
Errata December 23, 2025

Arbitrarily Close: An Introduction to Real Analysis, first edition 2025. Published by 619 Wreath.

This errata addresses mistakes and typos found in the 2025 print versions of Arbitrarily Close as well
as the identical electronic versions acl print 251005.pdf and acl web 251005.pdf.

Deleted content is struck through, like this, while added content appears between brackets, [like this].

1. (p.10) Remark 0.7.1, last bullet. “A continuous function on a closed and bounded interval is
arbitrarily close [to] the set of polynomials.”

2. (p.36) Notation 1.2.23. Above line (1.2.23), 0! = 1, not 0.

3. (p.41) Above Axiom 1.3.1. “I am assuming properties therein are familiar and will work them
without explicitly citing them.”

4. (p.130) Above line (2.4.35). “. . .and proper[t]ies of inequalities,. . .”

5. (p.170) Example 2.8.11. “. . . since Z [is] the range of. . .”

6. (p.173) Below line (2.8.43).“. . .the nth digit of y is distinct from from [the] nth digit. . .”

7. (p.236) Exercise 3.5.4(ii). “subtintervals” (delete the extra “t”).

8. (p.289) Example 4.4.2. “. . .define f : R→ R define by. . .”

9. (p.291) Example 4.4.3. “. . .define g : R→ R define by. . .”

10. (p.293) Example 4.4.4. “. . .define v : R→ R define by. . .”

11. (p.300) Exercise 4.4.1. “. . .a level set is [a] set of the form. . .”

12. (p.301) End of Exercise 4.4.6. “Thomae’s function g is [dis]continuous on the rationals and
discontinuous on the irrationals.”

13. (p.304) End of Proof of Thm. 4.5.5. “Therefore, αf is continuous [at c] when α = 0.”

14. (p.309) Proof of Thm. 4.5.16. Above and below line (4.5.46), replace equation “h(x) = 1/x”
with “h(y) = 1/y”.

15. (p.313) Proof of thm. 4.6.7, first paragraph. “By the Heine-Borel Theorem 3.5.1, K is sequentially
compact (Definition 4.4.5 [3.5.11]). . .”

16. (p.319) Exercise 4.6.8(iii). Line (4.6.40) should be “
⋂
δ>0

h(Vδ(0)\{0}) = R.” Also, below line

(4.6.40), “. . .the image of every δ-neighborhood of 0 [(excluding 0)] under h . . .”

17. (p.330) Above Definition 5.1.2. “Modifying continuity to allow the functions to not [be] defined
at c is accomplished . . .”

18. (p.348) Proof of Thm. 5.2.15 between (5.2.40) and (5.2.41). “Since f and g h converge to ` at
c,. . .”



19. (p.349) Exercise 5.2.7(ii) is false. Replace with “Prove limx→c g(x) = 0 at each c ∈ R.”

20. (p.354) Proof for Example 5.3.6. “Then by quotients and linearity of functional limits (Theorems
5.2.13 [and] 5.2.6) we have. . .”

21. (p.354) Between Definitions 5.3.8 and 5.3.9. “To codify [the] idea that differentiable functions. . .”

22. (p.369) Scratch Work 5.5.4, first paragraph. “. . ., or rather nonnegative and nonpositive
numbers, through a manipulation [of] difference quotients and inequalities.”

23. (p.370) Second-to-last paragraph of Scratch Work 5.5.4. “Combining these denomators [de-
nominators] with our nonpositive numerator allows. . .”

24. (p.379) Exercise 5.5.7, line (5.5.60). Replace “f(x) > f(c)” with “f(x0) > f(c)”.

25. (p.405) Theorem 6.2.12(iii), line (6.2.56). “There is [a] sequence (Pn) of partitions. . .”

26. (p.430) Above Theorem 6.4.16. “Modifying the hypothesis of integrability of the integrand in
Theorem 6.4.14 with continat [continuity at] a point yields. . .”

27. (p.430) Proof of Thm. 6.4.16, above line (6.4.86). “Next, to show the limit of the difference
[quotient] of g at c is f(c),. . .”

28. (p.433) Above Example 7.1.1. “Pointwise convergence is and [an] extension [of] componentwise
convergence.”

