Metric Dimension and a Puzzle on a Chessboard

Briana Foster-Greenwood
Christine Uhl

Cal Poly Pomona

St. Bonaventure University
CSU Mathematical Conference
Northridge, California
November 11-12, 2022

Chapter 1: The Puzzle

in which a puzzle on a chessboard is seen to be equivalent to a problem on a graph

Puzzle: Location on a Chessboard

3×3 board

Puzzle: Location on a Chessboard

Place landmarks in some of the cells

Puzzle: Location on a Chessboard

Label each remaining cell with list of landmarks seen from that cell, i.e., appearing in the same row or column

Puzzle: Location on a Chessboard

	A	B
A	A	A, B
B	A, B	B

Is the board resolved?

Puzzle: Location on a Chessboard

	A	B
A	A	A, B
B	A, B	B

Is the board resolved? No! Some cells see the same set of landmarks.

Puzzle: Location on a Chessboard

	A	B
A	A	A, B
B	A, B	B

How many landmarks are needed to resolve the board?

Puzzle: Location on a Chessboard

	A	B, C
A, C	A	C
B	A, B	B

We can resolve the 3×3 board with 3 landmarks, and no fewer.

Puzzle: Location on a 3D-Chessboard

$3 \times 3 \times 3$ board

Puzzle: Location on a 3D-Chessboard

$3 \times 3 \times 3$ board

Puzzle: Location on a 3D-Chessboard

Place landmarks in some of the cells

Puzzle: Location on a 3D-Chessboard

A	A	A
A	A	A
A	A	A

A	A	A
A		
A		

A	A	A
A		
A		

Label each remaining cell with list of landmarks seen from that cell, i.e., appearing in the same row, column, or layer

Puzzle: Location on a 3D-Chessboard

A	A, B, C	A, B, C
A, B	B	A, B
A, B	A, B, C	A, B

A, C	C	A, C
A, B, C	B, C	B, C
A, C	B, C	C

A, C	A, B, C	A, C
A, B	B, C	B
A	B, C	

Is the board resolved?

Puzzle: Location on a 3D-Chessboard

A	A, B, C	A, B, C
A, B	B	A, B
A, B	A, B, C	A, B

A, C	C	A, C
A, B, C	B, C	B, C
A, C	B, C	C

A, C	A, B, C	A, C
A, B	B, C	B
A	B, C	

Is the board resolved? No! Some cells see the same set of landmarks.

Puzzle: Location on a 3D-Chessboard

A	A, B, C	A, B, C
A, B	B	A, B
A, B	A, B, C	A, B

A, C	C	A, C
A, B, C	B, C	B, C
A, C	B, C	C

A, C	A, B, C	A, C
A, B	B, C	B
A	B, C	

How many landmarks are needed to resolve the board?

2D Puzzle and Metric Dimension of a Graph

3×3 puzzle

$K_{3} \square K_{3}$

How many landmarks are needed to resolve the graph?

2D Puzzle and Metric Dimension of a Graph

3×3 puzzle

$K_{3} \square K_{3}$

How many landmarks are needed to resolve the graph?

2D Puzzle and Metric Dimension of a Graph

111	211	122
212	A	C
121	221	B

3×3 puzzle

$K_{3} \times K_{3}$

How many landmarks are needed to resolve the graph?

Metric Dimension of $K_{m} \square K_{n}$

Theorem (Cáceres, et.al., 2007)
The metric dimension of $K_{m} \square K_{n}$ is

$$
\operatorname{dim}\left(K_{m} \square K_{n}\right)= \begin{cases}\left\lfloor\frac{2}{3}(m+n-1)\right\rfloor & \text { if } m \leq n \leq 2 m-1 \\ n-1 & \text { if } n \geq 2 m-1\end{cases}
$$

Note: For $m, n \geq 3$, the Cartesian product $K_{m} \square K_{n}$ and the direct product $K_{m} \times K_{n}$ have the same minimum resolving sets and metric dimension.

