Parametric Equations

Question

Which of the following parametric curves does not trace out the unit circle?
A. $x=\cos (t), y=\sin (t), 0 \leq t \leq 2 \pi$
B. $x=\sin ^{2}(t), y=\cos ^{2}(t), 0 \leq t \leq 2 \pi$
C. $x=\sin \left(t^{2}\right), y=\cos \left(t^{2}\right), 0 \leq t \leq \sqrt{2 \pi}$
D. $x=\sin (2 t), y=\cos (2 t), 0 \leq t \leq \pi$

Parametric Equations

Question

If a and b are positive constants, then $x=a \cos (b t), y=a \sin (b t)$ describes the motion of a particle orbiting counterclockwise about the origin. Which transformation of the motion is not correctly identified?
A. If a is doubled, then the radius of the orbit is doubled.
B. If b is doubled, the time to complete one orbit is doubled.
C. If the sign of a is changed, then the particle orbits clockwise.
D. If the sign of b is changed, then the particle orbits clockwise.
E. More than one of the above is incorrect.

Parametric Equations

Question

The graphs of $x=f(t)$ and $y=g(t)$ are pictured at the right. Which of the graphs below could be the graph of y versus x ?

D.

Parametric Equations

Question

The figure shows the graph of $x=f(t), y=g(t)$. Which of the figures below could be the graph of $x=f(t)+2$, $y=g(t)-3$?

B.

Parametric Equations

Question

The figure shows the graph of $x=f(t), y=g(t)$. Which of the figures below could be the graph of $x=2 f(t), y=2 g(t)$?

C.

D.

Parametric Equations

Question

The figure shows the graph of $x=f(t), y=g(t)$ on the left and a second curve on the right. Which of the following could be the equation of the second curve?

$$
x=f(t)
$$

$$
y=g(t)
$$

???
A. $x=-f(t)$,
$y=g(t)$.
B. $x=f(t)$,
$y=-g(t)$
C. $x=-f(t)$,
$y=-g(t)$
D. $x=f(-t)$,
$y=g(t)$
E. $x=-f(t)$,
$y=g(-t)$

Polar Equations

Question

The Cartesian graph of $r=f(\theta)$ is shown on the right. Which of the following is the polar graph of $r=f(\theta)$?

A.

B.

C.

D.

Polar Equations

Question

There are four copies of the graph of $r=1+2 \sin (\theta)$ below, each with a different arc highlighted. Which figure has the highlighted arc corresponding to $\pi \leq \theta \leq 7 \pi / 6$?

A.

B.

C.

D.

Polar Equations

Question

Consider the graph of $r=\sqrt{2}-2 \cos (\theta)$ to the right. Which of the following will not give us the area contained by the outer loop?

$$
\begin{array}{ll}
\text { A. } 2 \int_{\pi / 4}^{\pi} \frac{1}{2} r^{2} d \theta & \text { B. } \int_{\pi / 4}^{-\pi / 4} \frac{1}{2} r^{2} d \theta \\
\text { C. } \int_{\pi / 4}^{7 \pi / 4} \frac{1}{2} r^{2} d \theta & \text { D. } \int_{0}^{2 \pi} \frac{1}{2} r^{2} d \theta-\int_{-\pi / 4}^{\pi / 4} \frac{1}{2} r^{2} d \theta
\end{array}
$$

Taylor Polynomials

Question

Suppose we want to use a Taylor polynomial to estimate $\sqrt{11}$. We could consider the function $f(x)=\sqrt{x}$ and use Taylor's formula for approximation at a. What would be the best choice for a ?
A. $a=0$
B. $a=9$
C. $a=10$
D. $a=25$

