moduli Problem: Nondegenerate conics of \mathbb{P}^2 defined by

Moduli Problem: Nondegenerate conics of \mathbb{P}^2 defined by

 $C: f(x, y, z) = a_0 x^2 + a_1 y^2 + a_2 z^2 + a_3 xy + a_4 xz + a_5 yz.$

Moduli Problem: Nondegenerate conics of \mathbb{P}^2 defined by

$$C: f(x, y, z) = a_0 x^2 + a_1 y^2 + a_2 z^2 + a_3 x y + a_4 x z + a_5 y z.$$

• Admissible inputs:

Moduli Problem: Nondegenerate conics of \mathbb{P}^2 defined by

$$C: f(x, y, z) = a_0 x^2 + a_1 y^2 + a_2 z^2 + a_3 x y + a_4 x z + a_5 y z.$$

• Admissible inputs: (a_0, \cdots, a_5) ?

Moduli Problem: Nondegenerate conics of \mathbb{P}^2 defined by

$$C: f(x, y, z) = a_0 x^2 + a_1 y^2 + a_2 z^2 + a_3 xy + a_4 xz + a_5 yz.$$

• Admissible inputs: (a_0, \dots, a_5) ? No! Let $a_3 = 1$ and other $a_i = 0$.

Moduli Problem: Nondegenerate conics of \mathbb{P}^2 defined by

$$C: f(x, y, z) = a_0 x^2 + a_1 y^2 + a_2 z^2 + a_3 x y + a_4 x z + a_5 y z.$$

- Admissible inputs: (a_0, \dots, a_5) ? No! Let $a_3 = 1$ and other $a_i = 0$.
- Degenerate Conics:

Moduli Problem: Nondegenerate conics of \mathbb{P}^2 defined by

$$C: f(x, y, z) = a_0 x^2 + a_1 y^2 + a_2 z^2 + a_3 x y + a_4 x z + a_5 y z.$$

- Admissible inputs: (a_0, \dots, a_5) ? No! Let $a_3 = 1$ and other $a_i = 0$.
- Degenerate Conics: Let

$$A = \begin{pmatrix} a_0 & a_3/2 & a_4/2 \\ a_3/2 & a_1 & a_5/2 \\ a_4/2 & a_5/2 & a_2 \end{pmatrix} \text{ and } \mathbf{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix},$$

Moduli Problem: Nondegenerate conics of \mathbb{P}^2 defined by

$$C: f(x, y, z) = a_0 x^2 + a_1 y^2 + a_2 z^2 + a_3 x y + a_4 x z + a_5 y z.$$

- Admissible inputs: (a_0, \dots, a_5) ? No! Let $a_3 = 1$ and other $a_i = 0$.
- Degenerate Conics: Let

$$A = \begin{pmatrix} a_0 & a_3/2 & a_4/2 \\ a_3/2 & a_1 & a_5/2 \\ a_4/2 & a_5/2 & a_2 \end{pmatrix} \text{ and } \mathbf{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix},$$

then

 $f(x, y, z) = \mathbf{x}^T A \mathbf{x}.$

Moduli Problem: Nondegenerate conics of \mathbb{P}^2 defined by

$$C: f(x, y, z) = a_0 x^2 + a_1 y^2 + a_2 z^2 + a_3 x y + a_4 x z + a_5 y z.$$

- Admissible inputs: (a_0, \dots, a_5) ? No! Let $a_3 = 1$ and other $a_i = 0$.
- Degenerate Conics: Let

$$A = \begin{pmatrix} a_0 & a_3/2 & a_4/2 \\ a_3/2 & a_1 & a_5/2 \\ a_4/2 & a_5/2 & a_2 \end{pmatrix} \text{ and } \mathbf{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix},$$

then

$$f(x,y,z) = \mathbf{x}^T A \mathbf{x}.$$

• C is a degenerate conic if and only if

Moduli Problem: Nondegenerate conics of \mathbb{P}^2 defined by

$$C: f(x, y, z) = a_0 x^2 + a_1 y^2 + a_2 z^2 + a_3 x y + a_4 x z + a_5 y z.$$

- Admissible inputs: (a_0, \dots, a_5) ? No! Let $a_3 = 1$ and other $a_i = 0$.
- Degenerate Conics: Let

$$A = \begin{pmatrix} a_0 & a_3/2 & a_4/2 \\ a_3/2 & a_1 & a_5/2 \\ a_4/2 & a_5/2 & a_2 \end{pmatrix} \text{ and } \mathbf{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix},$$

then

$$f(x, y, z) = \mathbf{x}^T A \mathbf{x}.$$

• C is a degenerate conic if and only if detA = 0. In this case, C is a union of lines.

$$C: f(x, y, z) = a_0 x^2 + a_1 y^2 + a_2 z^2 + a_3 x y + a_4 x z + a_5 y z = 0.$$

$$C: f(x, y, z) = a_0 x^2 + a_1 y^2 + a_2 z^2 + a_3 x y + a_4 x z + a_5 y z = 0.$$

