
A Deep Look Into Privacy and Security Of
Vacuum Robot

Trong Nguyen
Department of Computer Science

Cal Poly Pomona University
trongnguyen@cpp.edu

ABSTRACT

IoT has become one of the fastest-growing industries along
with Artificial Intelligence and Machine Learning.
Nowadays, many people have smart devices in their
homes. The more popular these devices become, the more
effort we should invest in investigating their security.
Intelligent vacuum robot is one of the IoT devices that
recently have gained public interest. Consumers have
widely adopted vacuum robots, while their security has not
been evaluated thoroughly. Researchers worldwide keep
finding new flaws in vacuum robot systems, and many of
the findings could lead to cyber-attacks.

In this paper, I would like to extend the topic by
analyzing a popular vacuum robot device to exploit
vulnerabilities and bring awareness to consumers. First, I
used dynamic and static analysis to communicate between
the mobile application and vacuum robot cloud server.
After that, the consequences of the attacks were
categorized using three aspects of CIA triads. I also used
STRIDE threat modeling to construct attack scenarios
based on the found vulnerabilities. Finally, I suggested the
manufacturers' mitigations to secure their devices to
protect users' data. [1]

1. INTRODUCTION

Many researchers warn users about the security risk of
vacuum robots in the past. For instance, a group of
researchers in the mobile network lab used reverse
engineering on the robot’s firmware. It figured out the
symmetric key that could authenticate all neato vacuum
robots [2]. Then this allowed the researchers to control all
vacuum robots on their behalf as long as they knew the
robot serial number. This raised a serious security concern
because attackers may affect the availability of the vacuum
robot system. Some attacks the researchers conducted was
stealing attack, data leak attack, or discovering victim’s IP
address.

Another article tells us about a more serve attack by
exploiting the vacuum robot’s lidar sensor [3]. In detail, the
researcher found a way to root the Xiaomi vacuum robot
and gain root access to it. Xiaomi vacuum robots and many
others in the market run Linux as their OS, so it’s always
possible to root them. After gaining root access, the

researchers modified its software to have the lidar sensor
catch sound vibrations.

Then they used machine learning to train a data set with
sound vibration patterns and English words to generate an
inference map between sound and English words. This
model is then used to match sound vibration with 24 letters
of the English word. Then using a LIDAR sensor on the
robot, the research could catch the sound from the
surrounding, send it over the internet, preprocess it, and use
the machine learning model to predict the English word
based on the lidar information. The attack allowed
researchers to spy on victims to listen to sensitive
information such as bank information and social security
number.

2. MOTIVATION

Recently, on E-Commerce websites such as Amazon,
consumers have seen more and more vacuum robot models
appear on the markets. There are so many unknown brands
which offer good deals for their product. Unfortunately,
sometimes a good deal does not come with best security
practices. Normal users who purchase those products may
not be aware of the cybersecurity risk they possess. As a
graduate student interested in the Cyber Security field, I
would like to research the vacuum robot ecosystem, sample
one robot device model in the market, and conduct a
security analysis experiment. By the end of this research
paper, I hope I can bring awareness to the public about the
hidden risks of those tiny helpful robots.

Some vacuum robots are designed a mini tesla car because
it possesses hardwares such as LIDAR sensors, AI camera,
collision sensor just like a tesla car does. I could say the
vacuum robot is a mobile data collector that can be hacked,
so the user’s privacy will be affected. Moreover, when
looking at cyber hacking, I believe many system breaches
don’t need to be performed using full-scale, high-
performance computers. It could come from or tiny devices
that we may not be aware of. For example, the Mirai attack
in 2016 turned a hundred thousand IoT devices such as IP
cameras, home routers into bots and used them to attack
third-party servers.