L'Hospital's Rule

Question

Which of the following limits are not indeterminate?
(There is more than one correct answer)

$$
\begin{array}{ll}
\text { A. } \lim _{x \rightarrow \infty} \frac{\arctan (x)}{x} & \text { C. } \lim _{x \rightarrow 0^{+}} x \ln (x) \\
\text { B. } \lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x} & \text { D. } \lim _{x \rightarrow \infty} \frac{x}{e^{-x}}
\end{array}
$$

Sequences

Question

The figure shows the graph of the first six terms of a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$. Which of the following could be the formula for a_{n} ?

$$
\begin{aligned}
& \text { A. } a_{n}=\left(-\frac{1}{2}\right)^{n}-\frac{3}{2} \\
& \text { B. } a_{n}=\frac{1}{2} n+5 \\
& \text { C. } a_{n}=\frac{1}{2} n-2 \\
& \text { D. } a_{n}=-\frac{1}{2} n+\frac{5}{2} \\
& \text { E. } a_{n}=\frac{1}{2} n-\frac{5}{2}
\end{aligned}
$$

Sequences

Question

Which of the following sequences is not geometric?
A. $\quad a_{n}=\left(\frac{-1}{3}\right)^{n}+2$
B. $a_{n}=2\left(\frac{-1}{3}\right)^{n}$
C. $a_{n}=(-1)^{n} \frac{4}{3^{n}}$
D. $a_{n}=\left(\frac{-1}{3}\right)^{n}$
E. $a_{n}=3^{-n}$

Sequences

Question

Which of these sequences is not geometric?
(There may be more than one right answer.)
A. $\frac{1}{2}, \frac{3}{4}, \frac{9}{8}, \frac{27}{16}, \ldots$
B. $b_{1}=\frac{1}{2}, b_{n+1}=\frac{3}{2} b_{n}$
C. $a_{n}=\frac{2}{5^{n}}$
E. $\quad a_{n}=\frac{1}{5} n$

Sequences

Question

Given $\left\{a_{n}\right\}_{n=1}^{\infty}=3,7,4,1 / 2, \pi,-1, \ldots$. If $b_{n}=a_{2 n}$, which of the following is the sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$?
A. $7,1 / 2,-1, \ldots$
B. $6,14,8,1,2 \pi,-2, \ldots$
C. $5,9,6,5 / 2, \pi+2,1, \ldots$
D. $4,1 / 2, \pi,-1, \ldots$
E. None of the above

Sequences

Question

If $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence with $\lim _{n \rightarrow \infty} \frac{a_{n}}{n}=0$, then which of the following must be true? (There may be more than one correct answer.)
A. $\lim _{n \rightarrow \infty} \frac{a_{n}}{e^{n}}=0$
B. $\lim _{n \rightarrow \infty} \frac{a_{n}}{n!}=0$
C. $\lim _{n \rightarrow \infty} \frac{a_{n}}{\sqrt{n}}=0$
D. $\lim _{n \rightarrow \infty} \frac{a_{n}}{\ln (n)}=0$
E. $\lim _{n \rightarrow \infty} a_{n}=0$

Sequences

Question

Given that $\lim _{n \rightarrow \infty}\left|a_{n}\right|=3$, which of the following statements must be true?
A. $\lim _{n \rightarrow \infty} a_{n}=3$
B. $\lim _{n \rightarrow \infty} a_{n}$ diverges due to oscillation.
C. $\lim _{n \rightarrow \infty} a_{n}$ diverges to ∞.
D. $\lim _{n \rightarrow \infty} \frac{a_{n}}{n}$ converges.

Sequences

Question

Given that $\lim _{n \rightarrow \infty}\left|a_{n}\right|=3$, which of the following statements must be false?
A. $\lim _{n \rightarrow \infty} a_{n}=3$
B. $\lim _{n \rightarrow \infty} a_{n}$ diverges due to oscillation.
C. $\lim _{n \rightarrow \infty} a_{n}$ diverges to ∞.
D. $\lim _{n \rightarrow \infty} \frac{a_{n}}{n}$ converges.