Moduli Space:

 $\mathcal{M}_{conics} =$

$$C: f(x, y, z) = a_0 x^2 + a_1 y^2 + a_2 z^2 + a_3 x y + a_4 x z + a_5 y z = 0.$$

Moduli Space:

$$\mathcal{M}_{conics} = \left\{ [a_0, \cdots, a_5] \subset \mathbb{P}^5 \mid \right.$$

$$C: f(x, y, z) = a_0 x^2 + a_1 y^2 + a_2 z^2 + a_3 x y + a_4 x z + a_5 y z = 0.$$

Moduli Space:

$$\mathcal{M}_{conics} = \left\{ \left[a_0, \cdots, a_5 \right] \subset \mathbb{P}^5 \mid \det A \neq 0 \right\},$$

where

$$A = \begin{pmatrix} a_0 & a_3/2 & a_4/2 \\ a_3/2 & a_1 & a_5/2 \\ a_4/2 & a_5/2 & a_2 \end{pmatrix}.$$

- 1. Circles in \mathbb{R}^2 centered at the origin $\mathcal{M}_{\textit{circ}}$
- 2. Planes in k^3 centered at origin Projective plane \mathbb{P}^2
- 3. Conics in \mathbb{P}^2 $\mathcal{M}_{\textit{conics}}$

- 1. Circles in \mathbb{R}^2 centered at the origin $\mathcal{M}_{\textit{circ}}$
- 2. Planes in k^3 centered at origin Projective plane \mathbb{P}^2
- 3. Conics in \mathbb{P}^2 $\mathcal{M}_{\textit{conics}}$

What does the geometry of a moduli space tell us about families in moduli problem?

Topics in Moduli

- 1. Dimension
- 2. Compact Moduli
- 3. Deformation Theory

The dimension of a moduli space $\ensuremath{\mathcal{M}}$ is equal to the degrees of freedom of the moduli problem.

The dimension of a moduli space $\ensuremath{\mathcal{M}}$ is equal to the degrees of freedom of the moduli problem.

 $\bullet\,$ The dimension of ${\cal M}$ is the number of local coordinates.

Examples:

1. Circles $\mathcal{M}_{circ} = \mathbb{R}_{>0}$.

Examples:

1. Circles $\mathcal{M}_{circ} = \mathbb{R}_{>0}$.

 $\dim \mathcal{M}_{\textit{circ}} =$

Examples:

1. Circles
$$\mathcal{M}_{circ} = \mathbb{R}_{>0}$$

 $\dim \mathcal{M}_{\textit{circ}} = 1.$

Parameter r is our coordinate.

Examples:

1. Circles
$$\mathcal{M}_{circ} = \mathbb{R}_{>0}$$

 $\text{dim}\,\mathcal{M}_{\textit{circ}}=1.$

Parameter r is our coordinate.

2. Projective plane \mathbb{P}^2 .

Examples:

1. Circles
$$\mathcal{M}_{circ} = \mathbb{R}_{>0}$$
.

 $\text{dim}\,\mathcal{M}_{\textit{circ}}=1.$

Parameter r is our coordinate.

2. Projective plane \mathbb{P}^2 .

 $\dim \mathbb{P}^2 =$

Examples:

1. Circles
$$\mathcal{M}_{circ} = \mathbb{R}_{>0}$$
.

$$\dim \mathcal{M}_{circ} = 1.$$

Parameter r is our coordinate.

2. Projective plane \mathbb{P}^2 .

 $\dim \mathbb{P}^2 = 2$

Coordinates are [x, y, z], modulo scaling.

Examples:

1. Circles
$$\mathcal{M}_{circ} = \mathbb{R}_{>0}$$
.

$$\text{dim}\,\mathcal{M}_{\textit{circ}}=1.$$

Parameter r is our coordinate.

2. Projective plane \mathbb{P}^2 .

$$\dim \mathbb{P}^2 = 2$$

Coordinates are [x, y, z], modulo scaling.

3. Space of planar conics $\mathcal{M}_{conics} \subset \mathbb{P}^5$.

Examples:

1. Circles
$$\mathcal{M}_{circ} = \mathbb{R}_{>0}$$

$$\text{dim}\,\mathcal{M}_{\textit{circ}}=1.$$

Parameter r is our coordinate.

2. Projective plane \mathbb{P}^2 .

$$\dim \mathbb{P}^2 = 2$$

Coordinates are [x, y, z], modulo scaling.

3. Space of planar conics $\mathcal{M}_{conics} \subset \mathbb{P}^5$.

 $\dim \mathcal{M}_{\textit{conics}} =$

Examples:

1. Circles
$$\mathcal{M}_{circ} = \mathbb{R}_{>0}$$

$$\dim \mathcal{M}_{circ} = 1.$$

Parameter r is our coordinate.

