Laws relating runs, long runs, and steps in gambler's ruin, with persistence in two strata

Gregory J. Morrow

Aug. 4, 2015.

Abstract

Define a certain gambler's ruin process $\mathbf{X}_{j}, \quad j \geq 0$, such that the increments $\varepsilon_{j}:=\mathbf{X}_{j}-\mathbf{X}_{j-1}$ take values ± 1 and satisfy $P\left(\varepsilon_{j+1}=1\left|\varepsilon_{j}=1,\left|\mathbf{X}_{j}\right|=k\right)=\right.$ $P\left(\varepsilon_{j+1}=-1\left|\varepsilon_{j}=-1,\left|\mathbf{X}_{j}\right|=k\right)=a_{k}\right.$, all $j \geq 1$, where $a_{k}=a$ if $0 \leq k \leq f-1$, and $a_{k}=b$ if $f \leq k<N$. Here $0<a, b<1$ denote persistence parameters and $f, N \in \mathbb{N}$ with $f<N$. The process starts at $\mathbf{X}_{0}=m \in(-N, N)$ and terminates when $\left|\mathbf{X}_{j}\right|=N$. Denote by $\mathcal{R}_{N}^{\prime}, \mathcal{U}_{N}^{\prime}$, and \mathcal{L}_{N}^{\prime}, respectively, the numbers of runs, long runs, and steps in the meander portion of the gambler's ruin process. Define $\mathcal{X}_{N}^{\prime}:=\left(\mathcal{L}_{N}^{\prime}-\frac{1-a-b}{(1-a)(1-b)} \mathcal{R}_{N}^{\prime}-\frac{1}{(1-a)(1-b)} \mathcal{U}_{N}^{\prime}\right) / N$ and let $f \sim \eta N$ for some $\eta \in(0,1)$. We show $\lim _{N \rightarrow \infty} E\left\{e^{i t \mathcal{X}_{N}^{\prime}}\right\}=\hat{\varphi}(t)$ exists in an explicit form. In case $b=1-a$ and $\eta=a, \hat{\varphi}(t)=\sigma^{2} t /\left\{\sinh (\sigma t)\left[\sigma \cosh (\sigma t)+i(1-2 a)^{2} \sinh (\sigma t)\right]\right\}$, for $\sigma^{2}:=1-3 a+3 a^{2}$. If $b=a$, then $\hat{\varphi}(t)=A t / \sinh (A t)$, for $A:=\sqrt{a /(1-a)}$; see [1] for the case $b=a=\frac{1}{2}$. We obtain a companion scaling limit with order N scaling for the last visit portion of the gambler's ruin process that also extends a result of [1] to the persistence model with two strata. Let $b=a$ and $N=\infty$ and let \mathbf{R}, \mathbf{U}, and \mathbf{L}, denote the numbers of runs, long runs (long inclines), and steps, respectively, in an excursion from the origin (primitive Dyck path). We obtain an explicit formula for the generating function $\bar{K}(r, u, z ; a):=E\left\{r^{\mathbf{R}} u \mathbf{U}^{\mathbf{U}}{ }^{\mathbf{L}}\right\}$. As a consequence, $(1-a) P_{a}(\mathbf{L}=2 n, \mathbf{R}=2 k, \mathbf{U}=\ell)=a P_{1-a}(\mathbf{L}=2 n, \mathbf{L}-\mathbf{R}=2 k, \mathbf{U}=\ell), n \geq 2$. Our proof of this symmetry actually proceeds by utilizing the existence of a one to one correspondence of lattice paths implied by the explicit form of $\bar{K}\left(r, u, z ; \frac{1}{2}\right)$.

References

[1] G.J. Morrow, Laws relating runs and steps in gambler's ruin, Stoch. Proc. Appl. 125 (2015) 2010-2025.