Series

Question

True or False?
It is always true that if $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.
A. True, and I am confident.
B. True, and I am not so confident.
C. False, and I am not so confident.
D. False, and I am confident.

Series

Question

True or False?
It is always true that if $\lim _{n \rightarrow \infty} a_{n}=0$, then $\sum_{n=1}^{\infty} a_{n}$ converges.
A. True, and I am confident.
B. True, and I am not so confident.
C. False, and I am not so confident.
D. False, and I am confident.

Series

Question

True or False?
It is always true that if $\sum_{n=1}^{\infty} a_{n}=1$, then $\lim _{n \rightarrow \infty} a_{n}=1$.
A. True, and I am confident.
B. True, and I am not so confident.
C. False, and I am not so confident.
D. False, and I am confident.

Series

Question

Two of the series below have the same value. Which two?

$$
\begin{array}{ll}
\text { A. } \sum_{n=1}^{\infty}(-1)^{n} \frac{n}{2^{n+1}} & \text { C. } \sum_{n=0}^{\infty}(-1)^{n} \frac{n+1}{2^{n+3}} \\
\text { B. } \sum_{n=2}^{\infty}(-1)^{n} \frac{n-1}{2^{n+1}} & \text { D. } \sum_{n=0}^{\infty}(-1)^{n} \frac{n+1}{2^{n+2}}
\end{array}
$$

Series

Question

If we know that $\sum_{k=1}^{n} a_{k}=\frac{2 n^{2}+5}{n^{2}+4}$, then which of the following
must be true about $\sum_{n=1}^{\infty} a_{n}$?
A. It diverges, because $\lim _{n \rightarrow \infty} \frac{2 n^{2}+5}{n^{2}+4} \neq 0$.
B. It converges to $\frac{5}{4}$.
C. It converges to 2 .
D. It converges, but we can't know its exact value.
E. There is not enough information to determine whether or not it converges or diverges.

Series

Question

It is an amazing fact that $\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}$. Which of the following statements is true?
I. $\sum_{k=1}^{n} \frac{1}{k^{2}}$ is a number close to $\frac{\pi^{2}}{6}$ when n is large.
II. $\sum_{k=1}^{1000} \frac{1}{k^{2}}$ is larger than $\frac{\pi^{2}}{6}$.
A. I. only
C. Neither is true.
B. II. only.
D. Both I. and II. are true.

Series

Question

It is an amazing fact that $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{2 k+1}=\frac{\pi}{4}$. Which of the following statements is true?
I. $\sum_{k=1}^{n} \frac{(-1)^{k}}{2 k+1}$ is a number close to $\frac{\pi}{4}$ when n is large.
II. $\sum_{k=1}^{1000} \frac{(-1)^{k}}{2 k+1}$ is larger than $\frac{\pi}{4}$.
A. I. only
C. Neither is true.
B. II. only.
D. Both I. and II. are true.

Series

Question

All of the following are geometric series. Which of them has first term $a=1 / 3$ and common ratio $r=3 / 8$?
(There may be more than one correct answer.)
A. $\sum_{n=0}^{\infty} \frac{1}{3}\left(\frac{3}{8}\right)^{n-1}$
B. $\sum_{n=0}^{\infty} \frac{3^{n-1}}{8^{n}}$
C. $\sum_{n=1}^{\infty} \frac{1}{3}\left(\frac{3}{8}\right)^{n-1}$
D. $\frac{1}{3}+\frac{1}{8}+\frac{3}{64}+\frac{9}{512}+\cdots$
E. $\sum_{n=1}^{\infty} \frac{3^{n}}{2^{3 n}}$

Improper Integrals

Question

Which of the following inequalities is valid for all $x \geq 1$?
A. $x \leq 3 x \leq x(2-\sin x)$
B. $x(2-\sin x) \leq x \leq 3 x$
C. $x \leq x(2-\sin x) \leq 3 x$
D. $3 x \leq x(2-\sin x) \leq x$

