The Divergence Theorem

Question

The field $\vec{F}=\frac{x \vec{i}+y \vec{j}+z \vec{k}}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}$ has $\operatorname{div}(\vec{F})=0$ everywhere it is defined. Rank the integrals $I_{j}=\iint_{S_{j}} \vec{F} \cdot d \vec{S}$ if S_{1} and S_{2} are oriented outward while S_{3} is oriented inward.

$$
\begin{aligned}
& \text { A. } I_{3}<I_{2}<I_{1} \\
& \text { B. } I_{2}<I_{1}=I_{3} \\
& \text { C. } I_{1}=I_{2}=I_{3} \\
& \text { D. } I_{3}<I_{1}=I_{2}
\end{aligned}
$$