Metric Dimension of $K_{m} \square K_{n}$

Theorem (Cáceres, et al., 2007)
For $m, n \geq 2$, a placement of landmarks resolves the $m \times n$ board iff

- there is at most one empty row and at most one empty column
- there is at most one lonely landmark
- if there is an empty row and an empty column, then there is no lonely landmark

	A	B
A	A	A, B
B	A, B	B

	A	B, C
A, C	A	C
B	A, B	B

3D Puzzle and Metric Dimension of a Graph

What is the metric dimension of a direct product of three complete graphs?

$3 \times 3 \times 3$ board

$K_{3} \times K_{3} \times K_{3}$

Chapter 2: The Landmark Hypergraph

in which we graph relationships between landmarks and use edge coloring to characterize resolving sets

Defining the Landmark Hypergraph

Landmark hypergraph of $W \subseteq V\left(K_{3}^{3}\right)$
Hyperedges group landmarks with a common coordinate: blue (1st coordinate), green (2nd coordinate), pink (3rd coordinate)

Make a Guess!

Which could be the landmark graph of a resolving set for K_{4}^{3} ?

Forbidden Subgraph Theorem

Theorem (F-G.,Uhl, 2022)

Suppose the landmark graph of $W \subseteq V\left(K_{n}^{3}\right)$ is a simple graph with n edges of each color. Then W resolves K_{n}^{3} if and only if the landmark graph of W avoids forbidden 4-cycles and forbidden 6-cycles.

Forbidden Subgraph Theorem

Theorem (F-G.,Uhl, 2022)

Suppose the landmark graph of $W \subseteq V\left(K_{n}^{3}\right)$ is a simple graph with n edges of each color. Then W resolves K_{n}^{3} if and only if the landmark graph of W avoids forbidden 4-cycles and forbidden 6-cycles.

Bonus! If the landmark graph also avoids rainbow triangles, then $W \cup\{(n+1, n+1, n+1)\}$ resolves K_{n+1}^{3}.

Forbidden Subgraphs

Which could be the landmark graph of a resolving set for K_{4}^{3} ?

Forbidden Subgraphs

Which could be the landmark graph of a resolving set for K_{4}^{3} ? Not the cube. The Möbius graph!

Chapter 3: Metric Dimension of K_{n}^{3}

in which we construct minimum resolving sets of K_{n}^{3} and show the metric dimension is $2 n-1$ (usually)

Solving the $4 \times 4 \times 4$ Puzzle

Given graph that avoids forbidden 4-cycles and forbidden 6-cycles...
Number edges of each color 1-4 and determine coordinates of landmarks.

Solving the $4 \times 4 \times 4$ Puzzle

Given graph that avoids forbidden 4-cycles and forbidden 6-cycles...
Number edges of each color 1-4 and determine coordinates of landmarks.

Puzzle Solution $(4 \times 4 \times 4$ board $)$

Puzzle Solution ($5 \times 5 \times 5$ board)

				I

Metric Dimension of $K_{n} \times K_{n} \times K_{n}$
Theorem (F-G.,Uhl, 2022)
The metric dimension of the direct product $K_{n}^{3}=K_{n} \times K_{n} \times K_{n}$ is

$$
\operatorname{dim}\left(K_{n}^{3}\right)= \begin{cases}2 n & \text { if } n \in\{3,4\} \\ 2 n-1 & \text { if } n \geq 5\end{cases}
$$

$$
n=6(\text { bonus } n=7)
$$

$n=7$ (bonus $n=8$)

Landmark Graphs of Resolving Sets

$$
n=2 k(\text { bonus } n=2 k+1)
$$

$n=2 k+1$ (bonus $n=2 k+2)$
Infinite family of graphs avoiding forbidden 4-cycles, forbidden 6-cycles, and rainbow triangles

Further Exploration

Current work on $n_{1} \times n_{2} \times n_{3}$ puzzle

- generalization of Forbidden Subgraph Theorem
- constructions of resolving sets

Questions

- What other equivalent combinatorial problems are there?
- Which graphs achieve lower bound $2 \max \left(n_{1}, n_{2}, n_{3}\right)-1$?
- What if we vary constraints on landmark hypergraph?
- What about direct product of more than three complete graphs?

Thanks!