Improper Integrals

Question

Which of the following inequalities is valid for all $x \geq 1$?
A. $\frac{x(2-\sin x)}{1+x^{3}} \leq \frac{3 x}{1+x^{3}} \leq \frac{3}{x^{2}}$
B. $\frac{x(2-\sin x)}{1+x^{3}} \leq \frac{3}{x^{2}} \leq \frac{3 x}{1+x^{3}}$
C. $\frac{3}{x^{2}} \leq \frac{x(2-\sin x)}{1+x^{3}} \leq \frac{3 x}{1+x^{3}}$
D. $\frac{3 x}{1+x^{2}} \leq \frac{x(2-\sin x)}{1+x^{3}} \leq \frac{3}{x^{2}}$

Improper Integrals

Question

True or False: $\int_{1}^{\infty} \frac{x(2-\sin x)}{1+x^{3}} d x$ converges.
A. True, and I am confident.
B. True, and I am not so confident.
C. False, and I am not so confident.
D. False, and I am confident.

The Integral Test

Question

The figure shows the graphs of two functions f and g along with the terms of $\sum_{k=1}^{\infty} a_{k}$ represented as boxes. Rank these four quantities:

$$
\begin{array}{ll}
\operatorname{Int}_{f}=\int_{2}^{\infty} f(x) d x & \operatorname{Int}_{g}=\int_{3}^{\infty} g(x) d x \\
\text { Sum }_{2}=\sum_{k=2}^{\infty} a_{k} & \operatorname{Sum}_{3}=\sum_{k=3}^{\infty} a_{k}
\end{array}
$$

A. $\operatorname{Int}_{g} \leq \operatorname{Sum}_{3} \leq \operatorname{Sum}_{2} \leq \operatorname{Int}_{f}$.
B. $\operatorname{Int}_{g} \leq$ Sum $_{2} \leq \operatorname{Sum}_{3} \leq \operatorname{Int}_{f}$.
C. $\operatorname{Sum}_{3} \leq \operatorname{Int}_{g} \leq \operatorname{Sum}_{2} \leq \operatorname{Int}_{f}$.
D. $\operatorname{Int}_{f} \leq \operatorname{Sum}_{3} \leq \operatorname{Sum}_{2} \leq \operatorname{Int}_{g}$.

Question

The figure shows the graph of a function f. If $a_{n}=f(n)$ for $n \geq 1$, then what is the area of the darker shaded region?
A. $\int_{3}^{4} f(x) d x$
B. a_{3}.
C. a_{4}.
D. Not enough information is given.

The Integral Test

Question

The figure shows the graph of a function f. If $a_{n}=f(n)$ for $n \geq 1$, then which of the following statements must be true?

A. $\int_{1}^{\infty} f(x) d x \leq \sum_{n=1}^{\infty} a_{n}$
B. $\sum_{n=2}^{\infty} a_{n} \leq \int_{1}^{\infty} f(x) d x$.
C. If $\int_{1}^{\infty} f(x) d x$ converges, then $\sum^{\infty} a_{n}$ converges.
D. If $\int_{1}^{\infty} f(x) d x$ diverges, then $\sum_{n=1}^{\infty=1} a_{n}$ diverges.
(There could be more than one right answer.)

The Integral Test

Question

Suppose that $a_{n}=f(n)$ and $b_{n}=g(n)$. Given that
$\int_{1}^{\infty} f(x) d x=2$, which of the following must be true?

$$
\begin{aligned}
& \text { A. } \sum_{n=1}^{\infty} b_{n} \text { converges. } \\
& \text { C. } \int_{1}^{\infty} h(x) \text { diverges. }
\end{aligned}
$$