2. Projective plane \mathbb{P}^2 .

$$\dim \mathbb{P}^2 = 2$$

Coordinates are [x, y, z], modulo scaling.

3. Space of planar conics $\mathcal{M}_{conics} \subset \mathbb{P}^5$.

 $\dim \mathcal{M}_{\textit{conics}} = 5.$

Coordinates are $[a_0, \cdots, a_5]$, modulo scaling.

A (moduli) space is *compact* if

A (moduli) space is *compact* if it contains its limit points. Limit points correspond to limits of families of geometric objects.

A (moduli) space is *compact* if it contains its limit points. Limit points correspond to limits of families of geometric objects.

Examples:

Examples:

1. Circles $\mathcal{M}_{circ} = \mathbb{R}_{>0}$.

Is \mathcal{M}_{circ} compact?

Examples:

1. Circles $\mathcal{M}_{circ} = \mathbb{R}_{>0}$.

Is \mathcal{M}_{circ} compact? No!

Degenerate cases: r = 0 and $"r = \infty$ ".
Examples:

1. Circles $\mathcal{M}_{circ} = \mathbb{R}_{>0}$.

Is \mathcal{M}_{circ} compact? No!

Degenerate cases: r = 0 and " $r = \infty$ ". $\overline{\mathcal{M}}_{circ} = \mathbb{R}_{>0} \cup \{\infty\}$

Examples:

1. Circles $\mathcal{M}_{circ} = \mathbb{R}_{>0}$.

Is \mathcal{M}_{circ} compact? No!

Degenerate cases: r = 0 and " $r = \infty$ ". $\overline{\mathcal{M}}_{circ} = \mathbb{R}_{\geq 0} \cup \{\infty\}$ 2. Projective plane \mathbb{P}^2 .

Is \mathbb{P}^2 compact?

Examples:

1. Circles $\mathcal{M}_{circ} = \mathbb{R}_{>0}$.

Is \mathcal{M}_{circ} compact? No!

Degenerate cases: r = 0 and " $r = \infty$ ". $\overline{\mathcal{M}}_{circ} = \mathbb{R}_{\geq 0} \cup \{\infty\}$ 2. Projective plane \mathbb{P}^2 .

Is \mathbb{P}^2 compact? Yes!

Examples:

1. Circles $\mathcal{M}_{circ} = \mathbb{R}_{>0}$.

Is \mathcal{M}_{circ} compact? No!

Degenerate cases: r = 0 and " $r = \infty$ ". $\overline{\mathcal{M}}_{circ} = \mathbb{R}_{\geq 0} \cup \{\infty\}$ 2. Projective plane \mathbb{P}^2 .

Is \mathbb{P}^2 compact? Yes!

3. Space of planar conics $\mathcal{M}_{conics} \subset \mathbb{P}^5$.

Is \mathcal{M}_{conics} compact?

Examples:

1. Circles $\mathcal{M}_{circ} = \mathbb{R}_{>0}$.

Is \mathcal{M}_{circ} compact? No!

Degenerate cases: r = 0 and " $r = \infty$ ". $\overline{\mathcal{M}}_{circ} = \mathbb{R}_{\geq 0} \cup \{\infty\}$ 2. Projective plane \mathbb{P}^2 .

Is \mathbb{P}^2 compact? Yes!

3. Space of planar conics $\mathcal{M}_{conics} \subset \mathbb{P}^5$.

Is \mathcal{M}_{conics} compact? No!

Degenerate locus det $A \subset \mathbb{P}^5$ includes the case of lines.

Examples:

1. Circles $\mathcal{M}_{circ} = \mathbb{R}_{>0}$.

Is \mathcal{M}_{circ} compact? No!

Degenerate cases: r = 0 and " $r = \infty$ ". $\overline{\mathcal{M}}_{circ} = \mathbb{R}_{\geq 0} \cup \{\infty\}$ 2. Projective plane \mathbb{P}^2 .

Is \mathbb{P}^2 compact? Yes!

3. Space of planar conics $\mathcal{M}_{conics} \subset \mathbb{P}^5$.

Is \mathcal{M}_{conics} compact? No!

Degenerate locus det $A \subset \mathbb{P}^5$ includes the case of lines. $\overline{\mathcal{M}}_{conics} = \mathbb{P}^5$

3. Deformation Theory

What is the moduli view of deforming an object?

What is the moduli view of deforming an object?

 $\{ \mathsf{Deforming \ objects \ in \ moduli \ problem} \} \leftrightarrow \{ \mathsf{Perturb \ point \ in \ moduli \ space} \}$

3. Deformation Theory

What is the moduli view of deforming an object?

 $\{ \mathsf{Deforming \ objects \ in \ moduli \ problem} \} \leftrightarrow \{ \mathsf{Perturb \ point \ in \ moduli \ space} \}$

1. Circles $\mathcal{M}_{circ} = \mathbb{R}_{>0}$.

1. Circles $\mathcal{M}_{circ} = \mathbb{R}_{>0}$.

Is \mathcal{M}_{circ} smooth?