3. EVALUATION

3.1 IoT Ecosystem

IoT Cloud Infrastructure

The IoT ecosystem consists of three main entities. The first
entity is the IoT end device. It could be the devices
connected directly to the cloud, such as some low-budget
cameras and home assistants like Amazon Echo and
Google Nest. These devices could connect through a hub;
then, the hub would handle communication with the cloud
server. The second entity is the mobile application. The
mobile app users use to create accounts, manage their IoT
device, and perform their IoT device through the mobile
app. The mobile app would then establish a communication
link with the IoT cloud, the third entity. IoT cloud contains
home automation logic, device control, device identity
management.
Vacuum Robot Ecosystem: Vacuum Robot Ecosystem
also derives from the IoT ecosystem mentioned above.
Vacuum Robot: There are four types of vacuum robots in
the market now. First, the vacuum robot is equipped with
an ultra-sonic sensor. This kind of robot uses a passive
mechanism to navigate through the house. It would bump
everywhere to finish house cleaning without having a
planned map. The second type of vacuum robot is equipped
with a Lidar Sensor. This kind of robot uses a laser beam
to scan our house and construct a map; then, it would
establish a route based on the map in memory. This kind of
robot would have our house floor plan in its memory. The
third type of vacuum robot uses a camera tilt of about 45
degrees to navigate our house. This kind of robot would try
to scan the house’s wall first then use another sensor to map
our house. The last type is the most expensive and
advanced one. It uses both a LIDAR and a camera. LIDAR
sensor is used to map the home, and AI camera is used to
detect an object to steer the robot always from objects
Vacuum Robot Mobile App: This is responsible for
account registration, login, set up, and robot control. Users
can use the app to connect with the robot directly or with a
cloud server.
Vacuum robot cloud server: Used to handle account
registration, device binding requests, and relay users
command to the robot

3.2 State machine of IoT device or vacuum robot

All IoT devices in the market, including vacuum robots,
follow state machines for their operational modes. These
states machines can be illustrated through the following
diagram. [4]

Figure 2. IoT State Machine

At initial set up, the robot device waits for a Wi-Fi
connection; the mobile application would search for the
device. The cloud server would wait for the device
registration. The robot device needs to send basic
information such as the serial number to the mobile app to
move to the second state. The mobile app would send the
user id and robot serial number to the cloud server to
initiate the binding process. Next state, the robot device
would connect to the cloud server, the mobile app will
synchronize device login status. In-state 4, the robot device
would always try to keep the connection with the cloud
server. Every time it loses contact with the cloud, it would
try to reconnect. The link would be terminated until the
users push the reset button on the robot device. The mobile
application continuously synchronizes with the device
connection status. The mobile application can also unbind
the user account and robot device. The cloud receives
binding and unbinding requests and gets a status update
from the robot device, then relays those statuses to the
mobile application.

However, most IoT devices lack a mechanism to
enforce the consistency of those states. The state
consistency means a state of all three entities must be
synchronized, and none of these entities should be out of
state. This mechanism should have existed to prevent such
attacks as a binding attack, stealing attack.

Consequently, the IoT ecosystem suffers from flaws.
One of the flaws is insufficient to state guard; for example,
in-state 4, the cloud should only accept device control
requests, not binding requests. However, in my next
experiment, we would see the cloud also accepted that kind
of request. The other flaws are unauthorized device login
and unauthorized device unbinding. Ideally, the cloud
should only allow requests issued from the bond with the
owner's account. However, also in my experiment, we
would see the cloud accept requests unconditionally from
any users, even letting them unbind the device.

3.3 Experimental Setup

In this experiment, I chose a popular vacuum robot to do a
comprehensive cybersecurity analysis. This project aims to
verify the IoT flaws mentioned above and measure the

severity of damage that a malicious vacuum robot can
cause to a user’s privacy. The scope of these experiments
would focus on the vacuum robot mobile application to
investigate the data collection. In addition, I would observe
the data communication between the mobile app and the
cloud server to see if we can perform data leaking attacks
and device stealing attacks.

3.3.1 Vacuum robot selection

The vacuum robot system that I used to experiment with is
Proscenic M7 Pro on Amazon with its Android mobile
application app Proscenic home. This type of vacuum robot
has more than 2000 reviews on Amazon, and the mobile
app has been downloaded more than 100,000 times from
the app stores. Therefore, any vulnerability that we could
find would be significant damage to the user’s privacy. The
chosen robot is equipped with LIDAR and ultrasonic
sensors. The map data generated by this robot would be
stored on Proscenic’s cloud server. This robot also requires
a WiFi connection, and the control commands are made by
the mobile app then relayed through a cloud server.

