Moduli Spaces in Geometry

Juan Salinas

University of Washington

Table of contents

1. What is a Moduli Space?
2. Topics in Moduli
3. Formal Definition
4. Representable Moduli Functors

What is a Moduli Space?

What is Moduli Theory?

What is Moduli Theory?

Moduli theory is the study of families of geometric objects.

What is Moduli Theory?

Moduli theory is the study of families of geometric objects.

Informal Definition

A moduli problem is a certain class of algebro-geometric objects.

Informal Definition

A moduli problem is a certain class of algebro-geometric objects.

A moduli/parameter space is a "space" whose points are in natural bijection with isomorphism classes of objects described by a moduli problem.

Informal Definition

A moduli problem is a certain class of algebro-geometric objects.

A moduli/parameter space is a "space" whose points are in natural bijection with isomorphism classes of objects described by a moduli problem.

- In this case, we say the moduli space "solves" the moduli problem.

Informal Definition

A moduli problem is a certain class of algebro-geometric objects.

A moduli/parameter space is a "space" whose points are in natural bijection with isomorphism classes of objects described by a moduli problem.

- In this case, we say the moduli space "solves" the moduli problem.

Informal Definition

A moduli problem is a certain class of algebro-geometric objects.

A moduli/parameter space is a "space" whose points are in natural bijection with isomorphism classes of objects described by a moduli problem.

- In this case, we say the moduli space "solves" the moduli problem.

1. Circles

Moduli Problem: Circles in \mathbb{R}^{2} centered at the origin;

1. Circles

Moduli Problem: Circles in \mathbb{R}^{2} centered at the origin;

$$
C_{r}: x^{2}+y^{2}=r^{2}
$$

1. Circles

Moduli Problem: Circles in \mathbb{R}^{2} centered at the origin;

$$
C_{r}: x^{2}+y^{2}=r^{2} .
$$

- Let $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$. A point $r \in \mathcal{M}$ corresponds to a unique $C_{r} \subset \mathbb{R}^{2}$.

1. Circles

Moduli Problem: Circles in \mathbb{R}^{2} centered at the origin;

$$
C_{r}: x^{2}+y^{2}=r^{2}
$$

- Let $\mathcal{M}_{\text {circe }}=\mathbb{R}_{>0}$. A point $r \in \mathcal{M}$ corresponds to a unique $C_{r} \subset \mathbb{R}^{2}$.

1. Circles

Moduli Problem: Circles in \mathbb{R}^{2} centered at the origin;

$$
C_{r}: x^{2}+y^{2}=r^{2}
$$

- Let $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$. A point $r \in \mathcal{M}$ corresponds to a unique $C_{r} \subset \mathbb{R}^{2}$.

2. Projective Plane

Moduli Problem: One-dimensional linear subspaces (planes) of k^{3} centered at the origin $(k=\mathbb{R}$ or $\mathbb{C})$;

2. Projective Plane

Moduli Problem: One-dimensional linear subspaces (planes) of k^{3} centered at the origin $(k=\mathbb{R}$ or $\mathbb{C})$;

$$
L: a_{0} x+a_{1} y+a_{2} z=0 .
$$

2. Projective Plane

Moduli Problem: One-dimensional linear subspaces (planes) of k^{3} centered at the origin $(k=\mathbb{R}$ or $\mathbb{C})$;

$$
L: a_{0} x+a_{1} y+a_{2} z=0
$$

- Admissible inputs:

2. Projective Plane

Moduli Problem: One-dimensional linear subspaces (planes) of k^{3} centered at the origin $(k=\mathbb{R}$ or $\mathbb{C})$;

$$
L: a_{0} x+a_{1} y+a_{2} z=0
$$

- Admissible inputs: $\left(a_{0}, a_{1}, a_{2}\right)$

2. Projective Plane

Moduli Problem: One-dimensional linear subspaces (planes) of k^{3} centered at the origin $(k=\mathbb{R}$ or $\mathbb{C})$;

$$
L: a_{0} x+a_{1} y+a_{2} z=0
$$

- Admissible inputs: $\left(a_{0}, a_{1}, a_{2}\right) \neq 0$, at least one $a_{i} \neq 0$.

2. Projective Plane

Moduli Problem: One-dimensional linear subspaces (planes) of k^{3} centered at the origin $(k=\mathbb{R}$ or $\mathbb{C})$;

$$
L: a_{0} x+a_{1} y+a_{2} z=0
$$

- Admissible inputs: $\left(a_{0}, a_{1}, a_{2}\right) \neq 0$, at least one $a_{i} \neq 0$.
- Equivalence class:

2. Projective Plane

Moduli Problem: One-dimensional linear subspaces (planes) of k^{3} centered at the origin $(k=\mathbb{R}$ or $\mathbb{C})$;

$$
L: a_{0} x+a_{1} y+a_{2} z=0 .
$$

- Admissible inputs: $\left(a_{0}, a_{1}, a_{2}\right) \neq 0$, at least one $a_{i} \neq 0$.
- Equivalence class: Two linear forms

$$
L: a_{0} x+a_{1} y+a_{2} z=0 \quad \text { and } \quad L^{\prime}: a_{0}^{\prime} x+a_{1}^{\prime} y+a_{2}^{\prime} z=0
$$

describe the same plane if and only if

2. Projective Plane

Moduli Problem: One-dimensional linear subspaces (planes) of k^{3} centered at the origin $(k=\mathbb{R}$ or $\mathbb{C})$;

$$
L: a_{0} x+a_{1} y+a_{2} z=0 .
$$

- Admissible inputs: $\left(a_{0}, a_{1}, a_{2}\right) \neq 0$, at least one $a_{i} \neq 0$.
- Equivalence class: Two linear forms

$$
L: a_{0} x+a_{1} y+a_{2} z=0 \quad \text { and } \quad L^{\prime}: a_{0}^{\prime} x+a_{1}^{\prime} y+a_{2}^{\prime} z=0
$$

describe the same plane if and only if $a_{i}=\lambda a_{i}^{\prime}$ for all i and some nonzero $\lambda \in k$.

2. Projective Plane

Moduli Problem: One-dimensional linear subspaces (planes) of k^{3} centered at the origin $(k=\mathbb{R}$ or $\mathbb{C})$;

$$
L: a_{0} x+a_{1} y+a_{2} z=0 .
$$

- Admissible inputs: $\left(a_{0}, a_{1}, a_{2}\right) \neq 0$, at least one $a_{i} \neq 0$.
- Equivalence class: Two linear forms

$$
L: a_{0} x+a_{1} y+a_{2} z=0 \quad \text { and } \quad L^{\prime}: a_{0}^{\prime} x+a_{1}^{\prime} y+a_{2}^{\prime} z=0
$$

describe the same plane if and only if $a_{i}=\lambda a_{i}^{\prime}$ for all i and some nonzero $\lambda \in k$.

- Theoretical definition:

2. Projective Plane

Moduli Problem: One-dimensional linear subspaces (planes) of k^{3} centered at the origin $(k=\mathbb{R}$ or $\mathbb{C})$;

$$
L: a_{0} x+a_{1} y+a_{2} z=0 .
$$

- Admissible inputs: $\left(a_{0}, a_{1}, a_{2}\right) \neq 0$, at least one $a_{i} \neq 0$.
- Equivalence class: Two linear forms

$$
L: a_{0} x+a_{1} y+a_{2} z=0 \quad \text { and } \quad L^{\prime}: a_{0}^{\prime} x+a_{1}^{\prime} y+a_{2}^{\prime} z=0
$$

describe the same plane if and only if $a_{i}=\lambda a_{i}^{\prime}$ for all i and some nonzero $\lambda \in k$.