1. Circles $\mathcal{M}_{circ} = \mathbb{R}_{>0}$.

Is \mathcal{M}_{circ} smooth? Yes!

1. Circles $\mathcal{M}_{circ} = \mathbb{R}_{>0}$.

Is \mathcal{M}_{circ} smooth? Yes!

2. Projective space \mathbb{P}^n .

1. Circles $\mathcal{M}_{circ} = \mathbb{R}_{>0}$.

Is \mathcal{M}_{circ} smooth? Yes!

2. Projective space \mathbb{P}^n .

Is \mathbb{P}^n smooth?

1. Circles $\mathcal{M}_{circ} = \mathbb{R}_{>0}$.

Is \mathcal{M}_{circ} smooth? Yes!

2. Projective space \mathbb{P}^n .

Is \mathbb{P}^n smooth? Yes!

1. Circles $\mathcal{M}_{circ} = \mathbb{R}_{>0}$.

Is \mathcal{M}_{circ} smooth? Yes!

2. Projective space \mathbb{P}^n .

Is \mathbb{P}^n smooth? Yes!

3. Planar conics $\mathcal{M}_{conics} \subset \mathbb{P}^5$.

1. Circles $\mathcal{M}_{circ} = \mathbb{R}_{>0}$.

Is \mathcal{M}_{circ} smooth? Yes!

2. Projective space \mathbb{P}^n .

Is \mathbb{P}^n smooth? Yes!

3. Planar conics $\mathcal{M}_{conics} \subset \mathbb{P}^5$.

Is \mathcal{M}_{conics} smooth?

1. Circles $\mathcal{M}_{circ} = \mathbb{R}_{>0}$.

Is \mathcal{M}_{circ} smooth? Yes!

2. Projective space \mathbb{P}^n .

Is \mathbb{P}^n smooth? Yes!

3. Planar conics $\mathcal{M}_{conics} \subset \mathbb{P}^5$.

Is \mathcal{M}_{conics} smooth? Yes!

1. Circles $\mathcal{M}_{circ} = \mathbb{R}_{>0}$.

Is \mathcal{M}_{circ} smooth? Yes!

2. Projective space \mathbb{P}^n .

Is \mathbb{P}^n smooth? Yes!

3. Planar conics $\mathcal{M}_{conics} \subset \mathbb{P}^5$.

Is \mathcal{M}_{conics} smooth? Yes!

4. \mathcal{M}_{lines} moduli of union of two lines in \mathbb{P}^2 .

1. Circles $\mathcal{M}_{circ} = \mathbb{R}_{>0}$.

Is \mathcal{M}_{circ} smooth? Yes!

2. Projective space \mathbb{P}^n .

Is \mathbb{P}^n smooth? Yes!

3. Planar conics
$$\mathcal{M}_{conics} \subset \mathbb{P}^5$$
.

Is \mathcal{M}_{conics} smooth? Yes!

4. \mathcal{M}_{lines} moduli of union of two lines in \mathbb{P}^2 .

Is $\mathcal{M}_{\textit{lines}}$ smooth?

1. Circles $\mathcal{M}_{circ} = \mathbb{R}_{>0}$.

Is \mathcal{M}_{circ} smooth? Yes!

2. Projective space \mathbb{P}^n .

Is \mathbb{P}^n smooth? Yes!

3. Planar conics
$$\mathcal{M}_{conics} \subset \mathbb{P}^5$$
.

Is \mathcal{M}_{conics} smooth? Yes!

4. \mathcal{M}_{lines} moduli of union of two lines in \mathbb{P}^2 .

Is \mathcal{M}_{lines} smooth? No!

1. Circles $\mathcal{M}_{circ} = \mathbb{R}_{>0}$.

Is \mathcal{M}_{circ} smooth? Yes!

2. Projective space \mathbb{P}^n .

Is \mathbb{P}^n smooth? Yes!

3. Planar conics $\mathcal{M}_{conics} \subset \mathbb{P}^5$.

Is \mathcal{M}_{conics} smooth? Yes!

4. \mathcal{M}_{lines} moduli of union of two lines in \mathbb{P}^2 .

Is \mathcal{M}_{lines} smooth? No!

Check $\mathcal{M}_{lines} = \mathbb{P}^5 \setminus \mathcal{M}_{conics}$, described by detA = 0 in \mathbb{P}^5 , is singular at the locus of double lines.

Formal Definition

Category Theory: Caution

"We'll only use as much category theory as is necessary.

"We'll only use as much category theory as is necessary. Famous last words" - Roman Abramovich "We'll only use as much category theory as is necessary. Famous last words" - Roman Abramovich

• A good (and free) reference is Emily Riehl's *Category Theory in Context.*

"We'll only use as much category theory as is necessary. Famous last words" - Roman Abramovich

• A good (and free) reference is Emily Riehl's *Category Theory in Context*.

