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Self-powered Dynamic Systems
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Farbod Khoshnoud, M. M. McKerns, Clarence W. De Silva, Ibrahim Esat, Houman Owhadi, Self-powered Dynamic Systems in 

the framework of Optimal Uncertainty Quantification, ASME Journal of Dynamic Systems, Measurement, and Control, 

Volume 139, Issue 9, 2017.
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Self-powered Control

Farbod Khoshnoud, Dario Robinson (Pomona Police), Ibrahim I. Esat (Brunel), Clarence W. De Silva (UBC), Marco B. 

Quadrelli (JPL), Research-informed service-learning in Mechatronics and Dynamic Systems, American Society for 

Engineering Education conference, Los Angeles, April 4-5, 2019, Paper ID #27850.
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http://aseepsw2019.calstatela.edu/papers/27850.pdf


The experimental energy harvesting rig

Farbod Khoshnoud, Y. Zhang, R. Shimura, A. Shahba, G. Jin, G. Pissanidis, Y.K. Chen, Clarence W. De Silva, Energy regeneration from 

suspension dynamic modes and self-powered actuation, IEEE/ASME transaction on Mechatronics, Volume: 20,  Issue: 5, pp. 2513 -

2524, 2015. Video Link

Farbod Khoshnoud, Dinesh B. Sundar, Nuri M. Badi, Yong K. Chen, Rajnish K. Calay and Clarence W. de Silva, Energy harvesting from suspension 
system using regenerative force actuators, International Journal of Vehicle Noise and VibrationVol. 9, Nos. 3/4, pp. 294 - 311, 2013.

Videos - MovieMaker/RegenerativeRig.wmv


Mechatronics Systems engineering

Solar aircraft

Energy harvesting from human motion BB-8 Droid

Mechatronics Club
Autonomous vehicles

Energy from 

human motion

Bio-inspired vertical axis wind turbines



Brunel Solar Powered 
Unmanned Aerial Vehicles:  

Towards infinite endurance UAVs

Brunel Solar Powered Airships: Towards Infinite Endurance UAVs
• Neutral/partial buoyancy for lift
• Photovoltaics cells for charging batteries  
The combination of buoyancy lift and solar energy make solar airships more energy efficient than similar 
application aerial vehicles for various duty cycles and operations.
Applications:  Security, emergency, surveillance, transport, connected vehicles related applications, various 
robotic and control applications, etc.



Self-Powered Solar Autonomous Aerial Vehicles

Benefits and applications: no limit
Emergency Response, Delivery, Traffic 

control, Agricultural, Surveillance, Search 

and rescue, Security, Telehealth, Beaming 

internet, Aerial robotics, Maintenance…

Project Summary
Building a self-sustained solar powered 

aerial vehicle towards “infinite” 

endurance operation as a self-powered 

system.
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Farbod Khoshnoud, Ibrahim I. Esat (Brunel), Clarence W. De Silva (UBC), Jason Rhodes, Alina Kiessling (JPL), Marco B. Quadrelli (JPL), Self-

powered Solar Aerial Vehicles: towards infinite endurance UAVs, Unmanned Systems, Vol. 8, No. 2, 2020, pp. 1–23. [Preprint PDF]

https://www.worldscientific.com/doi/abs/10.1142/S2301385020500077
https://arxiv.org/ftp/arxiv/papers/1911/1911.07904.pdf




State-of-the-Art

Aerostat 

Lockheed Martin Hybrid Airship Airlander 10



NASA Jet Propulsion Laboratory 
20-20-20 Airship Challenge

Source: NASA JPL: 

http://www.jpl.nasa.gov/news/news.php?feature=4391

Applications:

Astronomy: using telescopes on the airship to create high-resolution 

images of stars and other objects.

Earth Science: data collected by airships for investigating climate 

change and weather.

“Follow weather patterns, even get above a hurricane. A satellite can't 

do that because its orbit can't be changed,” Jason Rhodes.

Telecommunication: providing wireless Internet to remote areas. 

Source: NASA JPL: 

http://www.jpl.nasa.gov/news/news.php?feature

=4391

Farbod Khoshnoud, I. I. Esat, C. W. de Silva, Jason D. Rhodes, Alina Kiessling, Marco B. 

