Hilbert Polynomial of Ladder Determinantal Ideals: A Perspective

Devadatta M. Kulkarni
Cincinnati Innovation Lab
Milford Ohio 45150 USA
Devadatta.kulkarni@tcs.com
Sudhir Ghorpade
Department of Mathematics
Indian Institute of Technology Bombay
Powai Mumbai 400076 INDIA
srg@math.iitb.ac.in

A problem concerning these is to find the Hilbert function of the ideal $\mathrm{I}_{\mathrm{p}}(\mathrm{L})$ of all p-by-p minors in a ladder shaped (like Ferrer's diagram like) subset L of the m-by-n rectangle. Or, more generally, of the ideal $\mathrm{Im}_{\mathrm{p}}(\mathrm{a} ; \mathrm{Y})$ for any saturated subset Y of the rectangle. Note that when Y is an m-by-n rectangle, Abhyankar gives the Hilbert function of $I_{p}(a ; Y)=I_{p}(a)$. For a ladder L, an explicit formula for the Hilbert function of I_{p} (L), in the case of $p=2$, was obtained by Kulkarni in 1985. In 1987, Abhyankar and Kulkarni showed that the ideal $\mathrm{Ip}_{\mathrm{p}}(\mathrm{a} ; \mathrm{Y})$ is Hilbertian, i.e., its Hilbert function is a polynomial for all nonnegative integers. However, there remained the problem of finding an explicit formula for the Hilbert function of $\mathrm{Ip}(\mathrm{L})$ for any p . This has been solved in 2002 by Ghorpade. Also noteworthy is the work of Krattenthaler and Prohaska (1999, TAMS), which solved the problem for one-sided ladder determinantal ideals. There have been extensive results on the coefficients of the Hilbert polynomial related to counting of non-intersecting families of paths by Modak (1992) and Krattenthaler (1992). We will provide a perspective on this productive journey of collaboration between algebra and combinatorics.