What we'll need: representability of functors.

A category ${\mathcal C}$ is a collection of the following data:

1. A class $ob_{\mathcal{C}}$, whose elements we call "objects".

- 1. A class $ob_{\mathcal{C}}$, whose elements we call "objects".
- 2. A class $Hom_{\mathcal{C}}$, whose elements we call "morphisms"

- 1. A class $ob_{\mathcal{C}}$, whose elements we call "objects".
- 2. A class $Hom_{\mathcal{C}}$, whose elements we call "morphisms"
 - Each $f \in Hom_{\mathcal{C}}$ has a "source" $X \in \mathcal{C}$ and "target" $Y \in \mathcal{C}$.

- 1. A class $ob_{\mathcal{C}}$, whose elements we call "objects".
- 2. A class $Hom_{\mathcal{C}}$, whose elements we call "morphisms"
 - Each $f \in Hom_{\mathcal{C}}$ has a "source" $X \in \mathcal{C}$ and "target" $Y \in \mathcal{C}$.
 - The collection of morphisms from X to Y is denoted $Hom_{\mathcal{C}}(X, Y)$.

A category ${\mathcal C}$ is a collection of the following data:

- 1. A class $\textit{ob}_{\mathcal{C}}$, whose elements we call "objects".
- 2. A class $Hom_{\mathcal{C}}$, whose elements we call "morphisms"
 - Each $f \in Hom_{\mathcal{C}}$ has a "source" $X \in \mathcal{C}$ and "target" $Y \in \mathcal{C}$.
 - The collection of morphisms from X to Y is denoted $Hom_{\mathcal{C}}(X, Y)$.
- 3. a binary operation

 \circ : $Hom_{\mathcal{C}}(Y, Z) \times Hom_{\mathcal{C}}(X, Y) \rightarrow Hom_{\mathcal{C}}(X, Z)$

called *composition* satisfying:

• Associativity:

A category ${\mathcal C}$ is a collection of the following data:

- 1. A class $ob_{\mathcal{C}}$, whose elements we call "objects".
- 2. A class $Hom_{\mathcal{C}}$, whose elements we call "morphisms"
 - Each $f \in Hom_{\mathcal{C}}$ has a "source" $X \in \mathcal{C}$ and "target" $Y \in \mathcal{C}$.
 - The collection of morphisms from X to Y is denoted $Hom_{\mathcal{C}}(X, Y)$.
- 3. a binary operation

 $\circ: \operatorname{Hom}_{\operatorname{\mathcal{C}}}(Y,Z) imes \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y) \to \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Z)$

called *composition* satisfying:

• Associativity: for $f: X \to Y$, $g: Y \to Z$, and $h: Z \to W$,

$$(h \circ g) \circ f = h \circ (g \circ f).$$

• Identity:
Category Theory

A category ${\mathcal C}$ is a collection of the following data:

- 1. A class $ob_{\mathcal{C}}$, whose elements we call "objects".
- 2. A class $Hom_{\mathcal{C}}$, whose elements we call "morphisms"
 - Each $f \in Hom_{\mathcal{C}}$ has a "source" $X \in \mathcal{C}$ and "target" $Y \in \mathcal{C}$.
 - The collection of morphisms from X to Y is denoted $Hom_{\mathcal{C}}(X, Y)$.
- 3. a binary operation

$$\circ: \operatorname{Hom}_{\operatorname{\mathcal{C}}}(Y,Z) imes \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y) o \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Z)$$

called *composition* satisfying:

• Associativity: for $f: X \to Y$, $g: Y \to Z$, and $h: Z \to W$,

$$(h \circ g) \circ f = h \circ (g \circ f).$$

• Identity: for each $X \in C$, there exists $id_X : X \to X$ such that for any $f : X \to Y$,

$$f \circ id_X = id_Y \circ f = f.$$

We relate categories with functors.

We relate categories with functors.

A functor $F : \mathcal{C} \to \mathcal{D}$ is an assignment to each $X \in \mathcal{C}$ an object $F(X) \in \mathcal{D}$, and for any morphism $f : X \to Y$ in \mathcal{C} a morphism $F(f) : F(X) \to F(Y)$ in \mathcal{D} that respects composition:

We relate categories with functors.

A functor $F : \mathcal{C} \to \mathcal{D}$ is an assignment to each $X \in \mathcal{C}$ an object $F(X) \in \mathcal{D}$, and for any morphism $f : X \to Y$ in \mathcal{C} a morphism $F(f) : F(X) \to F(Y)$ in \mathcal{D} that respects composition: if $g : Y \to Z$, then $F(g \circ f) = F(g) \circ F(f)$.

We relate categories with functors.