Quadrelli, Solar Powered Autonomous Aerial Vehicles: Towards infinite endurance UAVs, 

Unmanned Systems Journal, 2019





Solar Powered UAVs (3 million euros)
Multibody Advanced Airship for Transport (MAAT) 

Diameter: 350m

Height: 70m

Cruising altitude: 15,600m

Max Speed: 300km/h

Power generating capacity: 3-4MW

Capacity: 510 passengers

Weight: 500 tons

Selling cost: $400m 

Annual operating cost: $24m

Reference: 

Farbod Khoshnoud, Y.K. Chen, and R.K. Calay, On Power and Control Systems of Multibody Advanced Airship for Transport, 

International journal of Modelling, Identification and Control, Int. J. Modelling, Identification and Control, Vol. 18, No. 4, 2013.



Various Designs for 
Unmanned Aerial Vehicles 

(UAVs)

Students: Oliver Salsbury, Daniel Raineri, Giuliano Morreale, Timothy Taylor, Daniel Sutch, 

Psam Elyon, George Glass, Nejc Terbuc,  Daniel Phillips, Dogan Guler, Conrad Warden, 

Kwan Wong, Mohamed Farah, Daniel Cheung, Nur Muhar, Latifah Mohd Bakri, Nik Mohamad 

Shafie, Syafiyyah Naamat, Ahmad Mohd Fauzee, Muhammad Nawawi



Quadrotor solar powered UAVs

Brunel Solar-powered airship: Towards infinite
endurance UAVs

• Neutral/partial buoyancy for lift
• Photovoltaics cells for recharging batteries  
The combination of buoyancy lift and solar energy make 
solar airships more energy efficient than similar 
application aerial vehicles for various duty cycles and 
operations.

Applications:  Security, emergency, surveillance, transport, 
connected vehicles related applications, various robotic 
and control applications, etc.

Lift force 

from the 

propellers

Buoyancy Lift 

force from 

helium 

balloons

Weight

Thrust force from the 

propellers
Drag force



Technology Readiness Level

£25million airship Airlander 10 (Source: Daily Mail, August 25, 2016).

Much of the world has no access to paved roads. Vast cargo-bearing airships 

could reach places that planes and trucks can’t.



Octorotor solar powered UVs

Students: George Glass, Nejc Terbuc,  Daniel Phillips, Dogan Guler, Conrad Warden, Kwan Wong, Mohamed Farah, Daniel 

Cheung Video Link

https://www.youtube.com/watch?v=u9fBr7l-Lrw

Farbod Khoshnoud, Ibrahim I. Esat (Brunel), Clarence W. De Silva (UBC), Jason Rhodes, Alina Kiessling (JPL), Marco B. Quadrelli (JPL), Self-

powered Solar Aerial Vehicles: towards infinite endurance UAVs, Unmanned Systems, Vol. 8, No. 2, 2020, pp. 1–23. [Preprint PDF]

Videos - MovieMaker/Octoship.wmv
https://www.youtube.com/watch?v=u9fBr7l-Lrw
https://www.worldscientific.com/doi/abs/10.1142/S2301385020500077
https://arxiv.org/ftp/arxiv/papers/1911/1911.07904.pdf


Octorotor solar powered UAVs - Octoship

Group:

George Glass, Nejc Terbuc,  Daniel Phillips, Dogan Guler, Conrad Warden, Kwan Wong, 

Mohamed Farah, Daniel Cheung, Farbod Khoshnoud

Farbod Khoshnoud, M. M. McKerns, C. W. De Silva, I. I. Esat, R. H.C. Bonser, H. Owhadi, Self-powered and Bio-inspired 

Dynamic Systems: Research and Education, ASME 2016 International Mechanical Engineering Congress and Exposition, 

Phoenix, Arizona, USA, 2016. 



Bocsh Award for “the Best project in mechanical engineering” from the Bocsh Ltd company, 2016.

From left: Farbod Khoshnoud, Mark Woodcock from Bosch Ltd, Nejc Terbuc, Daniel Phillips, Vice-Chancellor and President 

Professor Julia Buckingham, Conrad Warden, Kwan Wong, George Glass, Daniel Cheung; Sitting: Dogan Guler, Mohamed Farah

Brunel UAVs



Trirotor Solar-Fuel Cell Powered Vehicles: 
Towards Infinite endurance UVs

Students: Oliver Salsbury, Daniel Raineri, Giuliano Morreale, Timothy Taylor, Daniel Sutch, Psam Elyon

Video Link

https://www.youtube.com/watch?v=H0TMFUxOiFM&t=4s

Farbod Khoshnoud, Ibrahim I. Esat (Brunel), Clarence W. De Silva (UBC), Jason Rhodes, Alina Kiessling (JPL), Marco B. Quadrelli (JPL), Self-

powered Solar Aerial Vehicles: towards infinite endurance UAVs, Unmanned Systems, Vol. 8, No. 2, 2020, pp. 1–23. [Preprint PDF]

