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What is a Moduli Space?



What is Moduli Theory?

Moduli theory is the study of families of geometric objects.
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Informal Definition

A moduli problem is a certain class of algebro-geometric objects.

A moduli/parameter space is a“space” whose points are in natural

bijection with isomorphism classes of objects described by a moduli

problem.

• In this case, we say the moduli space “solves” the moduli problem.
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1. Circles

Moduli Problem: Circles in R2 centered at the origin;

Cr : x
2 + y2 = r2.

• Let Mcirc = R>0. A point r ∈ M corresponds to a unique Cr ⊂ R2.
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2. Projective Plane

Moduli Problem: One-dimensional linear subspaces (planes) of k3

centered at the origin (k = R or C);

L : a0x + a1y + a2z = 0.

• Admissible inputs: (a0, a1, a2) ̸= 0, at least one ai ̸= 0.

• Equivalence class: Two linear forms

L : a0x + a1y + a2z = 0 and L′ : a′0x + a′1y + a′2z = 0

describe the same plane if and only if ai = λa′i for all i and some

nonzero λ ∈ k.

• Theoretical definition: P2
k = (k3 \ 0)/k∗.
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2. Projective Plane: Picture

Over R, the projective plane P2 is “locally-euclidean”.

In essence:

P2
R = R2 ∪ {infinity points}
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2. Projective Plane: Why?

Theorem (Bézouts Theorem)

Let C ,D ⊂ P2
k be two general nonsingular curves described by

homogeneous polynomials f , g ∈ k[x , y , z ] over an algebraically closed

field k. If d1 = deg f and d2 = deg g , then

#C ∩ D = d1 · d2.

• Stated (before Bézout) in 1687 by Issac Newton in Principia

Mathematica.

• Partially proven in 1779 by Étienne Bézout in Théorie générale des

équations algébriques.

• Fully proven in 1958-1965 by Jean-Pierre Serre in Algèbre locale et

multiplicités.
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• Fully proven in 1958-1965 by Jean-Pierre Serre in Algèbre locale et
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équations algébriques.
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3. Conics in P2

Moduli Problem: Nondegenerate conics of P2 defined by

C : f (x , y , z) = a0x
2 + a1y

2 + a2z
2 + a3xy + a4xz + a5yz .

• Admissible inputs: (a0, · · · , a5)? No! Let a3 = 1 and other ai = 0.

• Degenerate Conics: Let

A =

 a0 a3/2 a4/2

a3/2 a1 a5/2

a4/2 a5/2 a2

 and x =

x

y

z

 ,

then

f (x , y , z) = xTAx.

• C is a degenerate conic if and only if detA = 0. In this case, C is a

union of lines.
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3. Conics in P2: Recap

Moduli Problem: Nondegenerate conics of P2 defined by

C : f (x , y , z) = a0x
2 + a1y

2 + a2z
2 + a3xy + a4xz + a5yz = 0.

Moduli Space:

Mconics =
{
[a0, · · · , a5] ⊂ P5 | detA ̸= 0

}
,

where

A =

 a0 a3/2 a4/2

a3/2 a1 a5/2

a4/2 a5/2 a2

 .
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Main Examples

1. Circles in R2 centered at the origin - Mcirc

2. Planes in k3 centered at origin - Projective plane P2

3. Conics in P2 - Mconics

What does the geometry of a moduli space tell us about families in

moduli problem?
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Topics in Moduli



Topics in Moduli

1. Dimension

2. Compact Moduli

3. Deformation Theory
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1. Dimension

The dimension of a moduli space M is equal to the degrees of freedom

of the moduli problem.

• The dimension of M is the number of local coordinates.
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1. Dimension - Coordinates

Examples:

1. Circles Mcirc = R>0.

dimMcirc = 1.

Parameter r is our coordinate.

2. Projective plane P2.

dimP2 = 2

Coordinates are [x , y , z ], modulo scaling.

3. Space of planar conics Mconics ⊂ P5.

dimMconics = 5.

Coordinates are [a0, · · · , a5], modulo scaling.
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2. Compact Moduli

A (moduli) space is compact if

it contains its limit points. Limit points

correspond to limits of families of geometric objects.
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2. Compact Moduli

Examples:

1. Circles Mcirc = R>0.

Is Mcirc compact? No!

Degenerate cases: r = 0 and ′′r = ∞”. Mcirc = R≥0 ∪ {∞}
2. Projective plane P2.

Is P2 compact? Yes!

3. Space of planar conics Mconics ⊂ P5.

Is Mconics compact? No!

Degenerate locus detA ⊂ P5 includes the case of lines. Mconics = P5
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3. Deformation Theory

What is the moduli view of deforming an object?