- Theoretical definition: $\mathbb{P}_{k}^{2}=\left(k^{3} \backslash 0\right) / k^{*}$.

2. Projective Plane: Picture

Over \mathbb{R}, the projective plane \mathbb{P}^{2} is "locally-euclidean".
2. Projective Plane: Picture

Over \mathbb{R}, the projective plane \mathbb{P}^{2} is "locally-euclidean".

2. Projective Plane: Picture

Over \mathbb{R}, the projective plane \mathbb{P}^{2} is "locally-euclidean".

In essence:

2. Projective Plane: Picture

Over \mathbb{R}, the projective plane \mathbb{P}^{2} is "locally-euclidean".

$$
\begin{gathered}
y=1 \quad O[x, y, 0]="\left[x, y, \frac{1}{\infty}\right]^{\prime \prime} \\
, \quad\left[x, y, \frac{1}{2}\right]=[2 x, 2 y, 1]
\end{gathered}
$$

In essence:

$$
\mathbb{P}_{\mathbb{R}}^{2}=\mathbb{R}^{2} \cup\{\text { infinity points }\}
$$

2. Projective Plane: Why?

Theorem (Bézouts Theorem)

2. Projective Plane: Why?

Theorem (Bézouts Theorem)

Let $C, D \subset \mathbb{P}_{k}^{2}$ be two general nonsingular curves described by homogeneous polynomials $f, g \in k[x, y, z]$ over an algebraically closed field k.

2. Projective Plane: Why?

Theorem (Bézouts Theorem)

Let $C, D \subset \mathbb{P}_{k}^{2}$ be two general nonsingular curves described by homogeneous polynomials $f, g \in k[x, y, z]$ over an algebraically closed field k. If $d_{1}=\operatorname{deg} f$ and $d_{2}=\operatorname{deg} g$, then

$$
\# C \cap D=
$$

2. Projective Plane: Why?

Theorem (Bézouts Theorem)

Let $C, D \subset \mathbb{P}_{k}^{2}$ be two general nonsingular curves described by homogeneous polynomials $f, g \in k[x, y, z]$ over an algebraically closed field k. If $d_{1}=\operatorname{deg} f$ and $d_{2}=\operatorname{deg} g$, then

$$
\# C \cap D=d_{1} \cdot d_{2}
$$

2. Projective Plane: Why?

Theorem (Bézouts Theorem)

Let $C, D \subset \mathbb{P}_{k}^{2}$ be two general nonsingular curves described by homogeneous polynomials $f, g \in k[x, y, z]$ over an algebraically closed field k. If $d_{1}=\operatorname{deg} f$ and $d_{2}=\operatorname{deg} g$, then

$$
\# C \cap D=d_{1} \cdot d_{2}
$$

- Stated (before Bézout) in 1687 by Issac Newton in Principia Mathematica.

2. Projective Plane: Why?

Theorem (Bézouts Theorem)

Let $C, D \subset \mathbb{P}_{k}^{2}$ be two general nonsingular curves described by homogeneous polynomials $f, g \in k[x, y, z]$ over an algebraically closed field k. If $d_{1}=\operatorname{deg} f$ and $d_{2}=\operatorname{deg} g$, then

$$
\# C \cap D=d_{1} \cdot d_{2}
$$

- Stated (before Bézout) in 1687 by Issac Newton in Principia Mathematica.
- Partially proven in 1779 by Étienne Bézout in Théorie générale des équations algébriques.

2. Projective Plane: Why?

Theorem (Bézouts Theorem)

Let $C, D \subset \mathbb{P}_{k}^{2}$ be two general nonsingular curves described by homogeneous polynomials $f, g \in k[x, y, z]$ over an algebraically closed field k. If $d_{1}=\operatorname{deg} f$ and $d_{2}=\operatorname{deg} g$, then

$$
\# C \cap D=d_{1} \cdot d_{2}
$$

- Stated (before Bézout) in 1687 by Issac Newton in Principia Mathematica.
- Partially proven in 1779 by Étienne Bézout in Théorie générale des équations algébriques.
- Fully proven in 1958-1965 by Jean-Pierre Serre in Algèbre locale et multiplicités.

3. Conics in \mathbb{P}^{2}

Moduli Problem: Nondegenerate conics of \mathbb{P}^{2} defined by

3. Conics in \mathbb{P}^{2}

Moduli Problem: Nondegenerate conics of \mathbb{P}^{2} defined by

$$
C: f(x, y, z)=a_{0} x^{2}+a_{1} y^{2}+a_{2} z^{2}+a_{3} x y+a_{4} x z+a_{5} y z .
$$

3. Conics in \mathbb{P}^{2}

Moduli Problem: Nondegenerate conics of \mathbb{P}^{2} defined by

$$
C: f(x, y, z)=a_{0} x^{2}+a_{1} y^{2}+a_{2} z^{2}+a_{3} x y+a_{4} x z+a_{5} y z
$$

- Admissible inputs:

3. Conics in \mathbb{P}^{2}

Moduli Problem: Nondegenerate conics of \mathbb{P}^{2} defined by

$$
C: f(x, y, z)=a_{0} x^{2}+a_{1} y^{2}+a_{2} z^{2}+a_{3} x y+a_{4} x z+a_{5} y z .
$$

- Admissible inputs: $\left(a_{0}, \cdots, a_{5}\right)$?

3. Conics in \mathbb{P}^{2}

Moduli Problem: Nondegenerate conics of \mathbb{P}^{2} defined by

$$
C: f(x, y, z)=a_{0} x^{2}+a_{1} y^{2}+a_{2} z^{2}+a_{3} x y+a_{4} x z+a_{5} y z .
$$

- Admissible inputs: $\left(a_{0}, \cdots, a_{5}\right)$? No! Let $a_{3}=1$ and other $a_{i}=0$.

3. Conics in \mathbb{P}^{2}

Moduli Problem: Nondegenerate conics of \mathbb{P}^{2} defined by

$$
C: f(x, y, z)=a_{0} x^{2}+a_{1} y^{2}+a_{2} z^{2}+a_{3} x y+a_{4} x z+a_{5} y z .
$$

- Admissible inputs: $\left(a_{0}, \cdots, a_{5}\right)$? No! Let $a_{3}=1$ and other $a_{i}=0$.
- Degenerate Conics:

3. Conics in \mathbb{P}^{2}

Moduli Problem: Nondegenerate conics of \mathbb{P}^{2} defined by

$$
C: f(x, y, z)=a_{0} x^{2}+a_{1} y^{2}+a_{2} z^{2}+a_{3} x y+a_{4} x z+a_{5} y z
$$

- Admissible inputs: $\left(a_{0}, \cdots, a_{5}\right)$? No! Let $a_{3}=1$ and other $a_{i}=0$.
- Degenerate Conics: Let

$$
A=\left(\begin{array}{ccc}
a_{0} & a_{3} / 2 & a_{4} / 2 \\
a_{3} / 2 & a_{1} & a_{5} / 2 \\
a_{4} / 2 & a_{5} / 2 & a_{2}
\end{array}\right) \quad \text { and } \quad \mathbf{x}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right),
$$

3. Conics in \mathbb{P}^{2}

Moduli Problem: Nondegenerate conics of \mathbb{P}^{2} defined by

$$
C: f(x, y, z)=a_{0} x^{2}+a_{1} y^{2}+a_{2} z^{2}+a_{3} x y+a_{4} x z+a_{5} y z
$$

