Stokes' Theorem

Question

The vector field $\vec{F}=\frac{-y \vec{i}+x \vec{j}}{\left(x^{2}+y^{2}\right)}$ has $\operatorname{curl}(\vec{F})=0$ everywhere that \vec{F} is defined. Rank the integrals $I_{j}=\int_{C_{j}} \vec{F} \cdot d \vec{r}$, where the curves C_{j} are shown.
A. $I_{3}<I_{2}<I_{1}$
B. $I_{2}<I_{1}=I_{3}$

C. $I_{1}=I_{2}=I_{3}$
D. $I_{1}<I_{2}<I_{3}$