29. (p.434) Remark 7.1.2. “. . .vectors in a Euclidean space Rm to a the pointwise convergence of
a sequence. . .” Also, add parentheses at the end of the paragraph to get “(Theorem 2.4.11)”.

30. (p.449) Between lines (7.2.21) and (7.2.22). “By (1.2.33) and (7.2.21), for every indx [index]
n ≥ nε . . .”

31. (p.464) First sentence of Section 7.4. “Polynomials are one [some] of. . .

32. (p.482) Proof for Example 8.1.18. A key mistake in line (8.1.62) leads to more mistakes through-
out this proof.

• Line (8.1.62). Replace the rightmost
1

2n
with

1

2n−1
.

• Above line (8.1.63). “The sequence of partial sums (sk) is bounded above by 2 [4] since,. . .”

• Replace line (8.1.63) with

sk =
k∑

n=0

1

n!
≤

k∑
n=0

1

2n−1
=

2(1− (1/2)n+1)

1− (1/2)
≤ 2

1/2
= 4,

• Line (8.1.64). Replace the rightmost sum
k+1∑
n=0

1

2n
with

k+1∑
n=0

1

n!
.

NOTE: For convenience, a copy of the revised page 482 is included at the end of this document.

33. (pp.492–494) Theorem 8.2.13 and its proof. Numerous instances of the same mistake occur
throughout these pages. Specifically, replace ak with a2k so that

∑∞
k=0 2kak becomes

∑∞
k=0 2ka2k .



NOTE: For convenience, a copy of the revised pages 492, 493, and 494 are included at the end
of this document.

34. (p.493) Line (8.2.48). Replace the middle ≤ with an equal sign since
1− 2q

1− 2
= 2q − 1.

35. (p.493) Line (8.2.53). Replace the equal sign with ≤.

36. (p.494) Above line (8.2.65). Replace “
∑∞

k=0 2kak” (the first of the two series in that line) with
“
∑∞

n=1 an”.

37. (p.527) Above line (8.5.64). The letter “n” is missing: “. . .(a fact from calculus that is assumed
but not prove[n] here). . .”

38. (p.527) Line (8.5.65) is missing a period at the end.

Many thanks to the following mathematicians for helping me catch so many mistakes!

Grant Gleass

Kenzie Lam

Max Morphew

June Nguyen

Philip Nicoll

John Rodriguez

Copies of the revised pages 482, 492, 493, and 494 are included below.
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Thus, the sequence of partial sums is unbounded and so, by the Divergence Criteria for
Sequences 2.6.9, the harmonic series diverges.

The details of the induction argument and the proof are left as an exercise.

The number e from calculus is known as Euler’s number, and one way to define it is as the
sum of a special convergent series of positive numbers.

Example 8.1.18: Euler’s number e

Euler’s number e is the sum of the series whose terms are 1/(n!) for each index n ∈ N∪{0}.
That is, this series converges and we define e as the sum. Hence,

e =
∞∑
n=0

1
n! . (8.1.61)

Scratch Work 8.1.19: Comparing partial sums

The goals is to show Euler’s number e is well-defined by showing its series converges. As
with all the proofs in the section up to this point, the result is obtained by considering
partial sums and taking advantage of properties of sequential limits. Here, the convergence
of the given series follows from showing the partial sums form an increasing sequence which
is bounded above and, therefore, converges by the Monotone and Bounded Convergence
Theorem 2.4.9.

Proof for Example 8.1.18. Consider the series whose terms are 1/n! for each n ∈ N ∪ {0}. Since
1/n ≤ 1/2 when n ≥ 2, for each n ∈ N ∪ {0} we have

0 ≤ 1
n! = 1

1 · 2 · 3 · · · (n− 1) · n ≤
1

1 · 2 · 2 · · · 2 · 2︸ ︷︷ ︸
n factors

= 1
2n−1 . (8.1.62)

The sequence of partial sums (sk) is bounded above by 4 since, for each k ∈ N ∪ {0},

sk =
k∑

n=0

1
n! ≤

k∑
n=0

1
2n−1 = 2(1− (1/2)n+1)

1− (1/2) ≤ 2
1/2 = 4, (8.1.63)

where the sum on the right is a geometric sum and the Geometric Sum Formula 2.7.2 applies.
Also, the sequence of partial sums (sk) is increasing since

sk =
k∑

n=0

1
n! ≤

(
k∑

n=0

1
n!

