
Three Dimensional Coordinates Systems

Question

Holding up your right hand as a
coordinate system, use your left hand to
point to the following locations relative
to your coordinates.

I (0, 0, 0)

I (1, 0, 0)

I (1, 1, 0)

I (0, 1, 1)

I (−1, 0, 1)
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Three Dimensional Coordinates Systems

Question

Work with a partner. Partner 1 holds up
their hand as a right handed coordinate
system pointed at Partner 2, while
Partner 2 locates the following points
relative to the coordinates of Partner 1.

I (0, 1, 0)

I (0, 0,−1)
I (0, 0, 1)

I (0,−1, 1)
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Three Dimensional Coordinate Systems

Question

Which of the following pictures does NOT correctly plot the point
(2, 1, 1) with respect to the coordinates indicated?

A. B. C.
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Three Dimensional Coordinate Systems

Question

Which of the following depicts the set of all points which are one
unit away from the xy-plane?

A. B. C. D.
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Three Dimensional Coordinate Systems

Question

Which of the following statements is(are) true about the set of
points (x, y, z) that satisfy the equation y = x2?

I. The set is a surface in space.

II. The set lies in the xy-plane.

III. Any number can occur as the z-coordinate of a point in the
set.

A. I only.

B. II only.

C. I and III only.

D. II and III only.

E. None of these.
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Three Dimensional Coordinate Systems

Question

Which of the following correctly depicts the sphere given by the
equation

x2 + (y − 2)2 + (z − 2)2 = 4?

A. B. C. D.
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Vectors

Question

True or False? The displacement vector from (a, b) to (c, d) is the
same as the displacement vector from (c, d) to (a, b).

A. True, and I am confident.

B. True, but I am not so confident.

C. False, but I am not so confident.

D. False, and I am confident.
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Vectors

Question

True or False? The vectors 2~i−~j + ~k and ~i− 2~j + ~k are parallel.

A. True, and I am confident.

B. True, but I am not so confident.

C. False, but I am not so confident.

D. False, and I am confident.
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Vectors

Question

True or False? The vector ~v + ~w is always of greater magnitude
than either ~v or ~w.

A. True, and I am confident.

B. True, but I am not so confident.

C. False, but I am not so confident.

D. False, and I am confident.
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Vectors

Question

True or False? The vectors ~i+~j and ~i−~j are perpendicular.

A. True, and I am confident.

B. True, but I am not so confident.

C. False, but I am not so confident.

D. False, and I am confident.
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Vectors

Question

A weight hangs from two wires as in the
figure, creating two tension forces ~T1
and ~T2. If |~T1| = 4, then which of the
following equations for ~T1 is correct?

A. ~T1 = −4 cos(53◦)~i+ 4 sin(53◦)~j

B. ~T1 = −4 sin(53◦)~i+ 4 cos(53◦)~j

C. ~T1 = −4 cos(37◦)~i+ 4 sin(37◦)~j

D. ~T1 = −4 cos(30◦)~i− 4 sin(30◦)~j

E. ~T1 = 4 cos(53◦)~i+ 4 sin(53◦)~j
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Vectors

Question

The figure shows two vectors ~v and ~w.
Which of these could be an expression
for the vector ~u ?

A. 2~v + ~w

B. ~v + ~w

C. ~v + 2~w

D. 2~v + 2~w
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Vectors

Question

The figure shows two vectors ~v and ~w and a number of other
vectors built from ~v and ~w. Which of these vectors corresponds to
~w − 2~v ?
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The Dot Product

Question

Which of the following formulas involving vectors ~a, ~b, and ~c with
~a 6= ~0 are meaningless?

A.

(
~a ·~b
|~a|2

)
~a

B.
~a ·~b
|~a|

C. (~a ·~b)~c− (~c+~b) · ~a
D. (~b · ~a)~c− (~c · ~a)~b
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The Dot Product

Question

The figure shows a pair of vectors in the
plane. The value of ~v · ~w is:

A. Positive

B. Zero

C. Negative

D. There is not enough information to determine.
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The Dot Product

Question

The figure shows vectors ~v and ~w in the plane and a number of
other vectors built from ~v and ~w. Which of the vectors shown
could be proj~v(~w)?

E. None of these.
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The Dot Product

Question

Suppose that a force of 30 N is applied in the ~i-direction while an
object is displaced 1 m from the origin into the 2nd quadrant.
Which of the following could be the work done by the force on the
object?

A. -15 N-m

B. 20 N-m

C. -50 N-m

D. -30 N

E. 20 N
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The Cross Product

Question

The figure shows two vectors with
|~u| = 3 and |~v| = 4. Which of the
following numbers is |~u× ~v|?

A. 6

B. 12

C. 6
√
3

D. 30◦

E. There is not enough information to determine.

A. Caine, B. N. Givens ConcepTests for Calculus 18/1



The Cross Product

Question

The figure shows two vectors in the
xy-plane with |~u| = 3 and |~v| = 4.
Which of the following could be ~u× ~v?

