Directional Derivatives and the Gradient

Question

If $\vec{r}(t)=x(t) \vec{i}+y(t) \vec{j}+z(t) \vec{k}$ is a curve in space and $x(t)^{2}+y(t)^{2}+z(t)^{2}=1$, what can you conclude about $\vec{r}^{\prime}(0)$?
A. $\vec{r}^{\prime}(0)$ is normal to a sphere of radius 1 centered at the origin.
B. $\vec{r}^{\prime}(0)=\overrightarrow{0}$ because $|\vec{r}(t)|$ is constant.
C. $\vec{r}^{\prime}(0)$ is tangent to a sphere of radius 1 centered at the origin.
D. $\vec{r}^{\prime}(0)=2 x(0) x^{\prime}(0) \vec{i}+2 y(0) y^{\prime}(0) \vec{j}+2 z(0) z^{\prime}(0) \vec{k}$.