- Admissible inputs: $\left(a_{0}, \cdots, a_{5}\right)$? No! Let $a_{3}=1$ and other $a_{i}=0$.
- Degenerate Conics: Let

$$
A=\left(\begin{array}{ccc}
a_{0} & a_{3} / 2 & a_{4} / 2 \\
a_{3} / 2 & a_{1} & a_{5} / 2 \\
a_{4} / 2 & a_{5} / 2 & a_{2}
\end{array}\right) \quad \text { and } \quad \mathbf{x}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right),
$$

then

$$
f(x, y, z)=\mathbf{x}^{\top} A \mathbf{x} .
$$

3. Conics in \mathbb{P}^{2}

Moduli Problem: Nondegenerate conics of \mathbb{P}^{2} defined by

$$
C: f(x, y, z)=a_{0} x^{2}+a_{1} y^{2}+a_{2} z^{2}+a_{3} x y+a_{4} x z+a_{5} y z
$$

- Admissible inputs: $\left(a_{0}, \cdots, a_{5}\right)$? No! Let $a_{3}=1$ and other $a_{i}=0$.
- Degenerate Conics: Let

$$
A=\left(\begin{array}{ccc}
a_{0} & a_{3} / 2 & a_{4} / 2 \\
a_{3} / 2 & a_{1} & a_{5} / 2 \\
a_{4} / 2 & a_{5} / 2 & a_{2}
\end{array}\right) \quad \text { and } \quad \mathbf{x}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right),
$$

then

$$
f(x, y, z)=\mathbf{x}^{\top} A \mathbf{x} .
$$

- C is a degenerate conic if and only if

3. Conics in \mathbb{P}^{2}

Moduli Problem: Nondegenerate conics of \mathbb{P}^{2} defined by

$$
C: f(x, y, z)=a_{0} x^{2}+a_{1} y^{2}+a_{2} z^{2}+a_{3} x y+a_{4} x z+a_{5} y z .
$$

- Admissible inputs: $\left(a_{0}, \cdots, a_{5}\right)$? No! Let $a_{3}=1$ and other $a_{i}=0$.
- Degenerate Conics: Let

$$
A=\left(\begin{array}{ccc}
a_{0} & a_{3} / 2 & a_{4} / 2 \\
a_{3} / 2 & a_{1} & a_{5} / 2 \\
a_{4} / 2 & a_{5} / 2 & a_{2}
\end{array}\right) \quad \text { and } \quad \mathbf{x}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right),
$$

then

$$
f(x, y, z)=\mathbf{x}^{\top} A \mathbf{x} .
$$

- C is a degenerate conic if and only if $\operatorname{det} A=0$. In this case, C is a union of lines.

3. Conics in \mathbb{P}^{2} : Recap

Moduli Problem: Nondegenerate conics of \mathbb{P}^{2} defined by

$$
C: f(x, y, z)=a_{0} x^{2}+a_{1} y^{2}+a_{2} z^{2}+a_{3} x y+a_{4} x z+a_{5} y z=0
$$

3. Conics in \mathbb{P}^{2} : Recap

Moduli Problem: Nondegenerate conics of \mathbb{P}^{2} defined by

$$
C: f(x, y, z)=a_{0} x^{2}+a_{1} y^{2}+a_{2} z^{2}+a_{3} x y+a_{4} x z+a_{5} y z=0 .
$$

Moduli Space:

$$
\mathcal{M}_{\text {conics }}=
$$

3. Conics in \mathbb{P}^{2} : Recap

Moduli Problem: Nondegenerate conics of \mathbb{P}^{2} defined by

$$
C: f(x, y, z)=a_{0} x^{2}+a_{1} y^{2}+a_{2} z^{2}+a_{3} x y+a_{4} x z+a_{5} y z=0 .
$$

Moduli Space:

$$
\mathcal{M}_{\text {conics }}=\left\{\left[a_{0}, \cdots, a_{5}\right] \subset \mathbb{P}^{5} \mid\right.
$$

3. Conics in \mathbb{P}^{2} : Recap

Moduli Problem: Nondegenerate conics of \mathbb{P}^{2} defined by

$$
C: f(x, y, z)=a_{0} x^{2}+a_{1} y^{2}+a_{2} z^{2}+a_{3} x y+a_{4} x z+a_{5} y z=0
$$

Moduli Space:

$$
\mathcal{M}_{\text {conics }}=\left\{\left[a_{0}, \cdots, a_{5}\right] \subset \mathbb{P}^{5} \mid \operatorname{det} A \neq 0\right\},
$$

where

$$
A=\left(\begin{array}{ccc}
a_{0} & a_{3} / 2 & a_{4} / 2 \\
a_{3} / 2 & a_{1} & a_{5} / 2 \\
a_{4} / 2 & a_{5} / 2 & a_{2}
\end{array}\right)
$$

Main Examples

1. Circles in \mathbb{R}^{2} centered at the origin $-\mathcal{M}_{\text {circ }}$
2. Planes in k^{3} centered at origin - Projective plane \mathbb{P}^{2}
3. Conics in $\mathbb{P}^{2}-\mathcal{M}_{\text {conics }}$

Main Examples

1. Circles in \mathbb{R}^{2} centered at the origin $-\mathcal{M}_{\text {circ }}$
2. Planes in k^{3} centered at origin - Projective plane \mathbb{P}^{2}
3. Conics in $\mathbb{P}^{2}-\mathcal{M}_{\text {conics }}$

What does the geometry of a moduli space tell us about families in moduli problem?

Topics in Moduli

Topics in Moduli

1. Dimension
2. Compact Moduli
3. Deformation Theory

1. Dimension

The dimension of a moduli space \mathcal{M} is equal to the degrees of freedom of the moduli problem.

1. Dimension

The dimension of a moduli space \mathcal{M} is equal to the degrees of freedom of the moduli problem.

- The dimension of \mathcal{M} is the number of local coordinates.

1. Dimension-Coordinates

Examples:

1. Circles $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$.

1. Dimension - Coordinates

Examples:

1. Circles $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$.
$\operatorname{dim} \mathcal{M}_{\text {circ }}=$

1. Dimension-Coordinates

Examples:

1. Circles $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$.

$$
\operatorname{dim} \mathcal{M}_{\text {circ }}=1
$$

Parameter r is our coordinate.

1. Dimension-Coordinates

Examples:

1. Circles $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$.

$$
\operatorname{dim} \mathcal{M}_{\text {circ }}=1
$$

Parameter r is our coordinate.
2. Projective plane \mathbb{P}^{2}.

1. Dimension-Coordinates

Examples:

1. Circles $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$.

$$
\operatorname{dim} \mathcal{M}_{\text {circ }}=1
$$

Parameter r is our coordinate.
2. Projective plane \mathbb{P}^{2}.

$$
\operatorname{dim} \mathbb{P}^{2}=
$$

1. Dimension-Coordinates

Examples:

1. Circles $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$.

$$
\operatorname{dim} \mathcal{M}_{\text {circ }}=1
$$

Parameter r is our coordinate.
2. Projective plane \mathbb{P}^{2}.

$$
\operatorname{dim} \mathbb{P}^{2}=2
$$

Coordinates are $[x, y, z]$, modulo scaling.

1. Dimension-Coordinates

Examples:

1. Circles $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$.

$$
\operatorname{dim} \mathcal{M}_{\text {circ }}=1
$$

Parameter r is our coordinate.
2. Projective plane \mathbb{P}^{2}.

$$
\operatorname{dim} \mathbb{P}^{2}=2
$$

Coordinates are $[x, y, z]$, modulo scaling.
3. Space of planar conics $\mathcal{M}_{\text {conics }} \subset \mathbb{P}^{5}$.