A. −6~k
B. 6~k

C. 6(~i+~j)

D. 6~j
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The Cross Product

Question

Which of the following formulas involving the vectors ~a, ~b, and ~c is
meaningless?

A. (~a ·~b)~c− (~a×~b)× ~c
B. ~a · (~b× ~c)
C. |~a×~b|~c+~b× ~a.

D. (~a×~b) · ~c− (~a ·~b)~c
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The Cross Product

Question

In applying a force of a given
magnitude to the end of the
wrench, which of the directions
~u, ~v, or ~w will generate the
maximum torque on the nut?

A. ~u

B. ~v

C. ~w

D. All three options produce a torque of the same magnitude.
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The Cross Product

Question

The figure shows a parallelepiped
spanned by vectors ~a, ~b, and ~c. Which
of the following formulas computes its
volume?

A. |~a · (~b× ~c)|
B. |~b · (~c× ~a)|
C. |~c · (~b× ~a)|
D. All of the above.

E. More than one but not all of the above.
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Lines and Planes

True or False?

If two lines in space are perpendicular to the same plane, then the
lines are parallel.

A. True, and I am confident.

B. True, but I am not confident.

C. False, but I am not confident.

D. False, and I am confident.
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Lines and Planes

True or False?

If two lines in space are parallel to the same plane, then the lines
are parallel.

A. True, and I am confident.

B. True, but I am not confident.

C. False, but I am not confident.

D. False, and I am confident.
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Lines and Planes

True or False?

If two lines in space are skew, then they cannot be perpendicular to
the same plane.

A. True, and I am confident.

B. True, but I am not confident.

C. False, but I am not confident.

D. False, and I am confident.
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Lines and Planes

Question

Which completes the sentence: Two different planes in space can
.

A. fail to intersect.

B. intersect in a point.

C. intersect in a line.

D. More than one but not all of the above.

E. All of the above.
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Lines and Planes

Question

Which completes the sentence: A line and a plane in space can
.

A. fail to intersect.

B. intersect in a point.

C. intersect in a line.

D. More than one but not all of the above.

E. All of the above.

A. Caine, B. N. Givens ConcepTests for Calculus 27/1



Lines and Planes

Question

Consider the line with parametric equations x = 1+ 3t, y = 2− 2t,
z = 1 + t. Which of the following vectors is parallel to the line?

A. 〈1, 2, 1〉
B. 〈3,−2, 1〉
C. 〈4, 0, 2〉
D. None of these.
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Lines and Planes

Question

Consider the line with parametric equations x = 1+ 3t, y = 2− 2t,
z = 1 + t. Which of the following points lies on the line?

A. (3,−2, 1)
B. (1, 2, 1)

C. (4, 0, 2)

D. More than one of these.
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Lines and Planes

Question

Which of the following is NOT the equation of a line?

A.
x− 2

3
=
y + 1

9
=
z

2

B. x = 1 + 3t, y = 2− 2t, z = 1 + t

C. 3x+ 4y − 5z = 2

D. ~r(t) = 〈4, 2, 7〉+ t〈3,−2, 1〉
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Lines and Planes

Question

Which of the following is NOT the equation of a plane with normal
vector 〈3,−1, 1〉 passing through the point (0, 0, 2)?

A. 〈3,−1, 1〉 · 〈x, y, z − 2〉 = 0

B. 3x− y + z = 2

C. 3x− y + z = 0

D. 12x− 4y + 4z = 8
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Lines and Planes

Question

A plane through the origin contains the vector 〈1, 1, 1〉. Which of
the following equations could NOT be the equation of the plane?

A. 3x− 2y + 2z = 0

B. 3x− 2y − z = 0

C. y − z = 0

D. −4x+ 9y − 5z = 0
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Lines and Planes

Question

For the plane y = x, rank the following quantities in order from
smallest to largest.

I. The distance from (1, 0, 0) to the plane.

II. The distance from (−1, 1, 0) to the plane.

III. The distance from (1, 1, 2) to the plane.

A. I < II < III

B. I = II < III

C. III < I < II

D. III < I = II

E. None of these.
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Cylinders and Quadric Surfaces

Question

Which of the following depicts the graph of z = −y2?

A. B. C.
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Cylinders and Quadric Surfaces

Question

The figure shows the traces of a surface
in the planes z = −1, z = 0, and z = 1.
Which of the following could be a
picture of this surface?

A. B. C.
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Cylinders and Quadric Surfaces

Question

The figure shows the traces of a surface
in the planes z = −1, z = 0, and z = 1.
Which of the following could be a
picture of this surface?

A. B. C.
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Cylinders and Quadric Surfaces

Question

The figure shows the traces of a surface
in the planes z = −1, z = 0, and
z = −1. Which of the following could
be a picture of this surface?

A. B. C.
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Cylinders and Quadric Surfaces

Question

Consider the surface shown at right.
Which of the following figures could be
the traces of this surface in the planes
z = −1, z = 0, and z = 1?

A. B. C.
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Vector Functions and Space Curves

Discussion

Which of the following do you think can NOT be a picture of the
range of continuous function ~r(t) = f(t)~i+ g(t)~j + h(t)~k.

