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Moduli Problem: One-dimensional linear subspaces (planes) of 3
centered at the origin (k = R or C);

L:agx+ a1y +az=0.
e Admissible inputs: (ag, a1, a2) # 0, at least one a; # 0.
e Equivalence class: Two linear forms
L:agx+aiy+az=0 and L :apx+ajy+az=0

describe the same plane if and only if a; = Aa’ for all i and some
nonzero \ € k.

e Theoretical definition: P? = (k3\ 0)/k*.
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2. Projective Plane: Picture

Over R, the projective plane P? is “locally-euclidean”.

3 L O[xs,0] = v g]”
/
/./txrﬁ) }.;j?-{ax, Zjll‘j
/'Ex,s.l]

X

In essence:
P2 = R? U {infinity points}
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Theorem (Bézouts Theorem)

Let C,D C IP’i be two general nonsingular curves described by

homogeneous polynomials f, g € k[x,y, z] over an algebraically closed
field k. If d, = degf and d, = degg, then

#CND=d - d».

e Stated (before Bézout) in 1687 by Issac Newton in Principia
Mathematica.

e Partially proven in 1779 by Etienne Bézout in Théorie générale des
équations algébriques.

e Fully proven in 1958-1965 by Jean-Pierre Serre in Algébre locale et
multiplicités.
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Moduli Problem: Nondegenerate conics of P? defined by

C:f(x,y,2) = apx® + ary? + apz® + asxy + agxz + asyz.

e Admissible inputs: (ag,---,as)? No! Let a3 =1 and other a; = 0.
e Degenerate Conics: Let

a az/2 a4/2 X
A=|a3/2 a a5/2 and x=|y|,
84/2 35/2 an z

then
f(x,y,z) =x" Ax.

e C is a degenerate conic if and only if detA = 0. In this case, C is a
union of lines.
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3. Conics in P?: Recap

Moduli Problem: Nondegenerate conics of P? defined by

C:f(x,y,z) = apx® + a1y + apz® + asxy + agxz + asyz = 0.

Moduli Space:

Mt = {[307 ce 735] C P5 | detA 75 0} ,

where
a az/2 a4/2
A= 33/2 ai 35/2
84/2 35/2 an
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Main Examples

1. Circles in R? centered at the origin - M.,
2. Planes in k3 centered at origin - Projective plane P2

. . 2
3. Conics in P% - M conics

What does the geometry of a moduli space tell us about families in
moduli problem?
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1. Dimension - Coordinates

Examples:

1. Circles M . = R<p.

dim ./\/lc,'rc = I,

Parameter r is our coordinate.

2. Projective plane P?.

dimP? =2

Coordinates are [x, y, z], modulo scaling.

3. Space of planar conics M conics C P°.
dim Mconics = 5.

Coordinates are [ag, - - - , as], modulo scaling.

13
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2. Compact Moduli

Examples:

1. Circles Mcire = R>p.
Is Mire compact? Nol!

Degenerate cases: r =0 and ""r = c0". Mjre = R>o U {oo}

2. Projective plane P2.

Is P> compact? Yes!

3. Space of planar conics M copics C P°.
Is M conics compact? No!

Degenerate locus detA C P® includes the case of lines. M conics = P°

15
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e

[X]
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3. Deformation Theory: Examples

1. Circles M e = R<p.

Is Mjre smooth? Yes!
2. Projective space P".

Is P" smooth? Yes!
3. Planar conics M conics C P°.
Is M conics sSmooth? Yes!

4. M ines moduli of union of two lines in P2.

Is M jines smooth? No!

Check Mijnes = P° \ M conics, described by detA = 0 in P®, is
singular at the locus of double lines. 17
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Category Theory:

“We'll only use as much category theory as is necessary.
Famous last words ..." - Roman Abramovich

e A good (and free) reference is Emily Riehl's Category Theory in
Context.
What we'll need: representability of functors.

18
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Category Theory

A category C is a collection of the following data:

1. A class ob¢, whose elements we call “objects”.
2. A class Hom¢, whose elements we call “morphisms”

e Each f € Homc has a "source” X € C and “target” Y € C.

e The collection of morphisms from X to Y is denoted Home (X, Y).
3. a binary operation

o: Home(Y,Z) x Home (X, Y) — Home(X, 2)

called composition satisfying:
e Associativity: for f: X =Y, g: Y —=Z,and h: Z — W,

(hog)of=ho(gof).

e ldentity: for each X € C, there exists idx : X — X such that for any
f:X=Y,
foidx =idyof =f.
19
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Examples of Categories and Functors

Common categories:

Sets

Topological Spaces - Top
Vector Spaces - Vecty
Rings/Modules - Rings/Moda

o> BN =

Groups - Groups
Common functors:

1. Forgetful functor: Top — Sets.

2. Home(M, =) : C — Sets (locally small categories).
3. Home(—, M) : C°? — Sets (locally small categories).
4

. Dual: Vecty — Vect”.
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Natural Transformation

We can relate categories with functors: we can relate functors with
natural transformations.

