Derivatives and Integrals of Vector Functions

Question

Consider the space curve parametrized by $x=\cos (t), y=\sin (t)$, and $z=t$. Which of the following is an equation of the tangent line to the curve at the point where $t=\pi / 4$?
A. $\vec{r}(t)=\left\langle\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 1\right\rangle+t\langle-\sin (t), \cos (t), 1\rangle$
B. $\vec{r}(t)=\left\langle\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 1\right\rangle+t\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{\pi}{4}\right\rangle$
C. $\vec{r}(t)=\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{\pi}{4}\right\rangle+t\left\langle\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 1\right\rangle$
D. $\vec{r}(t)=\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{\pi}{4}\right\rangle+t\left\langle-1,1, \frac{1}{\sqrt{2}}\right\rangle$
E. More than one of the above.

