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A plane partition is a rectangular array of non-negative entries so that all rows and columns
are weakly decreasing. Plane partitions are usually identified with their 3-D interpretation—
stacks of unit cubes fitting in a given box. MacMahon’s classical theorem [1] says that the
generating function of the volume of the stacks π fitting in an a× b× c box is given by∑

π

qvolume of π =
Hq(a) Hq(b) Hq(c) Hq(a+ b+ c)

Hq(a+ b) Hq(b+ c) Hq(c+ a)
, (0.1)

where the q-hyperfactorial function Hq(n) is defined by H(n) := [0]q! · [1]q! . . . [n−1]q! and where
[n]!q =

∏n
i=1

1−qn
1−q . On the other hand, the above stacks can be viewed as the lozenge tilings of a

semi-regular hexagon of side-lengths a, b, c, a, b, c (in cyclic order) on the triangular lattice. Here,
a lozenge tiling is a covering of the region by lozenges (union of two adjacent unit equilateral
triangles) so that there are no gaps or overlaps.

In 1999, James Propp [2] published a list of 32 open problems in the field of enumeration of
tilings. Problem 3 on the list asks for the number of lozenge of tilings of a hexagon of side-lengths
2n, 2n+ 3, 2n, 2n+ 3, 2n, 2n+ 3 on the triangular lattice, where three central unit triangles have
been removed from its long sides. Theresia Eisenkölbl solved this problem.

One can view the unit triangles removed in the Propp’s problem as triangular holes of size
1. We now consider a more general situation when our hexagon has three triangular holes of
arbitrary sizes on non-consecutive sides. Moreover, these triangular holes can be extended to
bowtie-shaped holes, which consist of one up-pointing and one down-pointing triangular holes
sharing a vertex.

Similar to the case of hexagon, the tiling of our region can be viewed as stacks of unit cubes
fitting in a ‘special’ box, which consists of several adjacent smaller boxes. Interestingly, the
generating function of the volume of those stacks is also given by a simple product formula in
terms of q-hyperfactorials.
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