A functor $F : \mathcal{C} \to \mathcal{D}$ is an assignment to each $X \in \mathcal{C}$ an object $F(X) \in \mathcal{D}$, and for any morphism $f : X \to Y$ in \mathcal{C} a morphism $F(f) : F(X) \to F(Y)$ in \mathcal{D} that respects composition: if $g : Y \to Z$, then $F(g \circ f) = F(g) \circ F(f)$.

$$\mathcal{C} \xrightarrow{F} \mathcal{D}$$

1. Sets

- 1. Sets
- 2. Topological Spaces Top

- 1. Sets
- 2. Topological Spaces Top
- 3. Vector Spaces $Vect_k$

- 1. Sets
- 2. Topological Spaces Top
- 3. Vector Spaces $Vect_k$
- 4. Rings/Modules Rings/Mod_A

- 1. Sets
- 2. Topological Spaces Top
- 3. Vector Spaces Vect_k
- 4. Rings/Modules Rings/Mod_A
- 5. Groups Groups

- 1. Sets
- 2. Topological Spaces Top
- 3. Vector Spaces Vect_k
- 4. Rings/Modules Rings/Mod_A
- 5. Groups Groups

- 1. Sets
- 2. Topological Spaces Top
- 3. Vector Spaces Vect_k
- 4. Rings/Modules Rings/Mod_A
- 5. Groups Groups

Common functors:

1. Forgetful functor: $Top \rightarrow Sets$.

- 1. Sets
- 2. Topological Spaces Top
- 3. Vector Spaces Vect_k
- 4. Rings/Modules Rings/Mod_A
- 5. Groups Groups

- 1. Forgetful functor: $Top \rightarrow Sets$.
- 2. $Hom_{\mathcal{C}}(M, -) : \mathcal{C} \to Sets$ (locally small categories).

- 1. Sets
- 2. Topological Spaces Top
- 3. Vector Spaces Vect_k
- 4. Rings/Modules Rings/Mod_A
- 5. Groups Groups

- 1. Forgetful functor: $\mathit{Top} \rightarrow \mathit{Sets}$.
- 2. $Hom_{\mathcal{C}}(M, -) : \mathcal{C} \to Sets$ (locally small categories).
- 3. $Hom_{\mathcal{C}}(-, M) : \mathcal{C}^{op} \to Sets$ (locally small categories).

- 1. Sets
- 2. Topological Spaces Top
- 3. Vector Spaces Vect_k
- 4. Rings/Modules Rings/Mod_A
- 5. Groups Groups

- 1. Forgetful functor: $\mathit{Top} \rightarrow \mathit{Sets}$.
- 2. $Hom_{\mathcal{C}}(M, -) : \mathcal{C} \to Sets$ (locally small categories).
- 3. $Hom_{\mathcal{C}}(-, M) : \mathcal{C}^{op} \to Sets$ (locally small categories).
- 4. Dual: $Vect_k \rightarrow Vect_k^{op}$.

We can relate categories with functors:

We can relate categories with functors: *we can relate functors with natural transformations*.

Natural Transformation

We can relate categories with functors: *we can relate functors with natural transformations.*

A natural transformation $\eta: F \to G$ between two functors $F, G: C \to D$ is an assignment of morphisms: for $X \in C$,

$$\eta_X: F(X) \to G(X)$$

such that for each $f : X \to Y$ in C the following diagram commutes:

$$\begin{array}{ccc} F(X) & \xrightarrow{\eta_X} & G(X) \\ F(f) & & & \downarrow G(f) \\ F(Y) & \xrightarrow{\eta_Y} & G(Y). \end{array}$$

Natural Transformation

We can relate categories with functors: *we can relate functors with natural transformations.*

A natural transformation $\eta: F \to G$ between two functors $F, G: C \to D$ is an assignment of morphisms: for $X \in C$,

$$\eta_X: F(X) \to G(X)$$

such that for each $f : X \to Y$ in C the following diagram commutes:

$$F(X) \xrightarrow{\eta_X} G(X)$$

$$F(f) \downarrow \qquad \qquad \qquad \downarrow G(f)$$

$$F(Y) \xrightarrow{\eta_Y} G(Y).$$

A natural transformation $\eta: F \to G$ is a *natural isomorphism* if there exists a natural transformation $\mu: G \to F$ such that $\mu \circ \eta = 1_F$ and $\eta \circ \mu = 1_G$.

Representable Functors

What are the "most natural" functors?

What are the "most natural" functors?

Yoneda's lemma tells that these are $Hom_{\mathcal{C}}(X, -) : \mathcal{C} \to Sets$ and $Hom_{\mathcal{C}}(-, X) : \mathcal{C}^{op} \to Sets$.

What are the "most natural" functors?

Yoneda's lemma tells that these are $Hom_{\mathcal{C}}(X, -) : \mathcal{C} \to Sets$ and $Hom_{\mathcal{C}}(-, X) : \mathcal{C}^{op} \to Sets$.

A functor $F : \mathcal{C}^{op} \to Sets$ is representable by $X \in \mathcal{C}$ if there exists a natural isomorphism $Hom_{\mathcal{C}}(-, X) \to F$.