A. Surface B. Curve C. Point

x y

z

x y

z
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Vector Functions and Space Curves

Question

Which of these vector functions does NOT have range which is
contained in a line?

A. ~r(t) = 〈3, 1, 2〉+ t2〈1,−1, 0〉
B. ~r(t) = 〈3, 1, 2〉+ t〈1,−1, 0〉
C. ~r(t) = 〈2t− 1, t,−3t+ 5〉
D. ~r(t) = t~i+ t~j + t2~k

E. ~r(t) = 〈1, 2, t〉
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Vector Functions and Space Curves

Question

The vector function ~r(t) = cos(t)~j + sin(t)~k parameterizes the
intersection of two surfaces in space. Which of the following
surfaces could form the pair?

I. the plane x = 0

II. the circular cylinder y2 + z2 = 1

III. the sphere x2 + y2 + z2 = 1

IV. the hyperbolic cylinder y2 − z2 = 1

A. The pairs (I,II) and (I,III) only.

B. The pair (I,II) only.

C. The pairs (I,II) and (I,III) and (I,IV) only.

D. The pairs (I,II) and (I,III) and (II,III) only.

E. There is not enough information to decide.
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Vector Functions and Space Curves

Question

If f , g, and h are continuous functions on [0, 1], which of the
following figures could NOT be a picture of the range of
~r(t) = f(t)~i+ g(t)~j + h(t)~k?

A. B. C.

x y

z

x y

z

x y

z
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Vector Functions and Space Curves

Question

Which of the following space curves could be parameterized by
~r(t) = 〈t cos(t), t sin(t), t〉 for t ≥ 0?

A. B. C.

x y

z

x y

z

x y

z
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Derivatives and Integrals of Vector Functions

Question

Consider the space curve parametrized by x = cos(t), y = sin(t),
and z = t. Which of the following is an equation of the tangent
line to the curve at the point where t = π/4?

A. ~r(t) =
〈
−1√
2
, 1√

2
, 1
〉
+ t 〈− sin(t), cos(t), 1〉

B. ~r(t) =
〈
−1√
2
, 1√

2
, 1
〉
+ t
〈

1√
2
, 1√

2
, π4

〉
C. ~r(t) =

〈
1√
2
, 1√

2
, π4

〉
+ t
〈
−1√
2
, 1√

2
, 1
〉

D. ~r(t) =
〈

1√
2
, 1√

2
, π4

〉
+ t
〈
−1, 1, 1√

2

〉
E. More than one of the above.
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Derivatives and Integrals of Vector Functions

Question

Suppose that a plane curve is parametrized by ~r(t) = f(t)~i+ g(t)~j
and ~r ′(3) = ~0. What can you conclude about the curve near ~r(3)?

A. The tangent line to the curve is horizontal at ~r(3).

B. The tangent line to the curve is vertical at ~r(3).

C. There is a corner in the curve at ~r(3).

D. There is not enough information to decide.
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Derivatives and Integrals of Vector Functions

Question

If ~u and ~v are differentiable vector functions and f is a
differentiable scalar function, which of the following formulas is
meaningless?

A. f ′(t)~u(t) + f(t)~u ′(t)

B. ~u ′(t)× ~v(t) + ~u(t)× ~v ′(t)

C. ~u(t) ·
∫
~v(t)dt

D. f(t) +

∫
(~u(t)× ~v(t))dt

E. f(t) +

∫
(~u(t) · ~v(t))dt
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Derivatives and Integrals of Vector Functions

Question

The figure shows the position vector ~r(t) along a curve in the
plane. Which of the following tangent vectors do you you think
should have the smallest magnitude?

A. ~r ′(0)

B. ~r ′(1)

C. ~r ′(2)

D. ~r ′(3)
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Arc length and Curvature

Question

Suppose you move with constant velocity 〈−3, 4, 0〉 m/s for 2
seconds. How far did you travel?

A. -10 m

B. -6 m

C. 5 m

D. 8 m

E. 10 m
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Arc length and Curvature

Question

Suppose an object is displaced from the origin by a sequence of 3
steps as indicated in the figure. How far did the object travel?

A. -12 m

B. 12 m

C. -8 m

D. 8 m

E. 2 m

A. Caine, B. N. Givens ConcepTests for Calculus 49/1



Arc length and Curvature

Question

The figure shows a curve along with
the unit tangent vector ~T at a
number of equally spaced points.

Rank the values of

∣∣∣∣∣d~Tds
∣∣∣∣∣ at the points

I, II, and III.

A. smallest at I, largest at II

B. smallest at III, largest at II

C. smallest at II, largest at III

D. the same at I and II, largest at III
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Arc length and Curvature

Question

Suppose that
∣∣∣d~Tds ∣∣∣ = s for a curve in the plane. Which of the

following could be a picture of the curve?

A. B. C. D.
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Arc length and Curvature

Question

Suppose we have 3 curves with parametrizations ~r1(t), ~r2(t), and
~r3(t) with speed functions whose graphs are shown in the figure.
Which curve has the greatest length?