Videos - MovieMaker/Triship_1min.wmv
https://www.youtube.com/watch?v=H0TMFUxOiFM&t=4s
https://www.worldscientific.com/doi/abs/10.1142/S2301385020500077
https://arxiv.org/ftp/arxiv/papers/1911/1911.07904.pdf


Trirotor solar-fuel cell UAVs
Students: Oliver Salsbury, Daniel Raineri, Giuliano Morreale, Timothy 

Taylor, Daniel Sutch, Psam Elyon



Airbus Prize for “Excellence and innovation in design and engineering relating to the aviation and aerospace industries” 

received from the Airbus UK president Paul Kahn, 2016, Brunel University London, UK.

From left: Farbod Khoshnoud, Daniel Sutch, Oliver Salsbury, Psam Elyon, Vice-Chancellor and President Professor Julia 

Buckingham, Airbus president Paul Kahn, Giuliano Morreale, Timothy Taylor, Daniel Raineri

Brunel UAVs



Autonomous solar-fuel cell powered vehicles 

Farbod Khoshnoud, Clarence W. De Silva, et al., Mechatronics: Fundamentals and 

Applications, Taylor & Francis / CRC Press, 2015. 

Vehicle 
Dynamics



Self-powered 
Vehicles: 

Towards Infinite 
Endurance UVs
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Research-led Service-Learning 
Autonomous traffic monitoring, and situation awareness

Ref: Farbod Khoshnoud, Dario Robinson, C. W. 

de Silva, I. I. Esat, R.H.C. Bonser, M. B. 

Quadrelli, Research-informed service-

learning in Mechatronics and Dynamic 

Systems, ASEE PSW 2019 Conference, April 4-

6, 2019, Los Angeles, CA.
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Bio-inspired Flight Control
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Farbod Khoshnoud, Clarence W. De 

Silva, et al., Mechatronics: 

Fundamentals and Applications, 

Taylor & Francis / CRC Press, 2015. 



Bird- and insect-inspired flapping wing 
flying robots

Bird- and insect-inspired flapping wing flying robots: allows developing 

flying vehicles with high manoeuvrability.

Bird-inspired 

wings

Insect-inspired wings

There is no fixed-wing aircraft with agility and manoeuvrability of a bird or insect.

Lift force

MSc students: Daniel Popa, Hla Awamleh, Sam Knight, Hugo Larsen, Daniel Sackey, Harshad  Raje, Richu Varguese, Valentina Peci, Brunel Uni.



Bio-inspired flying 
vehicles 

Students: Daniel Popa, Hla Awamleh, Sam Knight, Hugo Larsen, Daniel Sackey, Harshad  Raje, 
Richu Varguese, Valentina Peci, 
Brunel University London, 2016.



Dynamics and Control of bio-inspired flapping 
wing robots as flying vehicles 
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Insect-inspired flapping wing Micro Air Vehicles: 
Piezoelectric actuation and flexible hinge mechanisms

MSc Student: Hugo Larsen, 2015

Video Link

Farbod Khoshnoud, M. M. McKerns, C. W. De Silva, I. I. Esat, R. H.C. Bonser, H. Owhadi, 

Self-powered and Bio-inspired Dynamic Systems: Research and Education, ASME 2016 

International Mechanical Engineering Congress and Exposition, Phoenix, Arizona, USA, 2016. 

https://www.youtube.com/watch?v=EHXcwoQffgA&t=89s

Videos - MovieMaker/InsectWing_Hugo.wmv
https://www.youtube.com/watch?v=EHXcwoQffgA&t=89s


Autonomous/Self-Driving Vehicles projects

“Caltrans is currently working on a policy with respect to UAVs in the Right-of-Way”, 

ITS Special Projects Office of Traffic Operations Research, Division of Research, Innovation 

and System Information, California Department of Transportation

Bioinspired Psi Intelligent Control for Autonomous Systems. 
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Farbod Khoshnoud, Clarence W. De Silva, Ibrahim Esat, Bioinspired Psi Intelligent control for 

autonomous dynamic systems, Journal of Control and Intelligent Systems, Vol. 43, No. 4, 2015.