3.3.2 Scope Of Empirical Vulnerability Analysis

The figure below shows the communication between the
three entities. The red arrow and letters show what kind of
analysis and testing I would perform on which entity. First,
I would perform privacy analysis on the mobile application
to investigate data collection on the vacuum mobile app.
Next, I observed the data exchange between the mobile app
and robot on the link between these two entities. Then I
intercepted these requests and forged the requests to see if
I could illegitimately retrieve data or control the device on
behalf of the actual user.

Figure 3. Scope Of Vulnerability analysis

3.3.3 Experiment Methods:

To complete the experiment, I used two standard
techniques in cybersecurity called static and dynamic
analysis. The static analysis looks at applications at rest,
such as searching through their source code to identify
manicous code or library. For example, the reverse
engineering process can be done using APK-Tool or JAD-
GUI to convert Android installation file APK format to
java source code [5]. On the other hand, the dynamic
analysis looks at the data exchange when a mobile app
communicates with a cloud server using Wireshark or

mitmproxy. The researchers would then examine the
packet captured by the tools to understand more about the
data's protocols and business logic.

Apk-tool and Jad-Gui are the tools used to decode
Android Apk files into original form, Java code. As a high-
level programming language researcher, I could read and
understand the application's behaviors with Java source
code. App's behaviors contain business logic and are data-
driven, so we could have a complete picture of the
manufacturer's purposes. In addition, those tools also give
us the ability to know about the 3rd libraries that the
android app is using. In many cases, the Android apps use
multiple 3rd extensions to speed up their software
development life cycle. However, the cons are many 3rd
extensions do not have their code public verified for
security. It means that there is a big chance that an Android
app is not malicious, but their 3rd library is, but the app is
not aware of that issue. The reverse engineering tools are
also crucial by extracting the developer's comments in the
source code. There are cases that investigators get the
developer's intention just by reading the code comments.

mitmproxy is an essential tool used in this research for
dynamic analysis [6]. The software acts as an intermediate
communication channel between the client and server. For
example, we all know that an HTTPS connection is secured
by an SSL certificate, which means data transfer between
those two endpoints will be encrypted by public keys.
mitmproxy would stand between the client and server.
When the client sends the necessary information to the
server to establish the TLS connection, mitmproxy will
intercept and pause that connection. Then mitmproxy
would use the client's information and send the SNI to the
server on behalf of the client. The server would be tricked
and send back the values needed to generate the
interception certificate. The client is also be tricked into
making it believe communicating directly with the server.
The mitmproxy is the one that produces an interception
certificate, so it holds the necessary private key to decrypt
the traffic between client and server. Hence, using
mitmproxy, I could see the decrypted data between the
mobile app and the cloud server to better understand the
app's behavior.

One of the most exciting features of mitmproxy is to
allow users to intercept requests and modify the requests
[7]. After doing that, the request could be replay to the
server. Only the parts that user’s changes are modified. The
rest of the requests remains untouched, including the
authentication token. Hence, mitmproxy users do not need
to worry about authentication when experimenting.
Instead, the researchers could solely focus on penetration
testing of the systems. In the investigation of this paper, I
would intensively use MITM proxy to confirm security
flaws exists in the IoT device ecosystem.

Figure 4. mitmproxy traffic flow

3.3.3 Scope of Empirical Vulnerability Analysis

However, Android OS has a mechanism to check whether
the server possesses a well-trusted certificate or flag that
connection and refuses to exchange the data. I used a Nexus
phone; then, I rooted it to alter the system file. Next, I
injected a mitmproxy certification into the system file;
then, the Nexus 6 will unconditionally trust the mitmproxy
server and accept exchanging data. The Proscenic
application worked perfectly on the rooted Android phone
and communicated with the cloud server without any
issues. Consequently, all the network communication
between the Proscenic app and the cloud server was
exposed to the mitmproxy server and ready to be modified.

Figure 5. Technique to overcome the Ssl Issue on Mitmproxy

3.4 Proscenic Mobile App Data Privacy Investigation

Using mitmproxy, I detected some suspicious web requests
made by the vacuum robot mobile app. These requests
were periodically sent to two remote servers, which were
Alibaba cloud and JD cloud. These cloud services have
been known for collecting user data for analysis. I was
curious about what kind of data they were collecting and
decided to use more techniques to reveal it later. I noticed
another suspicious thing that the device posted data even
when the app was running in the background. Right after
the device was unlocked, the application immediately
made post requests to those endpoints.