1. Dimension-Coordinates

Examples:

1. Circles $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$.

$$
\operatorname{dim} \mathcal{M}_{\text {circ }}=1
$$

Parameter r is our coordinate.
2. Projective plane \mathbb{P}^{2}.

$$
\operatorname{dim} \mathbb{P}^{2}=2
$$

Coordinates are $[x, y, z]$, modulo scaling.
3. Space of planar conics $\mathcal{M}_{\text {conics }} \subset \mathbb{P}^{5}$.
$\operatorname{dim} \mathcal{M}_{\text {conics }}=$

1. Dimension-Coordinates

Examples:

1. Circles $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$.

$$
\operatorname{dim} \mathcal{M}_{\text {circ }}=1
$$

Parameter r is our coordinate.
2. Projective plane \mathbb{P}^{2}.

$$
\operatorname{dim} \mathbb{P}^{2}=2
$$

Coordinates are $[x, y, z]$, modulo scaling.
3. Space of planar conics $\mathcal{M}_{\text {conics }} \subset \mathbb{P}^{5}$.

$$
\operatorname{dim} \mathcal{M}_{\text {conics }}=5 .
$$

Coordinates are $\left[a_{0}, \cdots, a_{5}\right]$, modulo scaling.

2. Compact Moduli

A (moduli) space is compact if

2. Compact Moduli

A (moduli) space is compact if it contains its limit points. Limit points correspond to limits of families of geometric objects.

2. Compact Moduli

A (moduli) space is compact if it contains its limit points. Limit points correspond to limits of families of geometric objects.

2. Compact Moduli

Examples:

2. Compact Moduli

Examples:

1. Circles $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$.

Is $\mathcal{M}_{\text {circ }}$ compact?

2. Compact Moduli

Examples:

1. Circles $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$.

$$
\text { Is } \mathcal{M}_{\text {circ }} \text { compact? No! }
$$

Degenerate cases: $r=0$ and ${ }^{\prime \prime} r=\infty$ ".

2. Compact Moduli

Examples:

1. Circles $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$.

$$
\text { Is } \mathcal{M}_{\text {circ }} \text { compact? No! }
$$

Degenerate cases: $r=0$ and ${ }^{\prime \prime} r=\infty " . \overline{\mathcal{M}}_{\text {circ }}=\mathbb{R}_{\geq 0} \cup\{\infty\}$

2. Compact Moduli

Examples:

1. Circles $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$.

$$
\text { Is } \mathcal{M}_{\text {circ }} \text { compact? No! }
$$

Degenerate cases: $r=0$ and ${ }^{\prime \prime} r=\infty$ ". $\overline{\mathcal{M}}_{\text {circ }}=\mathbb{R}_{\geq 0} \cup\{\infty\}$
2. Projective plane \mathbb{P}^{2}.

Is \mathbb{P}^{2} compact?

2. Compact Moduli

Examples:

1. Circles $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$.

$$
\text { Is } \mathcal{M}_{\text {circ }} \text { compact? No! }
$$

Degenerate cases: $r=0$ and ${ }^{\prime \prime} r=\infty$ ". $\overline{\mathcal{M}}_{\text {circ }}=\mathbb{R}_{\geq 0} \cup\{\infty\}$
2. Projective plane \mathbb{P}^{2}.

$$
\text { Is } \mathbb{P}^{2} \text { compact? Yes! }
$$

2. Compact Moduli

Examples:

1. Circles $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$.

$$
\text { Is } \mathcal{M}_{\text {circ }} \text { compact? No! }
$$

Degenerate cases: $r=0$ and ${ }^{\prime \prime} r=\infty " . \overline{\mathcal{M}}_{\text {circ }}=\mathbb{R}_{\geq 0} \cup\{\infty\}$
2. Projective plane \mathbb{P}^{2}.

$$
\text { Is } \mathbb{P}^{2} \text { compact? Yes! }
$$

3. Space of planar conics $\mathcal{M}_{\text {conics }} \subset \mathbb{P}^{5}$.

Is $\mathcal{M}_{\text {conics }}$ compact?

2. Compact Moduli

Examples:

1. Circles $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$.

$$
\text { Is } \mathcal{M}_{\text {circ }} \text { compact? No! }
$$

Degenerate cases: $r=0$ and ${ }^{\prime \prime} r=\infty " . \overline{\mathcal{M}}_{\text {circ }}=\mathbb{R}_{\geq 0} \cup\{\infty\}$
2. Projective plane \mathbb{P}^{2}.

$$
\text { Is } \mathbb{P}^{2} \text { compact? Yes! }
$$

3. Space of planar conics $\mathcal{M}_{\text {conics }} \subset \mathbb{P}^{5}$.

Is $\mathcal{M}_{\text {conics }}$ compact? No!
Degenerate locus $\operatorname{det} A \subset \mathbb{P}^{5}$ includes the case of lines.

2. Compact Moduli

Examples:

1. Circles $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$.

$$
\text { Is } \mathcal{M}_{\text {circ }} \text { compact? No! }
$$

Degenerate cases: $r=0$ and ${ }^{\prime \prime} r=\infty " . \overline{\mathcal{M}}_{\text {circ }}=\mathbb{R}_{\geq 0} \cup\{\infty\}$
2. Projective plane \mathbb{P}^{2}.

$$
\text { Is } \mathbb{P}^{2} \text { compact? Yes! }
$$

3. Space of planar conics $\mathcal{M}_{\text {conics }} \subset \mathbb{P}^{5}$.

Is $\mathcal{M}_{\text {conics }}$ compact? No!
Degenerate locus $\operatorname{det} A \subset \mathbb{P}^{5}$ includes the case of lines. $\overline{\mathcal{M}}_{\text {conics }}=\mathbb{P}^{5}$

3. Deformation Theory

What is the moduli view of deforming an object?

3. Deformation Theory

What is the moduli view of deforming an object?
\{Deforming objects in moduli problem $\} \leftrightarrow\{$ Perturb point in moduli space $\}$

3. Deformation Theory

What is the moduli view of deforming an object?
\{Deforming objects in moduli problem $\} \leftrightarrow\{$ Perturb point in moduli space $\}$

3. Deformation Theory: Examples

3. Deformation Theory: Examples

1. Circles $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$.

3. Deformation Theory: Examples

1. Circles $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$.

$$
\text { Is } \mathcal{M}_{\text {circ }} \text { smooth? }
$$

3. Deformation Theory: Examples

1. Circles $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$.

$$
\text { Is } \mathcal{M}_{\text {circ }} \text { smooth? Yes! }
$$

3. Deformation Theory: Examples

1. Circles $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$.

$$
\text { Is } \mathcal{M}_{\text {circ }} \text { smooth? Yes! }
$$

2. Projective space \mathbb{P}^{n}.

3. Deformation Theory: Examples

1. Circles $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$.

$$
\text { Is } \mathcal{M}_{\text {circ }} \text { smooth? Yes! }
$$

2. Projective space \mathbb{P}^{n}.

$$
\text { Is } \mathbb{P}^{n} \text { smooth? }
$$

3. Deformation Theory: Examples

1. Circles $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$.

$$
\text { Is } \mathcal{M}_{\text {circ }} \text { smooth? Yes! }
$$

2. Projective space \mathbb{P}^{n}.

Is \mathbb{P}^{n} smooth? Yes!