A. Curve 1

B. Curve 2

C. Curve 3

D. Not enough information to
decide
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Arc length and Curvature

Question

If the binormal vector ~B(t) is constant in t, what can you conclude
about the curve?

A. The curve is a straight line in space.

B. The curve is a circle in space.

C. The curve is a helix.

D. The curve is planar.
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Arc length and Curvature

Question

Suppose ~T (t) is the unit tangent vector function of a curve. Which

of the vectors shown at P could represent ~N =
~T ′

|~T ′|
at P?
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Motion in Space: Velocity and Acceleration

True or False?

Recall that in general the acceleration ~a = v′ ~T + κv2 ~N . Suppose
~T and ~N are nonzero and ~a = 2~T + 3 ~N throughout a particular
motion. Which of the following could be a true statement about
the motion?

A. The speed could be constant.

B. The motion could be along a straight line.

C. The motion could be around a circle in space.

D. None of the above.
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Motion in Space: Velocity and Acceleration

Question

A projectile is fired straight up with initial speed v0. Assuming that
air resistance is negligible and the external force is due to gravity,
which the following statements about the position function is NOT
true?

A. |~r ′(0)| = v0.

B. ~r ′′(t) = −g~j.

C. The ~j-component of ~r(t) is zero.

D. The ~i-component of ~r(t) is zero.
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Motion in Space: Velocity and Acceleration

Question

The cannon from the previous question is tilted to have angle of
elevation 30◦. Which of the following statements about the
position function is NOT true?

A. ~r ′′(t) = −g~j.

B. The ~j-component of ~r ′(0) is
smaller than the ~i-component of
~r ′(0).

C. |~r ′(0)| = v0.

D. The ~i-component of ~r(t) is zero.
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Motion in Space: Velocity and Acceleration

Question

The motion of a particle is given by the function ~r(t). If
~r(t)× ~r ′(t) is parallel to ~j for all t, what can be said about the
motion?

A. The acceleration is constant.

B. The motion is parallel to the y-axis.

C. The motion occurs in the xz-plane.

D. The motion is along a helix.
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Functions of Several Variables

Question

The figure shows the level curves of a
function of two variables f(x, y). Which
of the figures below could be the graph
of f?

A. B. C.
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Functions of Several Variables

Question

The figure shows the graph of a
function of two variables f(x, y). Which
of the figures below could be the level
curves of f?

A. B. C.
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Functions of Several Variables

Question

The figure shows a contour map with
four labeled points. Which of the
following statements about those points
are true?

I. From Q, one looks down at P .

II. From P , one looks down at R.

III. From R, one looks down at O.

A. I and III only.

B. I and II only.

C. III only.

D. I only.
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Functions of Several Variables

Question

True or False? For a function f(x, y), it is possible for the level 3
curve and the level 5 curve to intersect.

A. True, and I am confident.

B. True, but I am not so confident.

C. False, but I am not so confident.

D. False, and I am confident.
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Functions of Several Variables

Question

Which of the following could NOT represent a linear function of x
and y?

A. B. C.

x\y −1 0 1 2

−4 −2 0 2 4
−3 −1 1 3 5
−2 0 2 4 6
−1 1 3 5 7
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Functions of Several Variables

Question

Which of the shaded regions depicts the domain of
f(x, y) = xy

√
xy − 3?

A. B. C.

-4 -2 2 4
x

-4

-2

2

4

y

-4 -2 2 4
x

-4

-2

2

4

y

-4 -2 2 4
x

-4

-2

2

4

y
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Functions of Several Variables

Question

Which is the best description of all of the level surfaces of
f(x, y, z) = x2 + y2 − z2?

A. All level surfaces are spheres centered at the origin.

B. All level surfaces are paraboloids centered on the z-axis.

C. All level surfaces are cones.

D. All level surfaces are hyperboloids of 2 sheets.

E. All level surfaces are hyperbolic paraboloids.

F. None of these.
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Limits and Continuity

Question

True or false? If the values of f(x, y) tend to 1 as (x, y)→ (0, 0)
along both the x-axis and the y-axis, then

lim
(x,y)→(0,0)

f(x, y) = 1.

A. True, and I am confident.

B. True, but I am not so confident.

C. False, but I am not so confident.

D. False, and I am confident.
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Limits and Continuity

Question

If the values of f(x, y) tend to 1 as (x, y)→ (0, 0) along the line
y = x, but the values of f(x, y) tend to −1 as (x, y)→ (0, 0)
along the line y = −x, then

lim
(x,y)→(0,0)

f(x, y) does not exist.

A. True, and I am confident.

B. True, but I am not so confident.

C. False, but I am not so confident.

D. False, and I am confident.
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Limits and Continuity

Question

For the function f(x, y) =
xy

x2 + y2
, which of the following

expressions would help investigate the trend in the values of f as
(x, y) approaches (0, 0) along the line y = mx?