One more thing, the request body was encrypted to
obfuscate the content to prevent someone from seeing the
data payload. We all know that internet communication is
protected by public-private critical infrastructure known as
SSL or HTTPS. It means that web request’s payload data
are encrypted. However, in this experiment, we see that the
payload data in submissions was also encrypted again
using an encryption algorithm. We believe the extra

encryptions here played another purpose except protecting
user data. The programmer who develops the app may want
to hide the data payload to prevent normal users from
knowing about collected data. Also, some research about
the JPUSH library presents that this library is famous for
collecting sensitive information from users [8]. For that
reason, I decided to use reverse engineering techniques to
reveal the myth.

One quick way to overview Android application usage
is to look at the Android manifest.xml file. I used the APK
tool and Jad-GUI to look at the permission manifest of the
app. Every android application, when being developed, has
the manifest file indicating which permissions they need
and will request those permissions from the Android OS
system. Hence, an android application can request as many
as it desires. Then all responsibility of allowing these
permissions would solely depend on users. If we use
Android phones, we would be asked if we want to allow
some permissions when launching an app. Please make
sure to read that permission carefully and do not allow all
permissions without reading them. Some manicous apps
request more permission than they need.

In the below figure, the image on the left shows
permissions of the Proscenic robot app. The right image is
the permission from the Roomba IRobot app. Clearly, with
similar functionalities, the Irobot app only requests about
1/3 of the permission compared to the Proscenic app. By
looking closely into the Proscenic Permission, you can see
that there is RECEIVE_USER_PRESENT, which allows
the app to send data when the user unlocks the phone even
the app is running background. MOUNT SYSTEM
permission allows the app to access the file system.
BLUETOOTH PRIVILEGED allow the app to scan for
nearby Bluetooth device. WRITE SETTING allows the
app to change the system setting. READLOG allows the
app to read OS system log of the phone [9]. More
permissions appear in the manifest which the purposes are
questionable.

Figure 6. Proscenic permission Manifest file

I took a deeper look by reverse engineer the android
app into java source code. I found a code that collects
sensitive user data such as our cellular network or data
about the user’s WiFi SSID , IP and MAC address, DNS.
There is another piece of code that is collecting the phone
IMEI number.

After collecting those data, the app would use another
piece of code to construct the URL to post data to. Then
data was ready to be posted to remote servers.

On the bottom left of the below figure, the app used a
function to encrypt what they are collecting in the first part,
then used a web request post to post the data packet to the
URL it had generated.

Figure 7. Proscenic Data Collection

3.5 Penetration Testing on Proscenic Vacuum Robot
Cloud

3.5.1 Vacuum Robot Serial Number Generation

The following experiment is to exploit the vulnerabilities
in the vacuum robot cloud server: Previously, I mentioned
some IoT devices, including vacuum robot cloud servers,
recklessly authorize web requests. In this robot model, I
observed and saw if I supplied the correct robot device
serial number,the cloud server allowed the request and let
me check the online status of other robots, although I
never owned it.

The web-API URL used to check the robot's online
status is in the figure below. Then in the response body,
we would see the online status corresponding to the
robot's serial number. Valid means the robot is online, and
false means the robot is currently offline. This web
request is captured using mitmproxy as well.

The first step of this testing is to find other robot's
serial numbers first. Then we can replay the robot
checking request to check another robot's online status.
For your information, every IoT devices on the market
has its serial number generated in two ways:
-Type 1: The device sends identity information to the IoT
cloud. Then, the cloud generates the id and returns it to
the device. This is also called dynamic device identity
assigning.
- Type 2: Device id is generated by the device platform
and hardcoded in the firmware. The robot in our
experiment belongs to this type. This type of device is the
most vulnerable because once the serial is leaked, it will
be leaked forever. There is no way to change it since it's
hardcoded. Which mean if cloud server they do not do
proper authorization, these devices can be breached.