B. $\sum_{n=1}^{\infty} a_{n}=2$
D. $\int_{1}^{\infty} g(x)$ diverges.

Comparison Test

Question

Consider the series $\sum_{n=1}^{\infty} a_{n}$ where $a_{n}=\frac{2+(-1)^{n}}{1+n^{3}}$. Which of the
following series $\sum_{n=1}^{\infty} b_{n}$ has $a_{n} \leq b_{n}$ for all $n \geq 1$?
A. $\sum_{n=1}^{\infty} \frac{3}{n}$
B. $\sum_{n=1}^{\infty} \frac{3}{n^{3}}$
C. $\sum_{n=1}^{\infty} \frac{3}{1+n^{3}}$
D. $\sum_{n=1}^{\infty} \frac{2}{1+n^{3}}$
E. More than one of the above
F. All of A through D

Comparison Test

Question

True or False: The sum $\sum_{n=1}^{\infty} \frac{2+(-1)^{n}}{1+n^{3}}$ converges.
A. True, and I am confident.
B. True, and I am not so confident.
C. False, and I am not so confident.
D. False, and I am confident.

Comparison Test

Question

By the p-test, $\sum_{n=1}^{\infty} \frac{1}{2 \sqrt{n}}$ diverges. Which of the following
statements is justified by the Comparison Test?
A. $\frac{1}{2 \sqrt{n+7}} \geq \frac{1}{2 \sqrt{n}}$ and therefore $\sum_{n=1}^{\infty} \frac{1}{2 \sqrt{n+7}}$ diverges.
B. $\frac{1}{2 \sqrt{n+7}} \leq \frac{1}{2 \sqrt{n}}$ and therefore $\sum_{n=1}^{\infty} \frac{1}{2 \sqrt{n+7}}$ diverges.
C. $\frac{1}{2 \sqrt{n}-1} \leq \frac{1}{2 \sqrt{n}}$ and therefore $\sum_{n=1}^{\infty} \frac{1}{2 \sqrt{n}-1}$ diverges.
D. $\frac{1}{2 \sqrt{n}-1} \geq \frac{1}{2 \sqrt{n}}$ and therefore $\sum_{n=1}^{\infty} \frac{1}{2 \sqrt{n}-1}$ diverges.

Comparison Test

Question

Which of the following inequalities, if true, would help you decide the convergence or divergence of $\sum_{n=1}^{\infty} a_{n}$?
A. $\quad a_{n} \leq \frac{1}{\sqrt{n}}$
B. $\quad a_{n} \leq \frac{1}{n^{2}}$
C. $\quad a_{n} \geq \frac{1}{\sqrt{n^{3}}}$
D. $a_{n} \geq\left(\frac{1}{2}\right)^{n}$

Limit Comparision Test

Question

Consider the series $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n^{4}+7 n}}{n^{5}+\sqrt{n}}$. Which of the following simpler series would be most useful in applying the limit comparison test to this series?
A. $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n}}{n^{5}}$
B. $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$
C. $\sum_{n=1}^{\infty} \frac{1}{n^{11 / 3}}$
D. $\sum_{n=1}^{\infty} \frac{n^{4 / 3}}{n^{5}+\sqrt{n}}$
E. $\sum_{n=1}^{\infty} \frac{1}{n}$

Limit Comparison Test

Question

Which of the following limits would help you decide if $\sum_{n=1}^{\infty} a_{n}$ converges? (There may be more than one right answer.)
A. $\lim _{n \rightarrow \infty} \frac{a_{n}}{\frac{1}{n^{2}}}=5$
B. $\lim _{n \rightarrow \infty} \frac{a_{n}}{\frac{1}{\sqrt{n}}}=12$
C. $\lim _{n \rightarrow \infty} \frac{\left(\frac{1}{2}\right)^{n}}{a_{n}}=\infty$
D. $\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{2}}}{a_{n}}=0$