A.
m2x2

(2m2)x2
B.

mx2

(1 +m)x2

C.
mxy

m2x2 + y2
D.

mx2

(1 +m2)x2
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Limits and Continuity

Question

If

f(x,mx) =
mx

x3 +m3
, g(x,mx) =

m(x+ 1)

1 +mx
,

and

h(x,mx) =
x2 + 2x

2x2 + x
,

then which limit can you conclude must NOT exist?

A. lim
(x,y)→(0,0)

f(x, y)

B. lim
(x,y)→(0,0)

g(x, y)

C. lim
(x,y)→(0,0)

h(x, y)

D. There is not enough information to decide.
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Limits and Continuity

Question

If

f(x,mx) =
mx

x3 +m3
, g(x,mx) =

m(x+ 1)

1 +mx
,

and

h(x,mx) =
x2 + 2x

2x2 + x
,

then which limit can you conclude must exist?

A. lim
(x,y)→(0,0)

f(x, y)

B. lim
(x,y)→(0,0)

g(x, y)

C. lim
(x,y)→(0,0)

h(x, y)

D. There is not enough information to decide.
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Limits and Continuity

Question

Where is the function arctan
(y
x

)
continuous?

A. Everywhere except at the origin.

B. Everywhere except along the x-axis.

C. Everywhere except along the y-axis.

D. Everywhere except along the line y = x.
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Limits and Continuity

Question

The table shows the values of a function a function f(x, y). Do
you think that the limit of f(x, y) as (x, y)→ (0, 0) exists?

x\y −1.0 −0.5 −0.2 0 0.2 0.5 1.0
−1.0 0.00 0.60 0.92 1.00 0.92 0.60 0.00
−0.5 −0.60 0.00 0.72 1.00 0.72 0.00 −0.6
−0.2 −0.92 −0.72 0.00 1.00 0.00 −0.72 −0.92
0 −1.00 −1.00 −1.00 −1.00 −1.00 −1.00
0.2 −0.92 −0.72 0.00 1.00 0.00 −0.72 −0.92
0.5 −0.60 0.00 0.72 1.00 0.72 0.00 −0.6
1.0 0.00 0.60 0.92 1.00 0.92 0.60 0.00

A. I think the limit exists, and I am confident.

B. I think the limit exists, but I am not confident.

C. I think the limit does not exist, but I am not confident.

D. I think the limit does not exist, and I am confident.
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Partial Derivatives

Question

In economics, the production P (L,K) of a sector is modelled by a
function of labor L and capital K. Suppose that at a labor level of
10 thousand hours of work and a capital investment of $5 million,
P (10, 5) is $20 million of goods and PL(10, 5) = 0.7. Which of
these is NOT true?

A. If Labor is increased from 10 thousand to 11 thousand hours
of work while capital investment remains the same, then we
expect production to increase by about $0.7 million in goods.

B. If Labor is increased from 10 thousand to 11 thousand hours
of work while capital investment remains the same, then we
expect production to be about $0.7 million in goods.

C. P (11, 5) ≈ 20.7
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Partial Derivatives

Question

The table shows values of a function f(x, y). Which of the
following equations are most accurate?

A. fx(1, 2) ≈ −1.

B. fy(1, 2) ≈ 2.

C. fx(3, 2) ≈ 1.

D. fy(3, 2) ≈ 4.

E. More than one of the above.

x\y 0 1 2 3

0 3 5 7 9
1 2 4 6 8
2 1 3 5 7
3 0 2 4 6
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Partial Derivatives

Question

Rank the values of fy(3, 0), fx(0, 0), and fy(2, 1) in ascending
order.

A. fx(0, 0) ≤ fy(2, 1) ≤ fy(3, 0)

B. fy(3, 0) ≤ fy(2, 1) ≤ fx(0, 0)

C. fx(0, 0) ≤ fy(3, 0) ≤ fy(2, 1)

D. fy(3, 0) ≤ fx(0, 0) ≤ fy(2, 1)

x\y 0 1 2 3

0 5 4 3 1
1 3 2 2 4
2 1 1 1 1
3 -1 0 0 -1
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Partial Derivatives

Question

The figure shows the level curves of a
function f(x, y). Rank the values of fx
at the points P,Q,R.

A. fx(Q) < fx(P ) < fx(R)

B. fx(R) < fx(P ) < fx(Q)

C. fx(Q) < fx(R) < fx(P )

D. fx(P ) < fx(Q) < fx(R)
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Partial Derivatives

Question

The figure shows the level curves of a
function f(x, y). At which of the
points P , Q, or R does fy have the
smallest value?

A. P

B. Q

C. R

D. There is not enough information to decide.
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Partial Derivatives

Question

For the function f(x, y) = ex sin(xy2) which formula is correct?

A. fy = ex cos(xy2)

B. fy = 2yex cos(xy2)

C. fy = 2xyex cos(xy2)

D. fy = ex sin(xy2) + 2yex cos(xy2)

E. None of the above.
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Partial Derivatives

Question

For the function f(x, y) = ex sin(xy2) which formula is correct?