Recap

• Categories are a collection of objects and morphisms.

- Categories are a collection of objects and morphisms.
- Functors relate categories $F : \mathcal{C} \to \mathcal{D}$.

- Categories are a collection of objects and morphisms.
- Functors relate categories $F : \mathcal{C} \to \mathcal{D}$.
- Natural transformations relate functors $\eta: F \to G$.

- Categories are a collection of objects and morphisms.
- Functors relate categories $F : \mathcal{C} \to \mathcal{D}$.
- Natural transformations relate functors $\eta: F \to G$.
- Representable functors are (up to natural isomorphism) of the form $Hom_{\mathcal{C}}(-, \mathcal{M})$.

A (fine) moduli space is an object $\mathcal{M} \in \mathcal{C}$ that represents F. That is, there exists a natural isomorphism $Hom_{\mathcal{C}}(-, \mathcal{M}) \to F$.

A (fine) moduli space is an object $\mathcal{M} \in \mathcal{C}$ that represents F. That is, there exists a natural isomorphism $Hom_{\mathcal{C}}(-, \mathcal{M}) \to F$.

 In other words, a moduli space is a representing object of a moduli functor F : C^{op} → Sets.

A (fine) moduli space is an object $\mathcal{M} \in \mathcal{C}$ that represents F. That is, there exists a natural isomorphism $Hom_{\mathcal{C}}(-, \mathcal{M}) \to F$.

 In other words, a moduli space is a representing object of a moduli functor F : C^{op} → Sets.

Not the only (or even best) way to study moduli.

Representable Moduli Functors

No "useful" functorial definition
No "useful" functorial definition (that I can think of (3)

No "useful" functorial definition (that I can think of (3)

Problem: Describe an "interesting" moduli functor for concentric circles.

Examples: Projective Plane \mathbb{P}^2_k

Generalize to integral finite-type k-algebras A:

 $L: s_0 x_0 + s_1 x_1 + s_2 x_2 = 0.$

Examples: Projective Plane \mathbb{P}^2_k

Generalize to integral finite-type k-algebras A:

 $L: s_0 x_0 + s_1 x_1 + s_2 x_2 = 0.$

Moduli Problem:

Generalize to integral finite-type k-algebras A:

 $L: s_0 x_0 + s_1 x_1 + s_2 x_2 = 0.$

Moduli Problem: $F : Var_k^{op} \rightarrow Sets$ with *k*-variety *V* with coordinate ring *A*,

 $F(A) = \{(s_0, s_1, s_2) \in (A^{\times})^3 \mid A^3 \to A \text{ with } e_i \mapsto s_i \text{ is surjective}\}/A^{\times}.$

Generalize to integral finite-type k-algebras A:

 $L: s_0 x_0 + s_1 x_1 + s_2 x_2 = 0.$

Moduli Problem: $F : Var_k^{op} \rightarrow Sets$ with *k*-variety *V* with coordinate ring *A*,

 $F(A) = \{(s_0, s_1, s_2) \in (A^{\times})^3 \mid A^3 \to A \text{ with } e_i \mapsto s_i \text{ is surjective}\}/A^{\times}.$

Moduli Space: The functor F is represented by

 $\mathbb{P}_k^2 = (k^3 \setminus 0)/k^{\times}.$

Generalize to integral finite-type k-algebras A:

 $L: s_0 x_0 + s_1 x_1 + s_2 x_2 = 0.$

Moduli Problem: $F : Var_k^{op} \to Sets$ with *k*-variety *V* with coordinate ring *A*,

 $F(A) = \{(s_0, s_1, s_2) \in (A^{\times})^3 \mid A^3 \to A \text{ with } e_i \mapsto s_i \text{ is surjective}\}/A^{\times}.$

Moduli Space: The functor F is represented by

 $\mathbb{P}_k^2 = (k^3 \setminus 0)/k^{\times}.$

Representability: An element of F(A) corresponds to a morphism $V \to \mathbb{P}^2_k$.

Moduli Problem: $H_2: Var_k^{op} \to Sets$ with variety X with coordinate ring A, $H_2(A) =$

 $\left\{ V \subset \mathbb{P}^2_A \mid V \text{ described by degree 2 homogeneous } f \in A[x, y, z] \right\}.$

Moduli Problem: $H_2: Var_k^{op} \to Sets$ with variety X with coordinate ring A, $H_2(A) =$

 $\left\{ V \subset \mathbb{P}^2_A \mid V \text{ described by degree 2 homogeneous } f \in A[x,y,z]
ight\}.$

Moduli Space: H_2 represented by \mathbb{P}^5_k .

Moduli Problem: $H_2: Var_k^{op} \rightarrow Sets$ with variety X with coordinate ring A, $H_2(A) =$

 $\left\{ V \subset \mathbb{P}^2_A \mid V \text{ described by degree 2 homogeneous } f \in A[x,y,z]
ight\}.$

Moduli Space: H_2 represented by \mathbb{P}_k^5 .