Nature-inspired Quantum Entanglement of 
Autonomous Systems

Quantum Cooperation of Two Insects

By Johann Summhammer, Vienna University of Technology

Figure: Typical stochastic paths of 

the pebble as pushed by quantum

entangled ants (red) as well as by 

independent ants (black). 

Figure: (a): Typical flight paths of the two butterflies. 

(b): The quantum entangled butterflies needed an 

average of 2778 short flights to find each other, versus 

5255 short flights for the independent butterflies.



Quantum Entanglement of Autonomous 
Vehicles for Cyber-physical security
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Farbod Khoshnoud, C. W. de Silva, and I. I. Esat, Quantum Entanglement of Autonomous Vehicles for Cyber-

physical security, IEEE International Conference on Systems, Man, and Cybernetics, Banff, Canada, October 5–

8, 2017.



Quantum Network of Autonomous Vehicles 
for Cyber-physical security
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• 25 UVs at the starting locations at the nodes are shown with circles

• Final positions of the UVs are shown by the filled squares

• The trajectories of the UVs are shown from each initial location to the final 

position

• Horizontal and vertical axes represent x and y coordinates associated with the 

two dimensional motion.

Farbod Khoshnoud, I.I. Esat, C.W. De Silva, M.B. Quadrelli, Quantum Network of Cooperative Unmanned 

Autonomous Systems, Unmanned Systems journal, Vol. 07, No. 02, pp. 137-145 (2019).



Bio-inspired Vertical Axis Wind Turbines

Improving the power density of vertical axis wind turbines inspired by fish 

schooling 

MEng students:

Ahmad Abdullah, Muhammad Asa 

Ri, Siti Razali, Nuramira 

Khairuddin, Amirul Ahmad Norizan, 

Nurul Suhaimi



Bio-inspired Vertical Axis Wind Turbines

MEng Students: Ahmad Mustaqim Abdullah, Nurul Sofia Suhaimi, Siti Nuraisyah Razali, 

Nuramira Khairuddin, Muhammad Harith Asari, Amirul Norizan

Video Link

Farbod Khoshnoud, M. M. McKerns, C. W. De Silva, I. I. Esat, R. H.C. Bonser, H. Owhadi, Self-powered and Bio-inspired 

Dynamic Systems: Research and Education, ASME 2016 International Mechanical Engineering Congress and Exposition, 

Phoenix, Arizona, USA, 2016. 

Videos - MovieMaker/VAWT_50cm800rv.wmv


Biologically Inspired Systems:
Piezoelectric Energy Harvesters 

Video Link

Videos - MovieMaker/PiezoFlutter.wmv


Biologically Inspired Energy Harvesting 

Farbod Khoshnoud, Dario Robinson (Pomona Police), Ibrahim I. Esat (Brunel), Clarence W. De Silva (UBC), Richard H.C. Bonser (Brunel), Marco B. 

Quadrelli (JPL), Research-informed service-learning in Mechatronics and Dynamic Systems, American Society for Engineering Education 

conference, Los Angeles, April 4-5, 2019, Paper ID #27850, [PDF].

http://www.google.com/url?q=http%3A%2F%2Faseepsw2019.calstatela.edu%2Fprogramdetailed.cfm&sa=D&sntz=1&usg=AFQjCNHe4-usZX_uOGxXqAc5mmrr08pPeQ
http://www.google.com/url?q=http%3A%2F%2Faseepsw2019.calstatela.edu%2Fpapers%2F27850.pdf&sa=D&sntz=1&usg=AFQjCNE76e4MgMZek6SGgU2wzf_WZKnSCQ


Bio-inspired Piezoelectric Energy Harvesters 

Farbod Khoshnoud, A. Shahba, O. Riaz, R. Shah, R. Shimura, Y. K. Chen and G. 

Gaviraghi, Piezoelectric energy harvesting for airships and investigation of bio-

inspired energy harvesters, 5th European Conference for Aeronautics and Space 

Sciences, Munich, Germany, 1-5 July 2013.
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Video Link

Videos - MovieMaker/PiezoFlutterEnergyHarvesters.wmv


Bistable piezoelectric energy 
harvesting – Wind tunnel experiment 

Video Link
Farbod Khoshnoud, Christopher Bowen (Bath), Cris Mares (Brunel), Bistable Piezoelectric Flutter Energy

Harvesting with Uncertainty Analysis, Instrumentation Journal, Vol 6. No 1, 2019.