3. Deformation Theory: Examples

1. Circles $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$.

$$
\text { Is } \mathcal{M}_{\text {circ }} \text { smooth? Yes! }
$$

2. Projective space \mathbb{P}^{n}.

$$
\text { Is } \mathbb{P}^{n} \text { smooth? Yes! }
$$

3. Planar conics $\mathcal{M}_{\text {conics }} \subset \mathbb{P}^{5}$.

3. Deformation Theory: Examples

1. Circles $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$.

$$
\text { Is } \mathcal{M}_{\text {circ }} \text { smooth? Yes! }
$$

2. Projective space \mathbb{P}^{n}.

$$
\text { Is } \mathbb{P}^{n} \text { smooth? Yes! }
$$

3. Planar conics $\mathcal{M}_{\text {conics }} \subset \mathbb{P}^{5}$.

$$
\text { Is } \mathcal{M}_{\text {conics }} \text { smooth? }
$$

3. Deformation Theory: Examples

1. Circles $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$.

$$
\text { Is } \mathcal{M}_{\text {circ }} \text { smooth? Yes! }
$$

2. Projective space \mathbb{P}^{n}.

$$
\text { Is } \mathbb{P}^{n} \text { smooth? Yes! }
$$

3. Planar conics $\mathcal{M}_{\text {conics }} \subset \mathbb{P}^{5}$.

$$
\text { Is } \mathcal{M}_{\text {conics }} \text { smooth? Yes! }
$$

3. Deformation Theory: Examples

1. Circles $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$.

$$
\text { Is } \mathcal{M}_{\text {circ }} \text { smooth? Yes! }
$$

2. Projective space \mathbb{P}^{n}.

$$
\text { Is } \mathbb{P}^{n} \text { smooth? Yes! }
$$

3. Planar conics $\mathcal{M}_{\text {conics }} \subset \mathbb{P}^{5}$.

$$
\text { Is } \mathcal{M}_{\text {conics }} \text { smooth? Yes! }
$$

4. $\mathcal{M}_{\text {lines }}$ moduli of union of two lines in \mathbb{P}^{2}.

3. Deformation Theory: Examples

1. Circles $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$.

$$
\text { Is } \mathcal{M}_{\text {circ }} \text { smooth? Yes! }
$$

2. Projective space \mathbb{P}^{n}.

$$
\text { Is } \mathbb{P}^{n} \text { smooth? Yes! }
$$

3. Planar conics $\mathcal{M}_{\text {conics }} \subset \mathbb{P}^{5}$.

$$
\text { Is } \mathcal{M}_{\text {conics }} \text { smooth? Yes! }
$$

4. $\mathcal{M}_{\text {lines }}$ moduli of union of two lines in \mathbb{P}^{2}.

$$
\text { Is } \mathcal{M}_{\text {lines }} \text { smooth? }
$$

3. Deformation Theory: Examples

1. Circles $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$.

$$
\text { Is } \mathcal{M}_{\text {circ }} \text { smooth? Yes! }
$$

2. Projective space \mathbb{P}^{n}.

$$
\text { Is } \mathbb{P}^{n} \text { smooth? Yes! }
$$

3. Planar conics $\mathcal{M}_{\text {conics }} \subset \mathbb{P}^{5}$.

$$
\text { Is } \mathcal{M}_{\text {conics }} \text { smooth? Yes! }
$$

4. $\mathcal{M}_{\text {lines }}$ moduli of union of two lines in \mathbb{P}^{2}.

$$
\text { Is } \mathcal{M}_{\text {lines }} \text { smooth? No! }
$$

3. Deformation Theory: Examples

1. Circles $\mathcal{M}_{\text {circ }}=\mathbb{R}_{>0}$.

$$
\text { Is } \mathcal{M}_{\text {circ }} \text { smooth? Yes! }
$$

2. Projective space \mathbb{P}^{n}.

$$
\text { Is } \mathbb{P}^{n} \text { smooth? Yes! }
$$

3. Planar conics $\mathcal{M}_{\text {conics }} \subset \mathbb{P}^{5}$.

$$
\text { Is } \mathcal{M}_{\text {conics }} \text { smooth? Yes! }
$$

4. $\mathcal{M}_{\text {lines }}$ moduli of union of two lines in \mathbb{P}^{2}.

$$
\text { Is } \mathcal{M}_{\text {lines }} \text { smooth? No! }
$$

Check $\mathcal{M}_{\text {lines }}=\mathbb{P}^{5} \backslash \mathcal{M}_{\text {conics }}$, $\operatorname{described}$ by $\operatorname{det} A=0$ in \mathbb{P}^{5}, is singular at the locus of double lines.

Formal Definition

Category Theory: Caution

Category Theory: Caution

"We'll only use as much category theory as is necessary.

Category Theory: Caution

"We'll only use as much category theory as is necessary.
Famous last words ..." - Roman Abramovich

Category Theory: Caution

"We'll only use as much category theory as is necessary.
Famous last words ..." - Roman Abramovich

- A good (and free) reference is Emily Riehl's Category Theory in Context.

Category Theory: Caution

"We'll only use as much category theory as is necessary.
Famous last words ..." - Roman Abramovich

- A good (and free) reference is Emily Riehl's Category Theory in Context.
What we'll need: representability of functors.

Category Theory

A category \mathcal{C} is a collection of the following data:

Category Theory

A category \mathcal{C} is a collection of the following data:

1. A class $o b_{\mathcal{C}}$, whose elements we call "objects".

Category Theory

A category \mathcal{C} is a collection of the following data:

1. A class $o b_{\mathcal{C}}$, whose elements we call "objects".
2. A class $\mathrm{Hom}_{\mathcal{C}}$, whose elements we call "morphisms"

Category Theory

A category \mathcal{C} is a collection of the following data:

1. A class $o b_{\mathcal{C}}$, whose elements we call "objects".
2. A class $\mathrm{Hom}_{\mathcal{C}}$, whose elements we call "morphisms"

- Each $f \in H_{0} m_{\mathcal{C}}$ has a "source" $X \in \mathcal{C}$ and "target" $Y \in \mathcal{C}$.

Category Theory

A category \mathcal{C} is a collection of the following data:

1. A class $o b_{\mathcal{C}}$, whose elements we call "objects".
2. A class $\mathrm{Hom}_{\mathcal{C}}$, whose elements we call "morphisms"

- Each $f \in H_{c} m_{\mathcal{C}}$ has a "source" $X \in \mathcal{C}$ and "target" $Y \in \mathcal{C}$.
- The collection of morphisms from X to Y is denoted $\operatorname{Home}(X, Y)$.

Category Theory

A category \mathcal{C} is a collection of the following data:

1. A class $o b_{\mathcal{C}}$, whose elements we call "objects".
2. A class $\mathrm{Hom}_{\mathcal{C}}$, whose elements we call "morphisms"

- Each $f \in H_{0} m_{\mathcal{C}}$ has a "source" $X \in \mathcal{C}$ and "target" $Y \in \mathcal{C}$.
- The collection of morphisms from X to Y is denoted $\operatorname{Home}(X, Y)$.