3.5.2 Vacuum Robot Online Status Penetration Testing
Plan

I knew that Proscenic number is hardcoded and use
arithmetic number. It means I can increase the last digit of
my robot serial number by 1; then, I would get another
correct serial number. When the mobile robot app is
launched, it will send a robot status checking request. At
that time, I captured that request and manipulated the serial
number with the newly found serial number. Response
from that request would contain the online status of another
person’s robot.

Similarly, I keep increasing the last digit of the robot
serial number by one and replaying the request to check the
online status of robots of the entire network. Instead of
manually doing all the above steps, I wrote a script to
automate the whole process from serial number generation
to replay the web request. Then I was able to do a mass
online checking on the vacuum robot server without
restricting the server.

Figure 8. Proscenic cloud online status hacking

3.5.3 Vacuum Robot Map Sniffing Attack

As mentioned earlier, a vacuum robot with a LIDAR sensor
would scan your house and generate a map; then, they
would use that map to navigate our house. Most vacuum
robots also store your map data in a cloud server. However,
as our experiment shows, The Proscenic cloud server did
not check robot ownership against the username – robot
serial number mapping before accepting incoming
requests. This experiment will use the same technique to
forge the URL request and retrieve other people's map data.
All I needed to do was intercept the web request used for
map retrieval, then I manipulated the serial number and
replayed the request. The server, without a doubt,
responded to me with a house map of another user. At this
point, an attacker who knows about this security hole could
quickly write a script to pull thousands of map data from
the Proscenic Vacuum Robot Owner.

Figure 9. Proscenic cloud map data hacking

3.5.4 Vacuum Robot Stealing Attack

This experiment was about a vacuum robot stealing attack.
In the previous experiments, I could check online status or
retrieve map data of another robot because the server lacks
user-base authorization. In this attack, I used two Proscenic
accounts and one vacuum robot device. In the beginning,
the vacuum robot belonged to the first account, the real
owner's account. I would take the attacker's role and use
the URL to illegally bind the robot to the attacker's account
and unbind that robot from the victim’s account. The
process was to reuse the binding request generated when
the user set up the robot first with a different email address.
Instead of sending a serial number and the real user's email
address to the cloud for binding processing, we replaced
the user’s email address with the attacker's email. As
predicted, the cloud server just approved that malicious
binding attack. The result is the vacuum robot serial
number was bound to the attacker's account, then the
attacker's phone screen showed that vacuum robot device.
When we refreshed the victim's Proscenic app, the robot
device disappeared because the victim had already lost
ownership of that vacuum robot.

3.4 Evaluation using CIA triads, STRIDE threat model

3.4.1 Violation of CIA triads

From the impact points that I just found, I would like to put
those them under CIA triads categories to evaluate the to
get the complete picture of possible threats

-Violation of Confidentiality: By successfully guessing the
robot’s serial numbers, an attacker can damage the
confidentiality principle by gathering information about
the online robot status, map data, victims’ home Wi-Fi
SSID, local IP address
- Violation of Integrity: Using the same way, I acted like
an attacker and was able to change the robot’s name
without having ownership of that robot. I can possibly alter
the map’s data of a robot to affect its navigation capability.
For example, adding coordination to the map JSON to
make the robots think an area is a wall and refuse to go
there.
- Violation of Availability principle: Because the
webserver is not one hundred percent secure, which is

proven in this research, an attacker may perform a DDOS
attack to bring the service down. Or at least, someone can
impersonate a user’s robot, steal the ownership of the robot
by binding it to another account or delete the robot’s map
to alter its performance. All those kinds of actions would
affect the availability of the system by preventing users
from using the devices smoothly

3.4.2 Apply STRIDE threat modeling to suggest mitigations

Microsoft STRIDE models view all threats under six
categories: Spoofing, Tampering, Repudiation,
Information Disclosure, Denial of Service, Elevation of
Privileges. From the vacuum robot system analysis, I
applied this threat model to cover all the threats that I
found, including other possible threats.

- Spoofing is gaining access to a system by signing
a false identity. The attack scenario is an attacker
can perform a guess robot serial number to send
the command to the robot on behalf of the owner.
Mitigation that a manufacturer can do is use a
server to randomly generate a serial number and
assign it to the robot. In addition, the cloud server
should check against the database to see if an
owner owns that robot, then authorize the
incoming requests.

