The 8th International Conference on Lattice Path Combinatorics and Applications (August 17 - 20, 2015, California Polytechnic State University Pomona, CA)

Title: Congruences for the Fishburn Numbers

Presented by: George Andrews and James Sellers
ABSTRACT: This talk will present joint work with James Sellers. The Fishburn numbers, xi(n), have many interpretations (we will describe many of them in the talk). For example, xi(n) equals the number of upper triangular matrices with nonnegative integer entries and without zero rows or zero columns such that the sum of all the entries equals n. Thus $x i(3)=5$; the relevant five matrices being:

100	20	10	11	3
010	01	02	01	
001				

In addition to discussing the numerous interpretations of $x i(n)$, we will prove an infinite family of congruences for $x i(n)$. The simplest of these being that 5 divides both $x i(5 n+3)$ and $x i(5 n+4)$.

