Bridges and LAN Switches

Q. What can be used to share data between two shared-media LAN’s?

A. LAN switch (or bridge) – like a host in promiscuous mode

LANs connected with >= 1 bridge are called

Extended LANs

- Problem – what about when node A wants to send node B a message, what happens?

Learning Bridges

- Do not forward when unnecessary
- Maintain forwarding

<table>
<thead>
<tr>
<th>Host</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>2</td>
</tr>
<tr>
<td>Y</td>
<td>2</td>
</tr>
<tr>
<td>X</td>
<td>2</td>
</tr>
</tbody>
</table>

- Learn table entries based on source address
- Table is an optimization; need not be complete
- Always forward broadcast frames
Spanning Tree Algorithm

• Problem: loops

• Bridges run a distributed spanning tree algorithm
 - select which bridges actively forward
 - developed by Radia Perlman
 - now IEEE 802.1 specification

What is a Spanning Tree?

The problem:
1) Tree - is connected graph with no cycles.

2) A Spanning Tree of G is a tree which contains all vertices in G.
 Example: Given a graph G

Is G a Spanning Tree?

Yes

No

Note: Connected graph with n vertices and exactly n – 1 edges is Spanning Tree.
Spanning Tree Example

Example:

\[G \]

1

\[\begin{array}{c}
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
\end{array} \]

Centralized Spanning Tree Algorithm

- DFS (Depth First Search)
Centralized Spanning Tree Algorithm

- BFS (Breadth First Search)

Distributed Spanning Tree Algorithm - Overview
- Each bridge has unique id (e.g., B₁, B₂, B₃)
- Select bridge with smallest id as root
- Select bridge on each LAN closest to root as the designated bridge (use id to break ties)
Distributed Spanning Tree Algorithm - Detail

- Bridges exchange configuration messages
 - id for bridge sending the message
 - id for what the sending bridge believes to be root bridge
 - distance (hops) from sending bridge to root bridge
- Each bridge records current “best” configuration message for each port
- Initially, each bridge believes it is the root and sends messages out on all its ports (distance to root = 0)
- When learn not root, stop generating configuration messages
 - in steady state, only root generates configuration messages
- When learn not designated bridge, stop forwarding config messages (disconnected)
 - in steady state, only designated bridges forward config messages
- Root continues to periodically send config messages
- If any bridge does not receive config message after a period of time, it starts generating config messages claiming to be the root

Distributed Spanning Tree Algorithm - Overview

- Ports which are not selected (disconnected) by the Distributed Spanning Tree Algorithm

[Diagram showing network with bridges and ports marked as disconnected.]
Limitations of Bridges

• Do not scale
 – Spanning tree algorithm does not scale (no hierarchy)
 – Broadcast does not scale (congestion)
• Do not accommodate heterogeneity
 (Ethernet-to-Ethernet, but not others such as ATM)
• Caution: beware of transparency
 – If a host is configured for single-LAN use, unexpected results can come about
 • Bridges might drop frames (congestion)
 • Latency differences
 • Frame reordering

Asynchronous Transfer Mode (ATM)

• Connection-oriented packet-switched network
 (virtual circuits)
• Used in both WAN and LAN settings
• Signaling (connection setup) Protocol: Q.2931
• Packets are called cells
 – 5-byte header + 48-byte payload (fixed length)
• Commonly transmitted over SONET
 – Other physical layers possible
Big vs Small Packets

- Small improves Queue behavior
 - Finger-grained pre-emption point for scheduling link
 - Maximum packet = 4 KB
 - Link speed = 100Mbps
 - Transmission time = \(4096 \times \frac{8}{100} = 327.68\mu s\)
 - High priority packet may sit in the queue 327.68 \(\mu s\)
 - In contrast, 53 \(\times \frac{8}{100} = 4.24\ \mu s\) for ATM
 - Near cut-through behavior
 - Two 4KB packets arrive at same time
 - Link idle for 327.68 \(\mu s\) while both arrive
 - At end of 327.68 \(\mu s\), still have 8KB to transmit
 - In contrast, can transmit first cell after 4.24 \(\mu s\)
 - At end of 327.68 \(\mu s\), just over 4KB left in queue

Variable vs Fixed-Length Packets

- No Optimal length
 - If small: high header-to-data overhead
 - If large: low utilization for small messages

- Fixed-Length Easier to Switch in Hardware
 - Simpler
 - Enables parallelism
 - Telephone company supported!
Big vs Small Packets

- Small improves Latency (for voice)
 - Voice digitally encoded at 64Kbps (8-bit samples at 8 KHz)
 - Need full cell’s worth of samples before sending cell
 - Example: 1000-byte cells implies 125ms per cell (too long)
 - Smaller latency implies no need for echo cancellors

- ATM Compromise: 48 bytes = (32 + 64) / 2
 - Excellent case study of standardization
 - U.S. wanted 64-byte cell & Europe wanted 32-byte cell

Cell Format

- User-Network Interface (UNI)

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>3</th>
<th>1</th>
<th>8</th>
<th>384 (48 bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFC</td>
<td>VPI</td>
<td>VCI</td>
<td>Type</td>
<td>CLP</td>
<td>HEC (CRC-8)</td>
<td>Payload</td>
<td></td>
</tr>
</tbody>
</table>

- Host-to-switch format
- GFC: Generic Flow Control – arbitrate access to link
- VCI: Virtual Circuit Identifier
- VPI: Virtual Path Identifier
- Type: management, congestion control, AAL5 (later 0
- CLP: Cell Loss Priority
- HEC: Header Error Check (CRC-8)

- Network-Network Interface (NNI) – between telcos
 - Switch-to-switch format
 - GFC becomes part of VPI field
Segmentation and Reassembly (SAR)

- Really *Fragmentation* and Reassembly
 - High level protocols hand packets down to lower-level protocols with headers added
 - In ATM, Packets often too large
 - Packets are split up, sent on, and reassembled
 - Protocol layer added - ATM adaptation Layer (AAL)
 - Sits between ATM and IP
 - Contains information needed by receiver for reassembly

Segmentation and Reassembly

- Four possible ATM Adaptation Layers (AAL)
 - AAL 1 and 2 designed for applications that need guaranteed rate (e.g., voice, video)
 - AAL 3 / 4 designed for packet data (connectionless)
 - AAL 5 is an alternative standard for packet data