A. fx = ex cos(xy2)

B. fx = y2ex cos(xy2)

C. fx = ex sin(xy2) + ex cos(xy2)

D. fx = ex sin(xy2) + y2ex cos(xy2)

E. None of the above.
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Partial Derivatives

Question

The graph of a function f(x, y)
together with a point
P = (a, b, f(a, b)) is shown at right.
What are the signs of the partial
derivatives at the point point (a, b)?

A. fx(a, b) < 0, fy(a, b) < 0

B. fx(a, b) > 0, fy(a, b) < 0

C. fx(a, b) < 0, fy(a, b) > 0

D. fx(a, b) > 0, fy(a, b) > 0
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Partial Derivatives

Question

Consider the graph of f(x, y) shown at
right. True or False? fxy(0, 0) is
positive.

A. True, and I am confident.

B. True, but I am not confident.

C. False, but I am not confident.

D. False, I am confident.
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Partial Derivatives

Question

The level curves of a function f(x, y)
are shown at right. Determine the signs
of the partial derivatives at the point
P .

A. fx(P ) < 0, fy(P ) < 0

B. fx(P ) > 0, fy(P ) < 0

C. fx(P ) < 0, fy(P ) > 0

D. fx(P ) > 0, fy(P ) > 0
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Partial Derivatives

Question

The level curves of a function f(x, y)
are shown at right. Determine the signs
of the pure second partial derivatives at
the point P .

A. fxx(P ) < 0, fyy(P ) < 0

B. fxx(P ) > 0, fyy(P ) < 0

C. fxx(P ) < 0, fyy(P ) > 0

D. fxx(P ) > 0, fyy(P ) > 0
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Tangent Planes and Linear Approximation

Question

For a particular function f(x, y), the equation of the tangent plane
at the point (1, 2) has the form

z − 7 = fx(1, 2)(x− 1) + fy(1, 2)(y − 2).

Which of the following vectors is normal to the plane?

A. 〈1, fx(1, 2), fy(1, 2)〉
B. 〈fx(1, 2), fy(1, 2),−1〉
C. 〈fx(1, 2), fy(1, 2), 1〉
D. 〈−fx(1, 2),−fy(1, 2), 1〉
E. More than one of the above.
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Tangent Planes and Linear Approximation

Question

For the function f(x, y) = xy, find the equation of the tangent
plane to the graph of f at the point (2, 3).

A. z − 6 = x(x− 2) + y(y − 3)

B. z − 6 = y(x− 2) + x(y − 3)

C. z − 6 = 2(x− 2) + 3(y − 3)

D. z − 6 = 3(x− 2) + 2(y − 3)
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Tangent Planes and Linear Approximation

Question

The figure shows the graph of f(x, y)
together with its tangent plane at
(1,−1,

√
2). What are the signs of the

partial derivatives of f at (1,−1)?

A. fx(1,−1) < 0, fy(1,−1) < 0

B. fx(1,−1) > 0, fy(1,−1) < 0

C. fx(1,−1) < 0, fy(1,−1) > 0

D. fx(1,−1) > 0, fy(1,−1) > 0
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Tangent Planes and Linear Approximation

Question

For a particular function, f(2, 3) = −1, fx(2, 3) = 5, and
fy(2, 3) = −7. Which of the following approximations of f is valid
near (2, 3)?

A. f(x, y) ≈ −1 + 5(x− 2)− 7(y − 3)

B. f(x, y) ≈ 5(x− 2)− 7(y − 3)

C. f(x, y) ≈ −1 + 5x− 7y

D. f(x, y) ≈ 5x− 7y
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Tangent Planes and Linear Approximation

Question

Suppose L(x, y) = −1 + 5(x− 2)− 7(y − 3) is the linearization of
f(x, y) at (2, 3). The y = 3 trace of the graph of z = f(x, y) is a
curve. What is the slope of the tangent line to that curve at the
point (2, 3,−1)?

A. −7

B. 5

C. −1

D. There is not enough information to decide.
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Tangent Planes and Linear Approximation

Question

A cylinder of height h cm and radius r cm is heated and expands
by 0.1 cm in height and 0.3 cm in radius. Which formula estimates
the expansion in volume in cubic cm?

A. dV = 0.6πrh+ 0.1πr2

B. dV = πr2(h+ 0.1)

C. dV = π(r + 0.3)2h

D. dV = π(r + 0.3)2(h+ 0.1)
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The Chain Rule

Question

Select the appropriate chain rule for computing
∂w

∂u
where

w = w(x, y), x = x(u), and y = y(u, v).

A.
∂w

∂u
=
∂w

∂x

∂x

∂u
+
∂w

∂y

∂y

∂u

B.
∂w

∂u
=
∂w

∂x

dx

du
+
∂w

∂y

∂y

∂u

C.
∂w

∂u
=
∂w

∂x

∂x

∂u
+
∂w

∂y

∂y

∂u
+
∂w

∂y

∂y

∂v

D.
∂w

∂u
=
∂w

∂x

dx

du
+
∂w

∂y

∂y

∂u
+
∂w

∂y

∂y

∂v
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The Chain Rule

Question

If w = xy where x = r cos(θ) and y = r sin(θ), which expression
computes ∂w

∂θ ?