3. a binary operation

$$
\circ: \operatorname{Hom}_{\mathcal{C}}(Y, Z) \times \operatorname{Hom}_{\mathcal{C}}(X, Y) \rightarrow \operatorname{Hom}_{\mathcal{C}}(X, Z)
$$

called composition satisfying:

- Associativity:

Category Theory

A category \mathcal{C} is a collection of the following data:

1. A class $o b_{\mathcal{C}}$, whose elements we call "objects".
2. A class $\mathrm{Hom}_{\mathcal{C}}$, whose elements we call "morphisms"

- Each $f \in H_{C} m_{\mathcal{C}}$ has a "source" $X \in \mathcal{C}$ and "target" $Y \in \mathcal{C}$.
- The collection of morphisms from X to Y is denoted $\operatorname{Hom}_{\mathcal{C}}(X, Y)$.

3. a binary operation

$$
\circ: \operatorname{Hom}_{\mathcal{C}}(Y, Z) \times \operatorname{Hom}_{\mathcal{C}}(X, Y) \rightarrow \operatorname{Hom}_{\mathcal{C}}(X, Z)
$$

called composition satisfying:

- Associativity: for $f: X \rightarrow Y, g: Y \rightarrow Z$, and $h: Z \rightarrow W$,

$$
(h \circ g) \circ f=h \circ(g \circ f)
$$

- Identity:

Category Theory

A category \mathcal{C} is a collection of the following data:

1. A class $o b_{\mathcal{C}}$, whose elements we call "objects".
2. A class $\mathrm{Hom}_{\mathcal{C}}$, whose elements we call "morphisms"

- Each $f \in H_{C} m_{\mathcal{C}}$ has a "source" $X \in \mathcal{C}$ and "target" $Y \in \mathcal{C}$.
- The collection of morphisms from X to Y is denoted $\operatorname{Hom}_{\mathcal{C}}(X, Y)$.

3. a binary operation

$$
\circ: \operatorname{Hom}_{\mathcal{C}}(Y, Z) \times \operatorname{Hom}_{\mathcal{C}}(X, Y) \rightarrow \operatorname{Hom}_{\mathcal{C}}(X, Z)
$$

called composition satisfying:

- Associativity: for $f: X \rightarrow Y, g: Y \rightarrow Z$, and $h: Z \rightarrow W$,

$$
(h \circ g) \circ f=h \circ(g \circ f)
$$

- Identity: for each $X \in \mathcal{C}$, there exists $i d_{X}: X \rightarrow X$ such that for any $f: X \rightarrow Y$,

$$
f \circ i d_{X}=i d_{Y} \circ f=f
$$

Category Theory: Functors

We relate categories with functors.

Category Theory: Functors

We relate categories with functors.
A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is an assignment to each $X \in \mathcal{C}$ an object $F(X) \in \mathcal{D}$, and for any morphism $f: X \rightarrow Y$ in \mathcal{C} a morphism $F(f): F(X) \rightarrow F(Y)$ in \mathcal{D} that respects composition:

Category Theory: Functors

We relate categories with functors.
A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is an assignment to each $X \in \mathcal{C}$ an object $F(X) \in \mathcal{D}$, and for any morphism $f: X \rightarrow Y$ in \mathcal{C} a morphism $F(f): F(X) \rightarrow F(Y)$ in \mathcal{D} that respects composition: if $g: Y \rightarrow Z$, then $F(g \circ f)=F(g) \circ F(f)$.

Category Theory: Functors

We relate categories with functors.
A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is an assignment to each $X \in \mathcal{C}$ an object $F(X) \in \mathcal{D}$, and for any morphism $f: X \rightarrow Y$ in \mathcal{C} a morphism $F(f): F(X) \rightarrow F(Y)$ in \mathcal{D} that respects composition: if $g: Y \rightarrow Z$, then $F(g \circ f)=F(g) \circ F(f)$.

$$
\mathcal{C} \xrightarrow{F} \mathcal{D}
$$

Examples of Categories and Functors

Common categories:

Examples of Categories and Functors

Common categories:

1. Sets

Examples of Categories and Functors

Common categories:

1. Sets
2. Topological Spaces - Top

Examples of Categories and Functors

Common categories:

1. Sets
2. Topological Spaces - Top
3. Vector Spaces - Vect ${ }_{k}$

Examples of Categories and Functors

Common categories:

1. Sets
2. Topological Spaces - Top
3. Vector Spaces - Vect ${ }_{k}$
4. Rings/Modules - Rings/ Mod_{A}

Examples of Categories and Functors

Common categories:

1. Sets
2. Topological Spaces - Top
3. Vector Spaces - Vect ${ }_{k}$
4. Rings/Modules - Rings/ Mod_{A}
5. Groups - Groups

Examples of Categories and Functors

Common categories:

1. Sets
2. Topological Spaces - Top
3. Vector Spaces - Vect ${ }_{k}$
4. Rings/Modules - Rings/ Mod_{A}
5. Groups - Groups

Common functors:

Examples of Categories and Functors

Common categories:

1. Sets
2. Topological Spaces - Top
3. Vector Spaces - Vect ${ }_{k}$
4. Rings/Modules - Rings/ Mod_{A}
5. Groups - Groups

Common functors:

1. Forgetful functor: Top \rightarrow Sets.

Examples of Categories and Functors

Common categories:

1. Sets
2. Topological Spaces - Top
3. Vector Spaces - Vect ${ }_{k}$
4. Rings/Modules - Rings/ Mod_{A}
5. Groups - Groups

Common functors:

1. Forgetful functor: Top \rightarrow Sets.
2. $\operatorname{Hom}_{\mathcal{C}}(M,-): \mathcal{C} \rightarrow$ Sets (locally small categories).

Examples of Categories and Functors

Common categories:

1. Sets
2. Topological Spaces - Top
3. Vector Spaces - Vect ${ }_{k}$
4. Rings/Modules - Rings/ Mod_{A}
5. Groups - Groups

Common functors:

1. Forgetful functor: Top \rightarrow Sets.
2. $\operatorname{Hom}_{\mathcal{C}}(M,-): \mathcal{C} \rightarrow$ Sets (locally small categories).
3. $\operatorname{Hom}_{\mathcal{C}}(-, M): \mathcal{C}^{o p} \rightarrow$ Sets (locally small categories).

Examples of Categories and Functors

Common categories:

1. Sets
2. Topological Spaces - Top
3. Vector Spaces - Vect ${ }_{k}$
4. Rings/Modules - Rings/ Mod_{A}
5. Groups - Groups

Common functors:

1. Forgetful functor: Top \rightarrow Sets.
2. $\operatorname{Hom}_{\mathcal{C}}(M,-): \mathcal{C} \rightarrow$ Sets (locally small categories).
3. $\operatorname{Hom}_{\mathcal{C}}(-, M): \mathcal{C}^{o p} \rightarrow$ Sets (locally small categories).
4. Dual: Vect $_{k} \rightarrow$ Vect $_{k}^{o p}$.

Natural Transformation

We can relate categories with functors:

Natural Transformation

We can relate categories with functors: we can relate functors with natural transformations.

Natural Transformation

We can relate categories with functors: we can relate functors with natural transformations.

A natural transformation $\eta: F \rightarrow G$ between two functors $F, G: \mathcal{C} \rightarrow \mathcal{D}$ is an assignment of morphisms: for $X \in \mathcal{C}$,

$$
\eta_{X}: F(X) \rightarrow G(X)
$$

such that for each $f: X \rightarrow Y$ in \mathcal{C} the following diagram commutes:

$$
\begin{array}{cc}
F(X) \xrightarrow{\eta_{X}} G(X) \\
F(f) \downarrow & \underset{\downarrow}{\downarrow(f)} \\
F(Y) \xrightarrow{\eta_{Y}} G(Y) .
\end{array}
$$

Natural Transformation

We can relate categories with functors: we can relate functors with natural transformations.

