Stokes' Theorem

Question

The vector field $\vec{F} = \frac{-y\vec{i} + x\vec{j}}{(x^2 + y^2)}$ has $\operatorname{curl}(\vec{F}) = 0$ everywhere that \vec{E} is defined and C is the grinzted single in the plane x = 0 shown

 \vec{F} is defined and C is the oriented circle in the plane z = 0 shown.

True or False:
$$\int_C \vec{F} \cdot d\vec{r} = 0$$
 ?

- A. True, and I am confident
- B. True, but I am not confident.
- C. False, but I am not confident.
- D. False, and I am confident.