A. ∂w
∂θ = 0

B. ∂w
∂θ = r2 cos(2θ)

C. ∂w
∂θ = −r3 sin2(θ) cos(θ) + r3 sin(θ) cos2(θ)

D. None of the above
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The Chain Rule

Question

If w = f(x, y), x = t2, and y = 5t+ 3, what is
dw

dt

∣∣∣∣
t=1

?

A.
dw

dt

∣∣∣∣
t=1

= fx(x, y) · 2 + fy(x, y) · 5

B.
dw

dt

∣∣∣∣
t=1

= fx(x, y) · 2t+ fy(x, y) · 5

C.
dw

dt

∣∣∣∣
t=1

= fx(1, 8) · 2 + fy(1, 8) · 5

D.
dw

dt

∣∣∣∣
t=1

= fx(1, 8) · 2t+ fy(1, 8) · 5
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The Chain Rule

Question

The intensity I of sunlight varies with position and time. A solar
car is traveling along the ground. Which chain rule would help you

compute
df

dt
, where f is the intensity of sunlight on the panel of

the car and t is time?

A.
df

dt
=
∂I

∂t

B.
df

dt
=
∂I

∂x
+
∂I

∂y
+
∂I

∂t

C.
df

dt
=
∂I

∂x

dx

dt
+
∂I

∂y

dy

dt

D.
df

dt
=
∂I

∂x

dx

dt
+
∂I

∂y

dy

dt
+
∂I

∂t
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Directional Derivatives and the Gradient

Question

Using the table of values of f(x, y)
shown at right, estimate D~uf(1, 2)
where ~u = 1√

2
(~i+~j).

x\y 0 1 2 3

0 −1 1 0 2
1 0 5 3 2
2 1 6 6 5
3 3 7 9 7

A. 2

B. −1/
√
2

C. −3
D. 2/

√
2
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Directional Derivatives and the Gradient

Question

On the contour plot of f shown, there are four directions at P
indicated by unit vectors. For which direction ~u is D~uf at P the
largest?
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Directional Derivatives and the Gradient

Question

If ∇f at P is ~v = 〈3, 4, 12〉, then what is D~uf at P when the
angle between ~u and ~v is 60◦?

A. 13

B.
13

2

C.
13
√
3

2

D. Not enough information to answer.
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Directional Derivatives and the Gradient

Question

If ~r(t) = x(t)~i+ y(t)~j + z(t)~k is a curve in space and
x(t)2 + y(t)2 + z(t)2 = 1, what can you conclude about ~r ′(0)?

A. ~r ′(0) is normal to a sphere of radius 1 centered at the origin.

B. ~r ′(0) = ~0 because |~r(t)| is constant.

C. ~r ′(0) is tangent to a sphere of radius 1 centered at the origin.

D. ~r ′(0) = 2x(0)x′(0)~i+ 2y(0)y′(0)~j + 2z(0)z′(0)~k.
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Directional Derivatives and the Gradient

Question

If x(t)2 + y(t)2 + z(t)2 = 1 for all t and we differentiate both sides
with respect to t, what do we get?

A. 2x(t)x′(t) + 2y(t)y′(t) + 2z(t)z′(t) = 1

B. 2x(t) + 2y(t) + 2z(t) = 0

C. 2x(t) + 2y(t) + 2z(t) = 1

D. 2x(t)x′(t) + 2y(t)y′(t) + 2z(t)z′(t) = 0
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Directional Derivatives and the Gradient

Question

Find the equation of the tangent plane to the surface
3x2 + y2 − z2 = 1 at the point (0, 1, 0).

A. y = 1

B. y = 0

C. 6x(x− 0) + 2y(y − 1)− 2z(z − 0) = 0

D. 6x+ 2y − 2z = 0
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Directional Derivatives and the Gradient

Question

What is the equation of the tangent plane to the surface
z = f(x, y) when x = 2 and y = 3?

A. −fx(x, y)(x− 2)− fy(x, y)(y − 3) + (z − f(x, y)) = 0

B. −fx(2, 3)(x− 2)− fy(2, 3)(y − 3) + (z − f(2, 3)) = 0

C. −fx(2, 3)(x− 2)− fy(2, 3)(y − 3) = 0

D. fx(2, 3)(x− 2) + fy(2, 3)(y − 3) + (z − f(2, 3)) = 0
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Directional Derivatives and the Gradient

Question

If f is not a constant function, what angle θ should ~u make with
∇f at P in order that D~uf(P ) is as large as possible?

A. 0◦

B. 90◦

C. 180◦

D. Not enough information
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Maximum and Minimum Values

Question

The figure shows four points on the
contour map of a function f(x, y).
Which of the four marked points could
be critical points of the function?