A natural transformation $\eta: F \rightarrow G$ between two functors $F, G: \mathcal{C} \rightarrow \mathcal{D}$ is an assignment of morphisms: for $X \in \mathcal{C}$,

$$
\eta_{X}: F(X) \rightarrow G(X)
$$

such that for each $f: X \rightarrow Y$ in \mathcal{C} the following diagram commutes:

$$
\begin{array}{cc}
F(X) \xrightarrow{\eta_{X}} G(X) \\
F(f) \downarrow & \downarrow G(f) \\
F(Y) \xrightarrow{\eta_{Y}} G(Y) .
\end{array}
$$

A natural transformation $\eta: F \rightarrow G$ is a natural isomorphism if there exists a natural transformation $\mu: G \rightarrow F$ such that $\mu \circ \eta=1_{F}$ and $\eta \circ \mu=1_{G}$.

Representable Functors

Representable Functors

What are the "most natural" functors?

Representable Functors

What are the "most natural" functors?
Yoneda's lemma tells that these are $\operatorname{Hom}_{\mathcal{C}}(X,-): \mathcal{C} \rightarrow$ Sets and $\operatorname{Hom}_{\mathcal{C}}(-, X): \mathcal{C}^{o p} \rightarrow$ Sets.

Representable Functors

What are the "most natural" functors?
Yoneda's lemma tells that these are $\operatorname{Hom}_{\mathcal{C}}(X,-): \mathcal{C} \rightarrow$ Sets and $\operatorname{Hom}_{\mathcal{C}}(-, X): \mathcal{C}^{o p} \rightarrow$ Sets.

A functor $F: \mathcal{C}^{o p} \rightarrow$ Sets is representable by $X \in \mathcal{C}$ if there exists a natural isomorphism $\operatorname{Hom}_{\mathcal{C}}(-, X) \rightarrow F$.

- Categories are a collection of objects and morphisms.
- Categories are a collection of objects and morphisms.
- Functors relate categories $F: \mathcal{C} \rightarrow \mathcal{D}$.

Recap

- Categories are a collection of objects and morphisms.
- Functors relate categories $F: \mathcal{C} \rightarrow \mathcal{D}$.
- Natural transformations relate functors $\eta: F \rightarrow G$.

Recap

- Categories are a collection of objects and morphisms.
- Functors relate categories $F: \mathcal{C} \rightarrow \mathcal{D}$.
- Natural transformations relate functors $\eta: F \rightarrow G$.
- Representable functors are (up to natural isomorphism) of the form $\operatorname{Hom}_{\mathcal{C}}(-, \mathcal{M})$.

Moduli Space

A moduli problem in a category \mathcal{C} is a functor $F: \mathcal{C}^{o p} \rightarrow$ Sets.

Moduli Space

A moduli problem in a category \mathcal{C} is a functor $F: \mathcal{C}^{\circ p} \rightarrow$ Sets.

A (fine) moduli space is an object $\mathcal{M} \in \mathcal{C}$ that represents F. That is, there exists a natural isomorphism $\operatorname{Hom}_{\mathcal{C}}(-, \mathcal{M}) \rightarrow F$.

Moduli Space

A moduli problem in a category \mathcal{C} is a functor $F: \mathcal{C}^{o p} \rightarrow$ Sets.

A (fine) moduli space is an object $\mathcal{M} \in \mathcal{C}$ that represents F. That is, there exists a natural isomorphism $\operatorname{Hom}_{\mathcal{C}}(-, \mathcal{M}) \rightarrow F$.

- In other words, a moduli space is a representing object of a moduli functor $F: \mathcal{C}^{O p} \rightarrow$ Sets.

Moduli Space

A moduli problem in a category \mathcal{C} is a functor $F: \mathcal{C}^{o p} \rightarrow$ Sets.

A (fine) moduli space is an object $\mathcal{M} \in \mathcal{C}$ that represents F. That is, there exists a natural isomorphism $\operatorname{Hom}_{\mathcal{C}}(-, \mathcal{M}) \rightarrow F$.

- In other words, a moduli space is a representing object of a moduli functor $F: \mathcal{C}^{o p} \rightarrow$ Sets.

Not the only (or even best) way to study moduli.

Representable Moduli Functors

Examples: Circles Centered at the Origin

Examples: Circles Centered at the Origin

No "useful" functorial definition

Examples: Circles Centered at the Origin

No "useful" functorial definition (that I can think of \odot)

Examples: Circles Centered at the Origin

No "useful" functorial definition (that I can think of \odot)

Problem: Describe an "interesting" moduli functor for concentric circles.

Examples: Projective Plane \mathbb{P}_{k}^{2}

Generalize to integral finite-type k-algebras A :

$$
L: s_{0} x_{0}+s_{1} x_{1}+s_{2} x_{2}=0 .
$$

Examples: Projective Plane \mathbb{P}_{k}^{2}

Generalize to integral finite-type k-algebras A :

$$
L: s_{0} x_{0}+s_{1} x_{1}+s_{2} x_{2}=0 .
$$

Moduli Problem:

Examples: Projective Plane \mathbb{P}_{k}^{2}

Generalize to integral finite-type k-algebras A :

$$
L: s_{0} x_{0}+s_{1} x_{1}+s_{2} x_{2}=0 .
$$

Moduli Problem: $F: V a r_{k}^{o p} \rightarrow$ Sets with k-variety V with coordinate ring A,

$$
F(A)=\left\{\left(s_{0}, s_{1}, s_{2}\right) \in\left(A^{\times}\right)^{3} \mid A^{3} \rightarrow A \text { with } e_{i} \mapsto s_{i} \text { is surjective }\right\} / A^{\times} .
$$

Examples: Projective Plane \mathbb{P}_{k}^{2}

Generalize to integral finite-type k-algebras A :

$$
L: s_{0} x_{0}+s_{1} x_{1}+s_{2} x_{2}=0 .
$$

Moduli Problem: $F: V a r_{k}^{o p} \rightarrow$ Sets with k-variety V with coordinate ring A,

$$
F(A)=\left\{\left(s_{0}, s_{1}, s_{2}\right) \in\left(A^{\times}\right)^{3} \mid A^{3} \rightarrow A \text { with } e_{i} \mapsto s_{i} \text { is surjective }\right\} / A^{\times} .
$$

Moduli Space: The functor F is represented by

$$
\mathbb{P}_{k}^{2}=\left(k^{3} \backslash 0\right) / k^{\times} .
$$

Examples: Projective Plane \mathbb{P}_{k}^{2}

Generalize to integral finite-type k-algebras A :

$$
L: s_{0} x_{0}+s_{1} x_{1}+s_{2} x_{2}=0 .
$$

Moduli Problem: $F: V a r_{k}^{o p} \rightarrow$ Sets with k-variety V with coordinate ring A,

$$
F(A)=\left\{\left(s_{0}, s_{1}, s_{2}\right) \in\left(A^{\times}\right)^{3} \mid A^{3} \rightarrow A \text { with } e_{i} \mapsto s_{i} \text { is surjective }\right\} / A^{\times} .
$$

Moduli Space: The functor F is represented by

$$
\mathbb{P}_{k}^{2}=\left(k^{3} \backslash 0\right) / k^{\times} .
$$

Representability: An element of $F(A)$ corresponds to a morphism $V \rightarrow \mathbb{P}_{k}^{2}$.