Videos - MovieMaker/BistablePiezoEnergyHarvester.wmv


• Self-powered Dynamic Systems
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• Quantum Multibody Dynamics, Robotics, and 
Autonomy 
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engineering Systems



Mechanical Systems + Classical Computers
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Mechanical Systems + Quantum Technologies

Current Mechanical 

Systems

+

Quantum Robotics 

and Autonomy 

(e.g., The Alice and 

Bob Robots)

=

Quantum Technologies

53



Quantum Robotics and Autonomy
Integrating Quantum Technologies with physical Engineering Systems (at macroscale)

Pushing the engineering boundaries beyond classical techniques 
Quantum Multibody Dynamics Initiative: Pushing the engineering boundaries beyond existing techniques

https://www.youtube.com/watch?v=ForcnzWzG1M&t= 

• Implementing Experimental 
Quantum  Entanglement for 
Robots (robots to share 
entangled photons) to utilize 
and enable quantum 
entanglement, “spooky action 
at a distance”, for cooperative 
autonomy.

• Accessing guaranteed security 
for cooperative autonomy by 
Quantum Cryptography.

• Quantum Teleportation for 
communications in between 
multi-agent autonomous 
systems by teleporting 
quantum states.
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Integration of Quantum Technologies with Engineering 
Systems to Access Quantum Supremacy at Macroscale

Quantum Entanglement, Cryptography, and Teleportation For 
Control of Dynamical Systems and Autonomy

“Alice Robot”“Bob Robot”

“Alice Drone”

Entangled Photons are 
generated by 
‘Spontaneous 

Parametric Down 
Conversion’, and sent 

to Alice and Bob 
Robots

Quantum Entangled 
Photons will be 

received by the Single 
Photon Counter (SPC) 

modules placed on the 
robots

• Polarizations of the entangled photons will be converted to classical digital 
information for digital control and autonomy applications, 

• or in case of accessing quantum computers in future, will be used directly by 
quantum computers* for autonomy

*in fact, using any classical transfer of information between robots equipped with quantum processors/computers 
(when quantum computers become available in future) can actually defeat the advantage of quantum computers.
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Quantum Entanglement Experiment
• SPDC Process

• Nonlinear BBO crystal

• 405 nm source

• 810 nm PBS, and HWPs

• 10 nm bandwidth filters

• 4-Channel SPCM 

• Single photon counter 
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Quantum Entanglement Experiment
Automated alignment for mobile agents
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F. Khoshnoud, M. Ghazinejad, Automated quantum entanglement and cryptography for networks of 

robotic systems, IEEE/ASME, submitted.

ℙ 𝑃(𝑋) > 𝑑𝑖𝑎𝑐𝑜𝑙𝑙𝑖𝑚𝑎𝑡𝑜𝑟 ≤ 𝜖

𝒗𝑩 ∈ 𝓧3 ∶= 𝒗𝑩𝑚𝑖𝑛 , 𝒗𝑩𝑚𝑎𝑥
Τm 𝑠
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Quantum 
Cryptography 
for Robotics 

and 
Autonomy 
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Quantum Cryptography for 
Robotics and Autonomy 
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Quantum Cryptography for Robotics 
and Autonomy 
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Quantum 
Entanglement 

Experimental Results

Alice (A, A’):  ۧȁ𝐻 𝐴 and ۧȁ𝑉 𝐴

Bob (B, B’):    ۧȁ𝐻 𝐵 and ۧȁ𝑉 𝐵

Coincidences AB, A’B, AB’, A’B’: 
1

2
ۧȁ𝐻𝑉 − ۧȁ𝑉𝐻



Quantum Teleportation
for Control of Dynamic Systems and Autonomy 

Farbod Khoshnoud, Lucas Lamata, Clarence W. De Silva, Marco B. Quadrelli, Quantum Teleportation for Control of 
Dynamic Systems and Autonomy, Mechatronic Systems and Control Journal, 2020, in press [Preprint link].

https://arxiv.org/search/?query=khoshnoud&searchtype=all&source=header


Quantum Brain-Computer Interface
(Q-BCI)

Paper in progress. 64



Quantum Cryptography for Cooperative 
Robotics and Autonomy 
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Theoretical Foundation of 
Quantum Multibody Dynamics

Quantum Mechanics
Schrödinger Equation

Classical Dynamics
Newton's Equations of Motion

𝐅 = [𝐌] 𝐚

The Feedback Control System?

