Walks in the Quarter-Plane with Multiple Steps

Manuel Kauers *1 and Rika Yatchak ${ }^{\dagger 1}$
${ }^{1}$ Institute for Algebra, Johannes Kepler University, Linz, Austria

We consider nearest-neighbor lattice walks in the positive quadrant $\left(\mathbb{Z}_{\geq 0}\right)^{2}$ where step sets may contain several distinguishable steps pointing in the same direction. Let $f_{i, j, n}$ denote the number of paths starting at the origin and consisting of n steps taken from the step set ending at the point (i, j). We concern ourselves with the nature of the corresponding generating function $f(x, y, t)=\sum_{n=0}^{\infty} \sum_{i, j} f_{i, j, n} x^{i} y^{j} t^{n}$. In particular, we are interested in the cases where $f(x, y, t)$ is algebraic or D-finite.

If we let $a_{u, v}$ denote the multiplicity of the direction $(u, v) \in\{-1,0,1\}^{2} \backslash\{(0,0)\}$, then we have the following simple recurrence relation for $f_{i, j, n}$:

$$
f_{i, j, n+1}=\sum_{u, v} a_{u, v} f_{i-u, j-v, n} \quad(n \in \mathbb{N}, i, j \in \mathbb{N})
$$

We provide a partial classification models that have algebraic or D-finite generating functions. The classification is based on the so-called group of the model discussed by Fayolle, Iasnogorodski, and Malyshev in [2] and further investigated by Bousquet-Mélou in [1]. The group of the model must be dihedral, and is either of order $2 n$ for some $n \in \mathbb{N}$, or infinite. We classify the models that give rise to finite groups of order 4,6 , and 8 . This classification is presented in terms of families whose simple defining equations depend only on the multiplicities $a_{i, j}$: for example, all models of that have a group of order 4 are characterized by the equations $a_{1,0} a_{-1,1}=a_{-1,0} a_{1,1}, a_{1,-1} a_{-1,1}=a_{-1,-1} a_{1,1}$, and $a_{1,-1} a_{-1,0}=a_{-1,-1} a_{1,0}$.

All of the models in our classification have generating functions that are either D-finite or algebraic, which we prove using orbit sum and half-orbit sum methods based on the techniques of [1]. Finally, we provide some partial results for the $G=D_{10}$ case.

References

[1] Mireille Bousquet-Mélou and Marni Mishna. Walks with small steps in the quarter plane. Contemporary Mathematics, 520:1-40, 2010.
[2] Guy Fayolle, Roudolf Iasnogorodski, and Vadim Malyshev. Random walks in the quarter-plane, volume 40 of Applications of Mathematics (New York). Springer-Verlag, Berlin, 1999. Algebraic methods, boundary value problems and applications.

[^0]
[^0]: *Email: manuel@kauers.de. Partially supported by the Austria FWF grants Y464-N18 and F50-04.
 ${ }^{\dagger}$ Email: ryatchak@risc.jku.at. Partially supported by the Austria FWF grant F50-04