{Deforming objects in moduli problem} ↔ {Perturb point in moduli space}
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3. Deformation Theory: Examples

1. Circles Mcirc = R>0.

Is Mcirc smooth? Yes!

2. Projective space Pn.

Is Pn smooth? Yes!

3. Planar conics Mconics ⊂ P5.

Is Mconics smooth? Yes!

4. Mlines moduli of union of two lines in P2.

Is Mlines smooth? No!

Check Mlines = P5 \Mconics , described by detA = 0 in P5, is

singular at the locus of double lines.

17



3. Deformation Theory: Examples

1. Circles Mcirc = R>0.

Is Mcirc smooth? Yes!

2. Projective space Pn.

Is Pn smooth? Yes!

3. Planar conics Mconics ⊂ P5.

Is Mconics smooth? Yes!

4. Mlines moduli of union of two lines in P2.

Is Mlines smooth? No!

Check Mlines = P5 \Mconics , described by detA = 0 in P5, is

singular at the locus of double lines.

17



3. Deformation Theory: Examples

1. Circles Mcirc = R>0.

Is Mcirc smooth?

Yes!

2. Projective space Pn.

Is Pn smooth? Yes!

3. Planar conics Mconics ⊂ P5.

Is Mconics smooth? Yes!

4. Mlines moduli of union of two lines in P2.

Is Mlines smooth? No!

Check Mlines = P5 \Mconics , described by detA = 0 in P5, is

singular at the locus of double lines.

17



3. Deformation Theory: Examples

1. Circles Mcirc = R>0.

Is Mcirc smooth? Yes!

2. Projective space Pn.

Is Pn smooth? Yes!

3. Planar conics Mconics ⊂ P5.

Is Mconics smooth? Yes!

4. Mlines moduli of union of two lines in P2.

Is Mlines smooth? No!

Check Mlines = P5 \Mconics , described by detA = 0 in P5, is

singular at the locus of double lines.

17



3. Deformation Theory: Examples

1. Circles Mcirc = R>0.

Is Mcirc smooth? Yes!

2. Projective space Pn.

Is Pn smooth? Yes!

3. Planar conics Mconics ⊂ P5.

Is Mconics smooth? Yes!

4. Mlines moduli of union of two lines in P2.

Is Mlines smooth? No!

Check Mlines = P5 \Mconics , described by detA = 0 in P5, is

singular at the locus of double lines.

17



3. Deformation Theory: Examples

1. Circles Mcirc = R>0.

Is Mcirc smooth? Yes!

2. Projective space Pn.

Is Pn smooth?

Yes!

3. Planar conics Mconics ⊂ P5.

Is Mconics smooth? Yes!

4. Mlines moduli of union of two lines in P2.

Is Mlines smooth? No!

Check Mlines = P5 \Mconics , described by detA = 0 in P5, is

singular at the locus of double lines.

17



3. Deformation Theory: Examples

1. Circles Mcirc = R>0.

Is Mcirc smooth? Yes!

2. Projective space Pn.

Is Pn smooth? Yes!

3. Planar conics Mconics ⊂ P5.

Is Mconics smooth? Yes!

4. Mlines moduli of union of two lines in P2.

Is Mlines smooth? No!

Check Mlines = P5 \Mconics , described by detA = 0 in P5, is

singular at the locus of double lines.

17



3. Deformation Theory: Examples

1. Circles Mcirc = R>0.

Is Mcirc smooth? Yes!

2. Projective space Pn.

Is Pn smooth? Yes!

3. Planar conics Mconics ⊂ P5.

Is Mconics smooth? Yes!

4. Mlines moduli of union of two lines in P2.

Is Mlines smooth? No!

Check Mlines = P5 \Mconics , described by detA = 0 in P5, is

singular at the locus of double lines.

17



3. Deformation Theory: Examples

1. Circles Mcirc = R>0.

Is Mcirc smooth? Yes!

2. Projective space Pn.

Is Pn smooth? Yes!

3. Planar conics Mconics ⊂ P5.

Is Mconics smooth?

Yes!

4. Mlines moduli of union of two lines in P2.

Is Mlines smooth? No!

Check Mlines = P5 \Mconics , described by detA = 0 in P5, is

singular at the locus of double lines.

17



3. Deformation Theory: Examples

1. Circles Mcirc = R>0.

Is Mcirc smooth? Yes!

2. Projective space Pn.

Is Pn smooth? Yes!

3. Planar conics Mconics ⊂ P5.

Is Mconics smooth? Yes!

4. Mlines moduli of union of two lines in P2.

Is Mlines smooth? No!