- Tampering is an unauthorized modification of
data. In an attack scenario, an attacker can change
the victim’s robot name. Delete, modify map data
and activity records. Mitigation for this threat is
like what we should have in spoofing.
Manufacturers should have a stronger access
control

- Repudiation is the ability of users to deny that
they performed specific actions or transactions.
An attack scenario would be that an attacker may
deny using an account with a tool to intercept and
forge requests to perform unauthorized requests.
Mitigation for that threat is the robot vendor
should implement logging features that log
username, IP addresses along with corresponding
activities

- Information disclosure is unwanted disclosure of
private data. An attack scenario would be an
attacker can perform an injection, buffer overflow
attack to execute privileged commands.
Mitigation is protecting API endpoints by
validating input, performing security in-dept,
least privilege principle.

3.4.2 Attack tree for a bot-net attack scenario

As being said, IoT devices, including vacuum robots,
can be impersonated then weaponized to perform an
DDOS attack on a third-party server. The following
attack tree may give us an overall picture of possible

approach that an attackers may take. Although this is
not a completed tree, and some approaches have not
been tested for usability yet, it is still helpful to be
aware of those attack vectors. Furthermore, the graph
is well-explained, so I believe there is no need for
further explanation.

4. CONCLUSION

After the experiment, we understand that the IoT cloud
ecosystem, including the vacuum robot ecosystem, could
contain serious vulnerabilities that affect users' privacy and
can be weaponized for bot-net attacks. The Proscenia cloud
server’s access control is weak and incapable of protecting
users' data, so anyone who discovered this flaw can take
advantage and retrieve users' data massively. The
manufacturer could improve the security of their cloud
server by enforcing state machines, performing defense in
depth, least privilege mechanism. Consumers can protect
their privacy by choosing IoT devices carefully. It is crucial
to analyze the security of these devices before using them.

My future research would focus more on the robot device
entity to learn what other data the robot sends back to the
cloud server besides the navigation map data. First, I may
research a robot model with a camera to learn how they
process the images and where the robot sends them. After
that, I will extend the attack trees and verify which
approaches an attacker could implement in real life over a
robot model.

5. REFERENCES

[1] A. Bhardwaj, V. Avasthi, and S. Goundar, “Cyber
security attacks on robotic platforms,” Netw.
secur., vol. 2019, no. 10, pp. 13–19, 2019.

[2] F. Ullrich, J. Classen, J. Eger, and M. Hollick,
“Vacuums in the cloud: Analyzing security in a
hardened IoT ecosystem,” in 13th {USENIX}
Workshop on Offensive Technologies ({WOOT}
19), 2019.

[3] S. Sami, Y. Dai, S. R. X. Tan, N. Roy, and J. Han,
“Spying with your robot vacuum cleaner:

Eavesdropping via lidar sensors,” in Proceedings
of the 18th Conference on Embedded Networked
Sensor Systems, 2020.

[4] Zhou, Wei, et al. “Discovering and Understanding
the Security Hazards in the Interactions between
IoT Devices, Mobile Apps, and Clouds on Smart
Home Platforms.” ArXiv Preprint
ArXiv:1811.03241, 2018.

[5] “Apktool,” Github.io. [Online]. Available:
https://ibotpeaches.github.io/Apktool/. [Accessed:
04-May-2021].

[6] “How mitmproxy works,” Mitmproxy.org.
[Online]. Available:
https://docs.mitmproxy.org/stable/concepts-
howmitmproxyworks/. [Accessed: 04-May-2021].

[7] “Intercepting Android app traffic - ciko,” Ciko.io.
[Online]. Available:
https://ciko.io/posts/intercepting_android_traffic/.
[Accessed: 04-May-2021].

[8] J. Reardon, 3. Nathan Good, 3. Robert Richter
Vallina-Rodriguez, 5. Serge Egelman, 6. Quentin
Palfrey, and 8. Tr-20-, “JPush away your privacy:
A case study of jiguang’s android
SDK,” Berkeley.edu. [Online]. Available:
https://www.icsi.berkeley.edu/pubs/privacy/TR-
20-001.pdf. [Accessed: 04-May-2021].

[9] A. Bhatia, android-security-awesome. .