Examples: Conics in \mathbb{P}^{2}

Moduli Problem: $\mathrm{H}_{2}:$ Var $_{k}^{o p} \rightarrow$ Sets with variety X with coordinate ring $A, H_{2}(A)=$
$\left\{V \subset \mathbb{P}_{A}^{2} \mid V\right.$ described by degree 2 homogeneous $\left.f \in A[x, y, z]\right\}$.

Examples: Conics in \mathbb{P}^{2}

Moduli Problem: $H_{2}: V a r k_{o p}^{o p} \rightarrow$ Sets with variety X with coordinate ring $A, H_{2}(A)=$

$$
\left\{V \subset \mathbb{P}_{A}^{2} \mid V \text { described by degree } 2 \text { homogeneous } f \in A[x, y, z]\right\} .
$$

Moduli Space: H_{2} represented by \mathbb{P}_{k}^{5}.

Examples: Conics in \mathbb{P}^{2}

Moduli Problem: $\mathrm{H}_{2}:$ Var $_{k}^{o p} \rightarrow$ Sets with variety X with coordinate ring $A, H_{2}(A)=$

$$
\left\{V \subset \mathbb{P}_{A}^{2} \mid V \text { described by degree } 2 \text { homogeneous } f \in A[x, y, z]\right\} .
$$

Moduli Space: H_{2} represented by \mathbb{P}_{k}^{5}.
The functor H_{2} is usually called the Hilbert functor of degree 2, and denoted

$$
H_{2}=H i l b_{\mathbb{P}_{k}^{2}}^{\phi_{2}} .
$$

Examples: Other degree d curves in \mathbb{P}^{2}

Why stop at conics?

Examples: Other degree d curves in \mathbb{P}^{2}

Why stop at conics? Generalize to $H_{d}=\operatorname{Hilb}_{\mathbb{P}_{k}^{2}}^{\phi_{d}}$

Examples: Other degree d curves in \mathbb{P}^{2}

Why stop at conics? Generalize to $H_{d}=\operatorname{Hilb}_{\mathbb{P}_{k}^{2}}^{\phi_{d}}$
Moduli Problem: Hilb $_{\mathbb{P}_{2}}^{\phi_{d}}: V a r_{k}^{o p} \rightarrow$ Sets with k-variety X with coordinate ring A, then $\operatorname{Hilb}_{\mathbb{P}_{k}^{2}}(A)=$

$$
\left\{V \subset \mathbb{P}_{A}^{2} \mid V \text { described by degree } d \text { homogeneous } f \in A[x, y, z]\right\} .
$$

Examples: Other degree d curves in \mathbb{P}^{2}

Why stop at conics? Generalize to $H_{d}=\operatorname{Hill}_{\mathbb{P}_{k}}^{\phi_{d}}$
Moduli Problem: Hilb $_{\mathbb{P}_{2}}^{\phi_{d}}: V a r_{k}^{o p} \rightarrow$ Sets with k-variety X with
coordinate ring A, then $\operatorname{Hilb}_{\mathbb{P}_{k}^{2}}(A)=$

$$
\left\{V \subset \mathbb{P}_{A}^{2} \mid V \text { described by degree } d \text { homogeneous } f \in A[x, y, z]\right\} .
$$

Theorem (Grothendieck, 1961)
The hilbert functor $\mathrm{Hilb}_{\mathbb{P}_{k}^{2}}^{\phi_{d}}$ is representable by \mathbb{P}^{N}, with

$$
N=
$$

Examples: Other degree d curves in \mathbb{P}^{2}

Why stop at conics? Generalize to $H_{d}=\operatorname{Hill}_{\mathbb{P}_{k}}^{\phi_{d}}$
Moduli Problem: Hilb $_{\mathbb{P}_{2}}^{\phi_{d}}: V a r_{k}^{o p} \rightarrow$ Sets with k-variety X with
coordinate ring A, then $\operatorname{Hilb}_{\mathbb{P}_{k}^{2}}(A)=$

$$
\left\{V \subset \mathbb{P}_{A}^{2} \mid V \text { described by degree } d \text { homogeneous } f \in A[x, y, z]\right\} .
$$

Theorem (Grothendieck, 1961)
The hilbert functor $\mathrm{Hilb}_{\mathbb{P}_{k}^{2}}^{\phi_{d}}$ is representable by \mathbb{P}^{N}, with

$$
N=\binom{d+2}{2}
$$

Examples: Other degree d curves in \mathbb{P}^{2}

Why stop at conics? Generalize to $H_{d}=\operatorname{Hill}_{\mathbb{P}_{k}}^{\phi_{d}}$
Moduli Problem: Hilb $_{\mathbb{P}_{2}}^{\phi_{d}}: V a r_{k}^{o p} \rightarrow$ Sets with k-variety X with
coordinate ring A, then $\operatorname{Hilb}_{\mathbb{P}_{k}^{2}}(A)=$

$$
\left\{V \subset \mathbb{P}_{A}^{2} \mid V \text { described by degree } d \text { homogeneous } f \in A[x, y, z]\right\} .
$$

Theorem (Grothendieck, 1961)
The hilbert functor $\mathrm{Hilb}_{\mathbb{P}_{k}^{2}}^{\phi_{d}}$ is representable by \mathbb{P}^{N}, with

$$
N=\binom{d+2}{2}-1
$$

Summary: Moduli Space

To summarize,

Summary: Moduli Space

To summarize,

1. A moduli space is a "space" whose points parameterize a geometric phenomenon.

Summary: Moduli Space

To summarize,

1. A moduli space is a "space" whose points parameterize a geometric phenomenon.

- Compact moduli is equivalent to existence of limits in the moduli problem.

Summary: Moduli Space

To summarize,

1. A moduli space is a "space" whose points parameterize a geometric phenomenon.

- Compact moduli is equivalent to existence of limits in the moduli problem.
- Wiggling a point of the moduli space amounts to deformation.

Summary: Moduli Space

To summarize,

1. A moduli space is a "space" whose points parameterize a geometric phenomenon.

- Compact moduli is equivalent to existence of limits in the moduli problem.
- Wiggling a point of the moduli space amounts to deformation.

2. Rigorously, a moduli space is a representing object of a moduli-problem functor $F: \mathcal{C}^{o p} \rightarrow$ Sets

Summary: Examples

1. $\mathcal{M}_{\text {circ }}$ - Analytic
2. \mathbb{P}^{n} - Linear algebraic
3. Conics in \mathbb{P}^{2} - Algebraic

Homework

Homework

Define a moduli problem, and construct (if possible) a moduli space \mathcal{M}.

Homework

Define a moduli problem, and construct (if possible) a moduli space \mathcal{M}. Describe \mathcal{M} geometrically:

Homework

Define a moduli problem, and construct (if possible) a moduli space \mathcal{M}. Describe \mathcal{M} geometrically:

1. What is the dimension of \mathcal{M} ?

Homework

Define a moduli problem, and construct (if possible) a moduli space \mathcal{M}. Describe \mathcal{M} geometrically:

1. What is the dimension of \mathcal{M} ?
2. Is \mathcal{M} smooth?

Homework

Define a moduli problem, and construct (if possible) a moduli space \mathcal{M}. Describe \mathcal{M} geometrically:

1. What is the dimension of \mathcal{M} ?
2. Is \mathcal{M} smooth?
3. Is \mathcal{M} compact?

Homework

Define a moduli problem, and construct (if possible) a moduli space \mathcal{M}. Describe \mathcal{M} geometrically:

1. What is the dimension of \mathcal{M} ?
2. Is \mathcal{M} smooth?
3. Is \mathcal{M} compact?
4. Can we relate \mathcal{M} with another moduli space?

Questions?