Check Mlines = P5 \Mconics , described by detA = 0 in P5, is

singular at the locus of double lines.

17



3. Deformation Theory: Examples

1. Circles Mcirc = R>0.

Is Mcirc smooth? Yes!

2. Projective space Pn.

Is Pn smooth? Yes!

3. Planar conics Mconics ⊂ P5.

Is Mconics smooth? Yes!

4. Mlines moduli of union of two lines in P2.

Is Mlines smooth? No!

Check Mlines = P5 \Mconics , described by detA = 0 in P5, is

singular at the locus of double lines.

17



3. Deformation Theory: Examples

1. Circles Mcirc = R>0.

Is Mcirc smooth? Yes!

2. Projective space Pn.

Is Pn smooth? Yes!

3. Planar conics Mconics ⊂ P5.

Is Mconics smooth? Yes!

4. Mlines moduli of union of two lines in P2.

Is Mlines smooth?

No!

Check Mlines = P5 \Mconics , described by detA = 0 in P5, is

singular at the locus of double lines.

17



3. Deformation Theory: Examples

1. Circles Mcirc = R>0.

Is Mcirc smooth? Yes!

2. Projective space Pn.

Is Pn smooth? Yes!

3. Planar conics Mconics ⊂ P5.

Is Mconics smooth? Yes!

4. Mlines moduli of union of two lines in P2.

Is Mlines smooth? No!

Check Mlines = P5 \Mconics , described by detA = 0 in P5, is

singular at the locus of double lines.

17



3. Deformation Theory: Examples

1. Circles Mcirc = R>0.

Is Mcirc smooth? Yes!

2. Projective space Pn.

Is Pn smooth? Yes!

3. Planar conics Mconics ⊂ P5.

Is Mconics smooth? Yes!

4. Mlines moduli of union of two lines in P2.

Is Mlines smooth? No!

Check Mlines = P5 \Mconics , described by detA = 0 in P5, is

singular at the locus of double lines. 17



Formal Definition



Category Theory: Caution

“We’ll only use as much category theory as is necessary.

Famous last words . . . ” - Roman Abramovich

• A good (and free) reference is Emily Riehl’s Category Theory in

Context.

What we’ll need: representability of functors.

18

https://math.uchicago.edu/~chonoles/miscellany/quotations/
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Category Theory

A category C is a collection of the following data:

1. A class obC , whose elements we call “objects”.

2. A class HomC , whose elements we call “morphisms”

• Each f ∈ HomC has a ”source” X ∈ C and “target” Y ∈ C.
• The collection of morphisms from X to Y is denoted HomC(X ,Y ).

3. a binary operation

◦ : HomC(Y ,Z )× HomC(X ,Y ) → HomC(X ,Z )

called composition satisfying:

• Associativity: for f : X → Y , g : Y → Z , and h : Z → W ,

(h ◦ g) ◦ f = h ◦ (g ◦ f ).

• Identity: for each X ∈ C, there exists idX : X → X such that for any

f : X → Y ,

f ◦ idX = idY ◦ f = f .

19
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Category Theory: Functors

We relate categories with functors.

A functor F : C → D is an assignment to each X ∈ C an object

F (X ) ∈ D, and for any morphism f : X → Y in C a morphism

F (f ) : F (X ) → F (Y ) in D that respects composition: if g : Y → Z ,

then F (g ◦ f ) = F (g) ◦ F (f ).

C D

X F (X )

Y F (Y )

F

f F (f )

20
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Examples of Categories and Functors

Common categories:

1. Sets

2. Topological Spaces - Top

3. Vector Spaces - Vectk

4. Rings/Modules - Rings/ModA

5. Groups - Groups

Common functors:

1. Forgetful functor: Top → Sets.

2. HomC(M,−) : C → Sets (locally small categories).

3. HomC(−,M) : Cop → Sets (locally small categories).

4. Dual: Vectk → Vectopk .

21
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Natural Transformation

We can relate categories with functors:

we can relate functors with

natural transformations.

A natural transformation η : F → G between two functors F ,G : C → D
is an assignment of morphisms: for X ∈ C,

ηX : F (X ) → G (X )

such that for each f : X → Y in C the following diagram commutes:

F (X ) G (X )

F (Y ) G (Y ).

ηX

F (f ) G(f )

ηY

A natural transformation η : F → G is a natural isomorphism if there

exists a natural transformation µ : G → F such that µ ◦ η = 1F and

η ◦ µ = 1G .
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Representable Functors

What are the “most natural” functors?

Yoneda’s lemma tells that these are HomC(X ,−) : C → Sets and

HomC(−,X ) : Cop → Sets.

