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1 Extended Abstract

Kemp [7, 8, 9], introduced the q-Poisson distributions, Heine and Euler, with probability functions
given respectively by

fHX (x) = eq(−λ)
q(

x
2)λx

[x]q!
, x = 0, 1, 2, . . . , 0 < q < 1, 0 < λ <∞ (1)
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Both these q-Poisson distributions are unimodal and logconcave with Euler being infinitely divis-
ible but Heine not. Also, Heine is underdispersed but Euler overdispersed.
Charalambides [3], reproduced Heine as direct approximation, as n → ∞, of the q-Binomial
distribution and the negative q-Binomial one, with probability functions given respectively by
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)
q
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and
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(1 + θqj−1)−1, x = 0, 1, . . . , (6)

where θ > 0, 0 < q < 1.
Moreover, Charalambides [3], reproduced Euler as direct approximation of the q-Binomial and the
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negative q-Binomial distributions of the second kind one, as n → ∞, with probability functions
given respectively by
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and
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where 0 < θ < 1 and 0 < q < 1 or 1 < q <∞ with θqn−1 < 1.
Kyriakoussis and Vamvakari [11, 12], for q constant, established a q-Stirling formula and proved
limit theorems for the q-binomial distribution (5) and negative q-Binomial distribution (6), by
using pointwise convergence in a q-analogue sense of the DeMoivre-Laplace classical limit theo-
rem. Specifically in [11], the pointwise convergence of the q-binomial distribution to a deformed
Stieltjes-Wigert continuous distribution was proved. In detail, transferred from the random vari-
able X of the q-binomial distribution (5) to the equal-distributed deformed random variable
Y = [X]1/q and for n → ∞, the q-binomial distribution was approximated by a deformed stan-
dardized continuous Stieltjes-Wigert distribution as follows
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q1/8(log q−1)
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x ≥ 0, (9)

where θ = θn, n = 0, 1, 2, . . . such that θn = q−αn with 0 < a < 1 constant and µq and σ2q the
mean value and variance of the random variable Y, respectively. Also in [12], a similar asymptotic
result has been provided for the negative q-binomial distribution.
The aim of this work is to study the pointwise convergence of both Heine and Euler distribu-
tions as λ → ∞. Specifically, the pointwise convergence of the Heine distribution to a deformed
Stieltjes-Wigert continuous distribution and of the Euler distribution to a deformed Gauss are
proved. Moreover, pointwise convergence of the q-binomial of the second kind and the negative
q-binomial of the second kind, to a deformed Gauss are analogously deduced. Also, the associ-
ated q-orthogonal polynomials in respect of their weight functions to the above q-distributions
and the related Stieltjes-Wigert polynomials moment problem are presented (see Andrews[1, 2],
Christiansen [4, 5], Ismail[6]).
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