A. P only

B. R and S only

C. R only

D. P and Q only

E. All four

A. Caine, B. N. Givens ConcepTests for Calculus 102/1



Maximum and Minimum Values

Question

Suppose f has a critical point at (3, 2), fxx(3, 2) < 0 and
D = fxx(3, 2)fyy(3, 2)− (fxy(3, 2))

2 > 0. What can you conclude?

A. f has a local minimum at (3, 2).

B. f has a local maximum at (3, 2).

C. f(3, 2) is not a local maximum nor a local minimum of f .

D. There is not enough information to decide.
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Maximum and Minimum Values

Question

If f has a critical point at (3, 2), fyy(3, 2) < 0 and
D = fxx(3, 2)fyy(3, 2)− (fxy(3, 2))

2 > 0, can you conclude that f
has a local maximum (3, 2)?

A. Yes, because fxx(3, 2) must also be negative.

B. No, the second derivative test refers only to fxx.

C. Yes, whenever D > 0, f has a local maximum.

D. No, because fxx(3, 2) could be positive.
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Maximum and Minimum Values

Question

For the functions f(x, y) = x2y2 and g(x, y) = x3y3 we get
Df = −12x2y2 and Dg = −45x4y4 which both equal zero at
(0, 0). What is true about f and g?

A. Both f and g have a local minimum at (0, 0).

B. f has a local minimum at (0, 0) and g has a local maximum
at (0, 0).

C. f has a local minimum at (0, 0), g has a saddle point at (0, 0).

D. Both f and g have saddle points at (0, 0).
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Maximum and Minimum Values

Question

Suppose you wanted to find the point (x, y, z) on the surface
z = x2 + y2 which is closest to the point (1, 2, 3). Which of the
following functions of x and y would you minimize?

A.
√
(x− 1)2 + (y − 2)2 + (x2 + y2 − 3)2

B. (x− 1)2 + (y − 2)2 + (x2 + y2 − 3)2

C.
√

(x− 1)2 + (y − 2)2

D. More than one of the above.
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Maximum and Minimum Values

Question

Suppose you wanted to investigate the
values of a function f(x, y) along the
arc of the quarter circle shown. Which
of these substitutions would you plug
into f?

A. x = −
√
4− y2 with 0 ≤ y ≤ 2

B. y =
√
4− x2 with 0 ≤ x ≤ 2

C. x =
√

4− y2 with 0 ≤ y ≤ 2

D. y = −
√
4− x2 with −2 ≤ x ≤ 0
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Maximum and Minimum Values

Question

The figure shows the contours of a function f(x, y) over a closed
region R bounded by a square and four marked points in that
region. Which point is the location of the absolute maximum of f
over R?
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Lagrange Multipliers

Question

The map shows a hiking path on a topographic map and four
marked points. Which point is the highest along the path?
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Lagrange Multipliers

Question

A farmer has 1000 ft of fencing and
wants to make an animal pen next to
river, where fencing would be needed
on only three sides. To find the
dimensions of the pen with maximum
area by the method of Lagrange
Multipliers, what would you use for f
and g?

A. f(x, y) = xy and g(x, y) = 2x+ y

B. f(x, y) = 2x+ 2y and g(x, y) = xy

C. f(x, y) = xy and g(x, y) = x+ y

D. f(x, y) = x+ y and g(x, y) = xy
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Lagrange Multipliers

Question

Match the Lagrange Multiplier Problem

−2x = 2xλ, 2y = 4yλ, x2 + 2y2 = 1

with the graph of the function being optimized and the constraint.

A. B. C.
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Lagrange Multipliers

Question

If you want to design a soda can to hold 350
cm3 of soda using the least amount of metal
to make the can, which optimization problem
should you solve?

A. min 2πrh subject to πr2h = 350

B. min πr2h subject to 2πrh+ 2πr2 = 350

C. min 2πrh+ 2πr2 subject to πr2h = 350

D. min πr2h subject to 2πrh = 350
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Lagrange Multipliers

Question

Which of these word problems could the equations

∇(x+ y + z) = λ∇(x2 + y2 + z2 − 1) and x2 + y2 + z2 − 1 = 0

be used to solve?

A. Find the maximum of the temperature function
f(x, y, z) = x+ y + z over the unit sphere centered at the
origin.

B. Find the maximum of the temperature function
f(x, y, z) = x2 + y2 + z2 − 1 over the plane x+ y + z = 0 in
space.

C. Find the minimum of the temperature function
f(x, y, z) = x+ y + z over the surface given by the equation
x2 + y2 + z2 = 1.

D. More than one of the above.
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Lagrange Multipliers

Question

Which of the points shown is the location of the minimum of
f(x, y) = y along the curve?

A

B

C

D

-15 -10 -5 5 10 15

-15

-10

-5

5

10
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Lagrange Multipliers

Question

In minimizing f(x, y) = y along the
curve g(x, y) = 0 shown, the method
of Lagrange Multipliers will fail. Why?

A. The minimum occurs at P but ∇g = ~0 at P .

B. g is not differentiable at P .

C. The method of Lagrange Multipliers will only detect the
points Q and R.

D. More than one but not all of the above.
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