A functor F : Cop → Sets is representable by X ∈ C if there exists a

natural isomorphism HomC(−,X ) → F .

23



Representable Functors

What are the “most natural” functors?

Yoneda’s lemma tells that these are HomC(X ,−) : C → Sets and

HomC(−,X ) : Cop → Sets.

A functor F : Cop → Sets is representable by X ∈ C if there exists a

natural isomorphism HomC(−,X ) → F .

23



Representable Functors

What are the “most natural” functors?

Yoneda’s lemma tells that these are HomC(X ,−) : C → Sets and

HomC(−,X ) : Cop → Sets.

A functor F : Cop → Sets is representable by X ∈ C if there exists a

natural isomorphism HomC(−,X ) → F .

23



Representable Functors

What are the “most natural” functors?

Yoneda’s lemma tells that these are HomC(X ,−) : C → Sets and

HomC(−,X ) : Cop → Sets.

A functor F : Cop → Sets is representable by X ∈ C if there exists a

natural isomorphism HomC(−,X ) → F .

23



Recap

• Categories are a collection of objects and morphisms.

• Functors relate categories F : C → D.

• Natural transformations relate functors η : F → G .

• Representable functors are (up to natural isomorphism) of the form

HomC(−,M).

24
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Moduli Space

A moduli problem in a category C is a functor F : Cop → Sets.

A (fine) moduli space is an object M ∈ C that represents F . That is,

there exists a natural isomorphism HomC(−,M) → F .

• In other words, a moduli space is a representing object of a moduli

functor F : Cop → Sets.

Not the only (or even best) way to study moduli.
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Representable Moduli Functors



Examples: Circles Centered at the Origin

No “useful” functorial definition (that I can think of /)

Problem: Describe an “interesting” moduli functor for concentric circles.

26



Examples: Circles Centered at the Origin

No “useful” functorial definition

(that I can think of /)

Problem: Describe an “interesting” moduli functor for concentric circles.

26



Examples: Circles Centered at the Origin

No “useful” functorial definition (that I can think of /)

Problem: Describe an “interesting” moduli functor for concentric circles.

26



Examples: Circles Centered at the Origin

No “useful” functorial definition (that I can think of /)

Problem: Describe an “interesting” moduli functor for concentric circles.

26



Examples: Projective Plane P2
k

Generalize to integral finite-type k-algebras A:

L : s0x0 + s1x1 + s2x2 = 0.

Moduli Problem: F : Varopk → Sets with k-variety V with coordinate

ring A,

F (A) = {(s0, s1, s2) ∈ (A×)3 | A3 → A with ei 7→ si is surjective}/A×.

Moduli Space: The functor F is represented by

P2
k = (k3 \ 0)/k×.

Representability: An element of F (A) corresponds to a morphism

V → P2
k .
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Examples: Conics in P2

Moduli Problem: H2 : Var
op
k → Sets with variety X with coordinate

ring A, H2(A) ={
V ⊂ P2

A | V described by degree 2 homogeneous f ∈ A[x , y , z ]
}
.

Moduli Space: H2 represented by P5
k .

The functor H2 is usually called the Hilbert functor of degree 2, and

denoted

H2 = Hilbϕ2

P2
k
.
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Examples: Other degree d curves in P2

Why stop at conics?

Generalize to Hd = Hilbϕd

P2
k

Moduli Problem: Hilbϕd

P2
k
: Varopk → Sets with k-variety X with

coordinate ring A, then HilbP2
k
(A) ={

V ⊂ P2
A | V described by degree d homogeneous f ∈ A[x , y , z ]

}
.

Theorem (Grothendieck, 1961)
The hilbert functor Hilbϕd

P2
k
is representable by PN , with

N =

(
d + 2

2

)
− 1.
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Summary: Moduli Space

To summarize,

1. A moduli space is a “space” whose points parameterize a geometric

phenomenon.

• Compact moduli is equivalent to existence of limits in the moduli

problem.

• Wiggling a point of the moduli space amounts to deformation.

2. Rigorously, a moduli space is a representing object of a

moduli-problem functor F : Cop → Sets

30
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Summary: Examples

1. Mcirc - Analytic

2. Pn - Linear algebraic

3. Conics in P2 - Algebraic

31



Homework

Define a moduli problem, and construct (if possible) a moduli space M.

Describe M geometrically:

1. What is the dimension of M?

2. Is M smooth?

3. Is M compact?

4. Can we relate M with another moduli space?

32
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Questions?

32


	What is a Moduli Space?
	Topics in Moduli
	Formal Definition
	Representable Moduli Functors

