Number of Points of Schubert Varieties over Finite Fields ${ }^{1}$

Sudhir R. Ghorpade
Department of Mathematics
Indian Institute of Technology, Bombay
Powai, Mumbai 400076, India
E-Mail: srg@math.iitb.ac.in
URL: http://www.math.iitb.ac.in/~srg/

(Joint work with Christian Krattenthaler)

Let V be an n-dimensional vector space over a field \mathbb{F}. Consider the Grassmannian $G_{k, n}$ of k-dimensional linear subspaces of V. It is well-known that $G_{k, n}$ can be viewed as a projective algebraic variety defined by the vanishing of certain quadratic homogeneous polynomials in $\binom{n}{k}$ variables with integer coefficients. Morever, $G_{k, n}$ contains an important and interesting class of subvarieties known as Schubert varieties.

When \mathbb{F} is the finite field \mathbb{F}_{q} with q elements, it makes to sense to ask for (a nice formula for) the cardinality of $G_{k, n}\left(\mathbb{F}_{q}\right)$ and more generally, for (the number of \mathbb{F}_{q}-rational points of) each of its Schubert subvarieties. The answer in the case of Grassmannians is simply the Gaussian binomial coefficient $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$. Answers in the case of Schubert varieties (in Grassmannians) are also known and these range from classical ones deduced from the cellular decomposition á la Ehresmann [1] or more complex ones given by Guerra and Vincenti [3, 4] and by Ghorpade and Tsfasman [2]. We will review these formulas and answer a question of Tsfasman concerning direct combinatorial equivalence of these formulas. Furthermore, we will describe yet another formula, arguably the most elegant one, for the number of \mathbb{F}_{q}-rational points of Schubert varieties in Grassmannians.

This is a joint work with C. Krattenthaler.

References

[1] C. Ehresmann, Sur la topologie de certains espaces homogènes, Ann. of Math. (2) 35 (1934), 396-443.
[2] S. R. Ghorpade and M. A. Tsfasman, Schubert varieties, linear codes and enumerative combinatorics, Finite Fields Appl. 11 (2005), 684-699.
[3] L. Guerra and R. Vincenti, On the linear codes arising from Schubert varieties, Des. Codes Cryptogr. 33 (2004), 173-180.
[4] R. Vincenti, On some classical varieties and codes, Rapporto Tecnico 20/2000, Dipartimento di Matematica e Informatica, Universitá degli Studi di Perugia, Italy.

[^0]
[^0]: ${ }^{1}$ Abstract of a research talk at the 8th International Conference on Lattice Path Combinatorics and Applications, CalPoly, Pomona, California, USA, August 17-20, 2015