Alternating Series Test

Question

If a_{k} is positive and decreasing to 0 , then the alternating series
$\sum_{k=1}^{\infty}(-1)^{k-1} a_{k}$ converges to some value s. Rank the $n^{\text {th }}$ partial sums s_{1}, s_{100}, s_{329}, the actual sum s, and the number 0 , from smallest to greatest.
A. $s_{100} \leq 0 \leq s \leq s_{329} \leq s_{1}$
B. $0 \leq s_{100} \leq s \leq s_{329} \leq s_{1}$
C. $0 \leq s_{100} \leq s \leq s_{1} \leq s_{329}$
D. $s_{100} \leq 0 \leq s \leq s_{1} \leq s_{329}$

Alternating Series Test

Question

Let s be the sum of the alternating series

$$
s=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots
$$

Which region of the number line does the number s belong to?

Strategy for Testing Series

Question

Which of the test(s) below would be the best choice for deciding
the convergence of $\sum_{n=1}^{\infty} e^{1 / n}$?
A. Test for Divergence
B. Geometric Series Test
C. Integral Test
D. Comparison or Limit Comparison Test
E. Alternating Series Test
F. Ratio Test

Strategy for Testing Series

Question

Which of the test(s) below would be the best choice for deciding the convergence of $\sum_{n=2}^{\infty} \frac{1}{n(\ln (n))}$?
A. Test for Divergence
B. Geometric Series Test
C. Integral Test
D. Comparison or Limit Comparison Test
E. Alternating Series Test
F. Ratio Test

Strategy for Testing Series

Question

Which of the test(s) below would be the best choice for deciding
the convergence of $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{5}{n}$?
A. Test for Divergence
B. Geometric Series Test
C. Integral Test
D. Comparison or Limit Comparison Test
E. Alternating Series Test
F. Ratio Test

Strategy for Testing Series

Question

Which of the test(s) below would be the best choice for deciding
the convergence of $\sum_{n=1}^{\infty} \frac{n 7^{n}}{n!}$?
A. Test for Divergence
B. Geometric Series Test
C. Integral Test
D. Comparison or Limit Comparison Test
E. Alternating Series Test
F. Ratio Test

Strategy for Testing Series

Question

Which of the test(s) below would be the best choice for deciding
the convergence of $\sum_{n=1}^{\infty} \frac{\pi^{n}}{3^{n+1}}$?
A. Test for Divergence
B. Geometric Series Test
C. Integral Test
D. Comparison or Limit Comparison Test
E. Alternating Series Test
F. Ratio Test

Strategy for Testing Series

Question

Which of the test(s) below would be the best choice for deciding
the convergence of $\sum_{n=1}^{\infty} \frac{n^{2}+2 n+2}{4 n^{4}-\sqrt{n}+n}$?
A. Test for Divergence
B. Geometric Series Test
C. Integral Test
D. Comparison or Limit Comparison Test
E. Alternating Series Test
F. Ratio Test

Strategy for Testing Series

Question

Suppose $a_{n}=\frac{1}{n^{4}+n+2}$. Which of the following is a valid argument for why $\sum_{n=1}^{\infty} a_{n}$ converges?
A. $\lim _{n \rightarrow \infty} a_{n}=0$, so $\sum a_{n}$ converges by the Test for Divergence.
B. $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1$, so $\sum a_{n}$ converges by the Ratio Test.
C. $\sum a_{n}$ is a p-series with $p=4$, so $\sum a_{n}$ converges by p-test.
D. $a_{n} \leq \frac{1}{n^{4}}$ and $\sum \frac{1}{n^{4}}$ converges, so $\sum a_{n}$ converges by the Comparison Test.

Sequences vs. Series

Question

Try to think of a specific example for each of a_{n}, b_{n}, c_{n} and d_{n}. For one of them, there cannot be any example, because the situation described is impossible. Which one is impossible?
A. The sequence a_{n} is positive and decreasing and $\sum_{n=1}^{\infty} a_{n}$ diverges.
B. The sequence b_{n} alternates and $\sum_{n=1}^{\infty} b_{n}$ converges.
C. $\lim _{n \rightarrow \infty} c_{n}=0$ and $\sum_{n=1}^{\infty} c_{n}=1$.
D. $\lim _{n \rightarrow \infty} d_{n}=1$ and $\sum_{n=1}^{\infty} d_{n}=1$.

