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1 Extended Abstract

Kemp [7, 8, 9], introduced the ¢-Poisson distributions, Heine and Euler, with probability functions
given respectively by
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Both these ¢-Poisson distributions are unimodal and logconcave with Euler being infinitely divis-
ible but Heine not. Also, Heine is underdispersed but Euler overdispersed.

Charalambides [3], reproduced Heine as direct approximation, as n — oo, of the ¢-Binomial
distribution and the negative g-Binomial one, with probability functions given respectively by
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where 8 >0, 0 < ¢ < 1.
Moreover, Charalambides [3], reproduced Euler as direct approximation of the ¢-Binomial and the
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negative g-Binomial distributions of the second kind one, as n — oo, with probability functions
given respectively by
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where 0 < <land 0 <g<1lorl<gq<oowith f¢g" ! < 1.

Kyriakoussis and Vamvakari [11, 12|, for ¢ constant, established a ¢-Stirling formula and proved
limit theorems for the g-binomial distribution (5) and negative g-Binomial distribution (6), by
using pointwise convergence in a g-analogue sense of the DeMoivre-Laplace classical limit theo-
rem. Specifically in [11], the pointwise convergence of the ¢g-binomial distribution to a deformed
Stieltjes-Wigert continuous distribution was proved. In detail, transferred from the random vari-
able X of the g-binomial distribution (5) to the equal-distributed deformed random variable
Y = [X];/q and for n — oo, the g-binomial distribution was approximated by a deformed stan-
dardized continuous Stieltjes-Wigert distribution as follows
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where 0 = 0,, n =0,1,2,... such that 8, = ¢*" with 0 < a < 1 constant and p, and 03 the
mean value and variance of the random variable Y, respectively. Also in [12], a similar asymptotic
result has been provided for the negative g-binomial distribution.

The aim of this work is to study the pointwise convergence of both Heine and Euler distribu-
tions as A — oo. Specifically, the pointwise convergence of the Heine distribution to a deformed
Stieltjes-Wigert continuous distribution and of the Euler distribution to a deformed Gauss are
proved. Moreover, pointwise convergence of the g-binomial of the second kind and the negative
g-binomial of the second kind, to a deformed Gauss are analogously deduced. Also, the associ-
ated g-orthogonal polynomials in respect of their weight functions to the above g-distributions
and the related Stieltjes-Wigert polynomials moment problem are presented (see Andrews|1, 2],
Christiansen [4, 5], Ismail[6]).
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