Stokes' Theorem

Question

The vector field $\vec{F}=\frac{-y\vec{i}+x\vec{j}}{(x^2+y^2)}$ has $\mathrm{curl}(\vec{F})=0$ everywhere that

 \vec{F} is defined. How do $\int_{C_1} \vec{F} \cdot d\vec{r}$ and $\int_{C_2} \vec{F} \cdot d\vec{r}$ compare?

A.
$$\int_{C_1} \vec{F} \cdot d\vec{r} < \int_{C_2} \vec{F} \cdot d\vec{r}$$

B.
$$\int_{C_1} \vec{F} \cdot d\vec{r} = \int_{C_2} \vec{F} \cdot d\vec{r}$$

C.
$$\int_{C_1} \vec{F} \cdot d\vec{r} > \int_{C_2} \vec{F} \cdot d\vec{r}$$

D. There is not enough information.