Intervals of Convergence

Question

If $\sum_{n=1}^{\infty} a_{n} x^{n}$ converges at $x=5$, which of the following is NOT true?
A. $\sum_{n=1}^{\infty} a_{n} x^{n}$ definitely converges at $x=-5$.
B. $\sum_{n=1}^{\infty} a_{n} x^{n}$ definitely converges at $x=-3$.
C. $\sum_{n=1}^{\infty} a_{n} x^{n}$ definitely converges at $x=0$.
D. $\sum_{n=1}^{\infty} a_{n} x^{n}$ definitely converges at $x=3$.

Intervals of Convergence

Question

Suppose that $\sum_{n=0}^{\infty} a_{n}(x-2)^{n}$ converges when $x=5$ and diverges when $x=-4$. Which of the following statements must be true?
(There is more than one right answer)
A. $\sum_{n=0}^{\infty} a_{n}(x-2)^{n}$ converges when $x=1$.
B. $\sum_{n=0}^{\infty} a_{n}(x-2)^{n}$ diverges when $x=6$.
C. $\sum_{n=0}^{\infty} a_{n}(x-2)^{n}$ converges when $x=-1$.
D. $\sum_{n=0}^{\infty} a_{n}(x-2)^{n}$ diverges when $x=-5$.

Intervals of Convergence

Question

Which of the following could not be the interval of convergence of $\sum a_{n}(x+2)^{n}$?
(There may be more than one right answer.)
A. $\{-2\}$
B. $[-3,3]$
C. $(-3,-1]$
D. $[-2, \infty)$
E. $(-\infty, \infty)$

Power Series

Question

If $\sum a_{n} x^{n}$ converges on the interval $[-3,3]$, where does the series $\sum a_{n}(2 x-1)^{n}$ converge?
A. $\left[-\frac{3}{2}, \frac{3}{2}\right]$
B. $[-6,6]$
C. $[-2,4]$
D. $[-1,2]$

Power Series

Question

If $\sum a_{n} x^{n}$ has radius of convergence 3 , what is the radius of convergence of $\sum a_{n} x^{2 n}$?
A. 3
B. $\sqrt{3}$
C. 3^{2}
D. Not enough information to decide

Taylor polynomials

Question

In each example below, we give an estimate for some quantity. Which one would most likely not be a good estimate? (Why?)
A. Estimate e by $1+1+1 / 2+1 / 6$.
B. Estimate $\sin (2)$ by $2-2^{3} / 3!+2^{5} / 5$!
C. Estimate $\arctan (2)$ by $2-2^{3} / 3+2^{5} / 5-2^{7} / 7$.
D. Estimate $\ln (1.5)$ by $0.5-0.5^{2} / 2+0.5^{3} / 3-0.5^{4} / 4+0.5^{5} / 5$.

Taylor polynomials

Question

Which of the following Taylor polynomials for $\sin (x)$ would be most useful for approximating $\sin (3)$ by hand?
A. $x-\frac{1}{3!} x^{3}$
B. $1-\frac{1}{2!}\left(x-\frac{\pi}{2}\right)^{2}$
C. $-(x-\pi)+\frac{1}{3!}(x-\pi)^{3}$
D. $\sin (3)-\frac{1}{3!} \sin (3)(x-3)^{3}$

