Title:

Counting Lattice Paths having Step Sizes of $\{-2,-1,1,2\}$ from j to k, where j, k are Natural Numbers and the Path Never Touches nor Goes Below the x-axis

Authors:

Alan Krinik (Cal Poly Pomona), Dmitry Kruchinin and Vladimir Kruchinin (Tomsk State University of Control Systems and Radio Electronics, Russian Federation) and David Nguyen (Cal Poly Pomona)

Abstract:

We seek an explicit formula to count the number of good lattice paths, $\mathrm{G}(n, j, k)$, that travel from j to k in n-steps where j and k are natural numbers and $\{-2,-1,1,2\}$ is the set of allowable step sizes. A Good path is defined to be lattice path that travels from j to k in n-allowable steps while never touching nor going below the x-axis along the way. We present two alternative approaches:

- A recursive formula that that produces a formula for $\mathrm{G}(n, j, k)$ by counting bad lattice paths. This makes key use of interesting but unestablished formula for $G(n, 0,1)$ and $G(n, 0,2)$.
- The impressive kernal method as described in Cyril Banderier, Philippe Flajolet. Basic analytic combinatorics of directed lattice paths. Theoretical Computer Science 281, Issue 1-2 (2002), 37-80. This produces the generating function whose coefficients are $G(n, j, k)$.

Connections and pro's and con's of the preceding results of each method are discussed.