The functor ${\it H}_2$ is usually called the Hilbert functor of degree 2, and denoted

$$H_2 = Hilb_{\mathbb{P}^2_k}^{\phi_2}.$$

Why stop at conics?

Moduli Problem: $Hilb_{\mathbb{P}^2_k}^{\phi_d}$: $Var_k^{op} \to Sets$ with *k*-variety *X* with coordinate ring *A*, then $Hilb_{\mathbb{P}^2_k}(A) =$

 $\left\{ V \subset \mathbb{P}^2_A \mid V \text{ described by degree } d \text{ homogeneous } f \in A[x,y,z]
ight\}.$

Moduli Problem: $Hilb_{\mathbb{P}^2_k}^{\phi_d}$: $Var_k^{op} \to Sets$ with *k*-variety *X* with coordinate ring *A*, then $Hilb_{\mathbb{P}^2_k}(A) =$

 $\left\{ V \subset \mathbb{P}^2_A \mid V \text{ described by degree } d \text{ homogeneous } f \in A[x,y,z]
ight\}.$

Theorem (Grothendieck, 1961) The hilbert functor $Hilb_{\mathbb{P}^2_{L}}^{\phi_d}$ is representable by \mathbb{P}^N , with

$$N =$$

Moduli Problem: $Hilb_{\mathbb{P}^2_k}^{\phi_d}$: $Var_k^{op} \to Sets$ with *k*-variety *X* with coordinate ring *A*, then $Hilb_{\mathbb{P}^2_k}(A) =$

 $\left\{ V \subset \mathbb{P}^2_A \mid V \text{ described by degree } d \text{ homogeneous } f \in A[x,y,z]
ight\}.$

Theorem (Grothendieck, 1961) The hilbert functor $Hilb_{\mathbb{P}^2_{\nu}}^{\phi_d}$ is representable by \mathbb{P}^N , with

$$N = \binom{d+2}{2}$$

Moduli Problem: $Hilb_{\mathbb{P}^2_k}^{\phi_d}$: $Var_k^{op} \to Sets$ with *k*-variety *X* with coordinate ring *A*, then $Hilb_{\mathbb{P}^2_k}(A) =$

 $\left\{ V \subset \mathbb{P}^2_A \mid V \text{ described by degree } d \text{ homogeneous } f \in A[x,y,z]
ight\}.$

Theorem (Grothendieck, 1961) The hilbert functor $Hilb_{\mathbb{P}^2_{k}}^{\phi_d}$ is representable by \mathbb{P}^N , with

$$N = \binom{d+2}{2} - 1.$$

1. A moduli space is a "space" whose points parameterize a geometric phenomenon.

- 1. A moduli space is a "space" whose points parameterize a geometric phenomenon.
 - Compact moduli is equivalent to existence of limits in the moduli problem.

- 1. A moduli space is a "space" whose points parameterize a geometric phenomenon.
 - Compact moduli is equivalent to existence of limits in the moduli problem.
 - Wiggling a point of the moduli space amounts to deformation.

- 1. A moduli space is a "space" whose points parameterize a geometric phenomenon.
 - Compact moduli is equivalent to existence of limits in the moduli problem.
 - Wiggling a point of the moduli space amounts to deformation.
- 2. Rigorously, a moduli space is a representing object of a moduli-problem functor $F : C^{op} \rightarrow Sets$

- 1. $\mathcal{M}_{\textit{circ}}$ Analytic
- 2. \mathbb{P}^n Linear algebraic
- 3. Conics in \mathbb{P}^2 Algebraic

Homework

Define a moduli problem, and construct (if possible) a moduli space \mathcal{M} .

Define a moduli problem, and construct (if possible) a moduli space \mathcal{M} . Describe \mathcal{M} geometrically: Define a moduli problem, and construct (if possible) a moduli space $\mathcal{M}.$ Describe \mathcal{M} geometrically:

1. What is the dimension of \mathcal{M} ?

Define a moduli problem, and construct (if possible) a moduli space $\mathcal{M}.$ Describe \mathcal{M} geometrically:

- 1. What is the dimension of $\mathcal{M}?$
- 2. Is \mathcal{M} smooth?

Define a moduli problem, and construct (if possible) a moduli space \mathcal{M} . Describe \mathcal{M} geometrically:

- 1. What is the dimension of $\mathcal{M}?$
- 2. Is \mathcal{M} smooth?
- 3. Is ${\mathcal M}$ compact?

Define a moduli problem, and construct (if possible) a moduli space \mathcal{M} . Describe \mathcal{M} geometrically:

- 1. What is the dimension of \mathcal{M} ?
- 2. Is \mathcal{M} smooth?
- 3. Is ${\mathcal M}$ compact?
- 4. Can we relate ${\mathcal M}$ with another moduli space?

Questions?