Series

Question

If $a_{1}+a_{2}+a_{3}+\cdots$ and $b_{1}+b_{2}+b_{3}+\cdots$ are convergent series of numbers and c is a real number, which of the following identities is always true?
(There may be more than one correct answer.)
A. $c\left(a_{1}+a_{2}+a_{3}+\cdots\right)=\left(c a_{1}+c a_{2}+c a_{3}+\cdots\right)$
B. $\left(a_{1}+a_{2}+a_{3}+\cdots\right)+\left(b_{1}+b_{2}+b_{3}+\cdots\right)=$ $\left(a_{1}+b_{1}+a_{2}+b_{2}+a_{3}+b_{3}+\cdots\right)$
C. $\left(a_{1}+a_{2}+a_{3}+\cdots\right)\left(b_{1}+b_{2}+b_{3}+\cdots\right)=\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}+\cdots\right)$
D. $\left(a_{1}+a_{2}+a_{3}+\cdots\right)^{2}=\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+\cdots\right)$

Series

Question

If $\sum a_{n}$ and $\sum b_{n}$ are convergent series of numbers and c is a real number, which of the following identities is always true?
(There may be more than one correct answer.)
A. $c \sum a_{n}=\sum c a_{n}$
B. $\sum a_{n}+\sum b_{n}=\sum\left(a_{n}+b_{n}\right)$
C. $\left(\sum a_{n}\right)\left(\sum b_{n}\right)=\sum a_{n} b_{n}$
D. $\left(\sum a_{n}\right)^{2}=\sum a_{n}^{2}$

Power Series

Question

Which of the following calculations of the term-by-term derivatives of the power series $\sum_{n=1}^{\infty} n^{2} x^{n}$ is valid?

$$
\begin{aligned}
& \text { A. } \frac{d}{d x}\left(\sum_{n=1}^{\infty} n^{2} x^{n}\right)=\sum_{n=1}^{\infty} 2 n x^{n} \\
& \text { B. } \frac{d}{d x}\left(\sum_{n=1}^{\infty} n^{2} x^{n}\right)=\sum_{n=1}^{\infty} n^{3} x^{n-1} \\
& \text { C. } \frac{d}{d x}\left(\sum_{n=1}^{\infty} n^{2} x^{n}\right)=\sum_{n=1}^{\infty}\left(2 n x^{n}+n^{2}\left(n x^{n-1}\right)\right) \\
& \text { D. } \frac{d}{d x}\left(\sum_{n=1}^{\infty} n^{2} x^{n}\right)=\sum_{n=1}^{\infty}(2 n)\left(n x^{n-1}\right)
\end{aligned}
$$

Taylor Series

Question

Which of the following is the sum function for the power series $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{n!} ?$
A. $\cos (x)$
B. $x^{2} e^{-x}$
C. $e^{-x^{2}}$
D. There is not enough information to answer.

Taylor Series

Question

Which of the following numbers most accurately approximates the
sum of $\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(\frac{\pi}{3}\right)^{2 n}}{(2 n)!}=1-\frac{\left(\frac{\pi}{3}\right)^{2}}{2!}+\frac{\left(\frac{\pi}{3}\right)^{4}}{4!}-\cdots$?
A. 1
B. $1-\frac{\left(\frac{\pi}{3}\right)^{2}}{2} \approx 0.4516$
C. $1-\frac{\left(\frac{\pi}{3}\right)^{2}}{2}+\frac{\left(\frac{\pi}{3}\right)^{4}}{4!} \approx 0.5017$
D. 0.5
E. There is not enough information to answer.

Taylor Series

Question

Suppose the MacLaurin series on the interval $[-1,1]$ for some function $f(x)$ is

$$
f(x)=x-\frac{x^{3}}{9}+\frac{x^{5}}{25}-\cdots
$$

Which of the following statements are true? (There may be more than one correct answer.)

$$
\begin{array}{ll}
\text { A. } \lim _{x \rightarrow 0} \frac{f(x)}{x}=0 & \text { B. } \lim _{x \rightarrow 0} \frac{f(x)}{x}=1 \\
\text { C. } f(1)>8 / 9 & \text { D. } f(0)=1
\end{array}
$$