A natural transformation 1 . F — G between two functors F, G : C — D
is an assignment of morphisms: for X € C,

nx : F(X) = G(X)
such that for each f : X — Y in C the following diagram commutes:

F(X) —2 G(X)

Fn| Js)

F(Y) 2 G(Y).

A natural transformation 7 : F — G is a natural isomorphism if there
exists a natural transformation p : G — F such that pon = 1f and

nou=1leg.
22
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Representable Functors

What are the “most natural” functors?

Yoneda's lemma tells that these are Home (X, —) : C — Sets and
Home(—, X) : C°P — Sets.

A functor F : C°P — Sets is representable by X € C if there exists a
natural isomorphism Hom¢(—, X) — F.
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e Categories are a collection of objects and morphisms.

Functors relate categories F : C — D.

Natural transformations relate functors n : F — G.

Representable functors are (up to natural isomorphism) of the form

Homc(—,/\/l).

24



Moduli Space

A moduli problem in a category C is a functor F : C°P — Sets.
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Moduli Space

A moduli problem in a category C is a functor F : C°P — Sets.

A (fine) moduli space is an object M € C that represents F. That is,
there exists a natural isomorphism Hom¢(—, M) — F.

e In other words, a moduli space is a representing object of a moduli
functor F : C°P — Sets.

Not the only (or even best) way to study moduli.

25
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Examples: Circles Centered at the Origin
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Examples: Circles Centered at the Origin

No “useful” functorial definition (that | can think of ®)

Problem: Describe an “interesting” moduli functor for concentric circles.
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Examples: Projective Plane P?

Generalize to integral finite-type k-algebras A:

L: SoXp + S1X1 + Soxp = 0.
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Examples: Projective Plane P?

Generalize to integral finite-type k-algebras A:
L: SoXo + S1X1 + SHoXxo = 0.

Moduli Problem: F : Var” — Sets with k-variety V with coordinate
ring A,

F(A) = {(s0, 51, %) € (A*)* | A*> = A with ¢ + s; is surjective} /AX.

Moduli Space: The functor F is represented by
P = (K*\ 0)/k*.
Representability: An element of F(A) corresponds to a morphism

vV — P2

27



Examples: Conics in P?

Moduli Problem: H, : Var” — Sets with variety X with coordinate
ring A, Hx(A) =

{V C P3| V described by degree 2 homogeneous f € Alx,y,z]} .
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Examples: Conics in P?

Moduli Problem: H, : Var” — Sets with variety X with coordinate
ring A, Hx(A) =

{V C P3| V described by degree 2 homogeneous f € Alx,y,z]} .

Moduli Space: H. represented by P}.

The functor H, is usually called the Hilbert functor of degree 2, and
denoted
Ho = Hilb%:.
k

28



Examples: Other degree d curves in P?

Why stop at conics?

29



Examples: Other degree d curves in P?

Why stop at conics? Generalize to Hy = Hi/bgzd
k

29



Examples: Other degree d curves in P?

Why stop at conics? Generalize to Hy = H:/b‘bd

Moduli Problem: Hl/b(/)d : Var” — Sets with k-variety X with
coordinate ring A, then H//bpz( =

{V C P3| V described by degree d homogeneous f € Alx,y,z]}.

29



Examples: Other degree d curves in P?

Why stop at conics? Generalize to Hy = H:/b‘bd

Moduli Problem: Hl/b(/)d : Var” — Sets with k-variety X with
coordinate ring A, then H//bpz( =

{V C P3| V described by degree d homogeneous f € Alx,y,z]}.

Theorem (Grothendleck 1961)
The hilbert functor Hilb%! B2 is representable by PN, with

N:

29



Examples: Other degree d curves in P?

Why stop at conics? Generalize to Hy = H:/b‘bd

Moduli Problem: Hl/b(/)d : Var” — Sets with k-variety X with
coordinate ring A, then H//bpz( =

{V C P3| V described by degree d homogeneous f € Alx,y,z]}.

Theorem (Grothendleck 1961)
The hilbert functor Hilb%! B2 is representable by PN, with

(7]

29



Examples: Other degree d curves in P?

Why stop at conics? Generalize to Hy = H:/b‘bd

Moduli Problem: Hl/b(/)d : Var” — Sets with k-variety X with
coordinate ring A, then H//bpz( =

{V C P3| V described by degree d homogeneous f € Alx,y,z]}.

Theorem (Grothendleck 1961)
The hilbert functor Hilb%! B2 is representable by PN, with

d+2
N = -1
(=)
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Summary: Moduli Space

To summarize,

1. A moduli space is a “space” whose points parameterize a geometric
phenomenon.

e Compact moduli is equivalent to existence of limits in the moduli
problem.
e Wiggling a point of the moduli space amounts to deformation.
2. Rigorously, a moduli space is a representing object of a
moduli-problem functor F : C°? — Sets

30



Summary: Examples

1. M - Analytic
2. IP" - Linear algebraic
3. Conics in P? - Algebraic
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Homework

Define a moduli problem, and construct (if possible) a moduli space M.
Describe M geometrically:

1. What is the dimension of M?
2. Is M smooth?

3. Is M compact?
4

. Can we relate M with another moduli space?
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Questions?
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