𝑖ℏ
𝑑

𝑑𝑡
ۧȁ𝜓(𝑡) = ෡𝐻 ۧȁ𝜓(𝑡)

𝑇𝐹 =
𝐶( ۧȁ𝜓 𝑡 )𝑀( 𝐅, ۧȁ𝜓 𝑡 )𝑃( 𝐅 )

1 + 𝐶( ۧȁ𝜓 𝑡 )𝑀( 𝐅 , ۧȁ𝜓 𝑡 )𝑃( 𝐅 )𝐻

F. Khoshnoud, M. B. Quadrelli, I. I. Esat, C. W. de Silva, Quantum Multibody Dynamics, Robotics, and Autonomy, in progress, 2019.
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Modernizing Mechatronics with Quantum Engineering
Integrating Quantum Engineering into Mechatronics course, as well as traditional and cutting-
edge Robotics and Autonomous Systems for the Mechatronics course for undergraduate and 

graduate courses

Farbod Khoshnoud, Clarence W. de Silva (UBC), Marco B.

Quadrelli (JPL), Lucas Lamata (Seville), Behnam Bahr, Clarice

D. Aiello (UCLA), Sanjay Padhi (Amazon), Ibrahim I. Esat

(Brunel), Maziar Ghazinejad (UCSD), Modernizing

Mechatronics course with Quantum Engineering, American

Society for Engineering Education PSW 2021 Conference, April

23-25, 2021, accepted.

https://www.youtube.com/watch?v=UqZqlI44u_8&t=2010s

https://www.youtube.com/watch?v=UqZqlI44u_8&t=2010s


Working with Chief Dario Robinson to apply Quantum

Robotics opportunities for Security and Emergency Response

with unmatched guaranteed safety from interception, and true

security using applied Quantum technologies.
“Pushing the boundaries of the engineering beyond existing techniques.”



• Self-powered Dynamic Systems

• Nature/Bio-inspired Dynamic Systems

• Quantum Multibody Dynamics, Robotics, and 
Autonomy 

• Optimal Uncertainty Quantification for 
engineering Systems



Optimal Uncertainty Quantification for engineering systems

ℙ 𝐺(𝑋) ≥ 𝑏 ≤ 𝜖

𝒜 ⊂ 𝑔, 𝜇
𝑔: 𝒳 → ℝ

𝜇 ∈ 𝒫 𝒳
𝒜 ≔ 𝑔, 𝜇

𝑔: 𝒳1 ×⋯×𝒳𝑚 → ℝ
𝜇 = 𝜇1⨂𝜇2⨂⋯⨂𝜇𝑚
𝑚1 ≤ 𝔼𝜇 𝑔 ≤ 𝑚2

𝒰 𝒜 ∶= 𝑠𝑢𝑝(𝑓,𝜇)∈𝒜 𝜇 𝑔(𝑋) ≥ 𝑏ℒ 𝒜 ∶= 𝑖𝑛𝑓(𝑓,𝜇)∈𝒜 𝜇 𝑔(𝑋) ≥ 𝑏

ℒ 𝒜 ≤ ℙ 𝐺(𝑋) ≥ 𝑏 ≤ 𝒰 𝒜

𝒰 𝒜 ∶= sup
𝐺,𝜇 ∈𝒜

𝜇 𝐺(𝑋) ≤ 0

𝒜 ≔ 𝑔, 𝜇

𝑔: 𝒳1 ×𝒳2 ×𝒳3 → ℝ
𝜇 = 𝜇1⨂𝜇2⨂𝜇3

𝒓𝑗_𝑚𝑖𝑛 ≤ 𝔼𝜇 𝒓𝑗 ≤ 𝒓𝑗_𝑚𝑎𝑥

𝑔 = 𝒓𝑗

𝒰 𝒜 ∶= sup
𝒓,𝜇 ∈𝒜

𝜇 𝒓𝑖(𝑋) ≤ 0

Probability of function 𝐺(𝑋) to be greater than 𝑏 (i.e. 

to fail) is less than 𝜖:

𝐺, ℙ ∈ 𝒜, and the admissible extremal scenarios 𝒜 is: 

The optimal bounds on the probability of the system: 

Solve the constrained optimization 

problem over 𝒰 𝒜 :

Example:

Houman Owhadi, C. Scovel, T. Sullivan, M. McKerns and M. Ortiz, “Optimal Uncertainty Quantification,” SIAM Review, 2012.

Farbod Khoshnoud, M.M. McKerns, C. W. De Silva, I.I. Esat, H. Owhadi, Self-powered Dynamic Systems in the framework of 

Optimal Uncertainty Quantification, ASME Journal of Dynamic Systems, Measurement, and Control, Volume 139, Issue 9, 2017.
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