)
+ 1

(k + 1)! =
k+1∑
n=0

1
n! = sk+1. (8.1.64)

Hence, by the Monotone and Bounded Convergence Theorem 2.4.9, the sequence of partial sums
(sk) converges. Therefore, the number e is well-defined by

e =
∞∑
n=0

1
n! (8.1.65)

since this series converges by Definition 8.1.3.
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Theorem 8.2.13: Cauchy Condensation Test

Suppose (an) is a decreasing sequence of nonnegative terms (0 ≤ an+1 ≤ an for all n ∈ N).
Then

∞∑
n=1

an converges ⇐⇒
∞∑
k=0

2ka2k converges. (8.2.42)

When these series converge we have

1
2

∞∑
k=0

2ka2k ≤
∞∑
n=1

an ≤
∞∑
k=0

2ka2k . (8.2.43)

Scratch Work 8.2.14: A subtle comparison of terms

The powers of 2 have shown up from time to time, like with one of the geometric series
that sums to 1 in Example 8.1.12 and in Scratch Work 8.1.16 which leads to a proof of the
divergence of the harmonic series in Example 8.1.16. Here, they give us a way to compare
the partial sums of the related series in the statement of Theorem 8.2.13 that allow us to
take advantage of the Comparison Test 8.2.11 to get the convergence of one of the series to
yield the other. In particular, by the Geometric Sum Formula 2.7.2, the geometric sum of
2n from n = 0 to k simplifies nicely to a positive integer:

k∑
n=0

2n = 1 + 2 + 4 + · · ·+ 2k = 1− 2k+1

1− 2 = 2k+1 − 1 ∈ N. (8.2.44)

This fortuitous result allows us to compare not just the terms but the indices of the series
in question, facilitating the proof.

Also, since the terms in both series are nonnegative, their partial sums define increasing se-
quences which, if they converge, they converge to suprema as in the Monotone and Bounded
Convergence Theorem 2.4.9.

Proof of Theorem 8.2.13. Suppose (an) ⊆ R where 0 ≤ an+1 ≤ an for all n ∈ N, and consider the
pair of series

∞∑
n=1

an and
∞∑
k=0

2ka2k . (8.2.45)

For each j ∈ N and q ∈ N ∪ {0}, let sj denote the jth partial sum of ∑∞n=1 an and let tq denote
the qth partial sum of ∑∞k=0 2ka2k so that

sj = a1 + a2 + a3 + · · ·+ aj and (8.2.46)
tq = a1 + 2a2 + 4a4 + · · ·+ 2qa2q . (8.2.47)

Then both sequences of partial sums (sj) and (tq) are increasing. So, by the
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From here, we split the argument into two parts depending on which series is assumed to
converge and how the index j compares to the index 2q.

To prove the forward implication, assume ∑∞n=1 an converges and j ≥ 2q. So as in Scratch
Work 8.2.14, we have

q−1∑
n=0

2n = 1 + 2 + 4 + · · ·+ 2q−1 = 1− 2q
1− 2 = 2q − 1 ≤ 2q ≤ j. (8.2.48)

Since 0 ≤ an+1 ≤ an for every n ∈ N, we have

1
2tq = 1

2 (a1 + 2a2 + 4a4 + 8a8 + · · ·+ 2qa2q) (8.2.49)

= 1
2a1 + a2 + 2a4 + 4a8 + · · ·+ 2q−1a2q (8.2.50)

= 1
2a1 + a2 + (a4 + a4)︸ ︷︷ ︸

2 terms

+ (a8 + a8 + a8 + a8)︸ ︷︷ ︸
4 terms

+ · · ·+ (a2q + · · ·+ a2q)︸ ︷︷ ︸
2q−1 terms

(8.2.51)

≤ a1 + a2 + (a3 + a4)︸ ︷︷ ︸
2 terms

+ (a5 + a6 + a7 + a8)︸ ︷︷ ︸
4 terms

+ · · ·+ (a2q−1+1 + · · ·+ a2q)︸ ︷︷ ︸
2q−1 terms

(8.2.52)

≤ a1 + a2 + a3 + a4 + · · ·+ a2q + · · ·+ aj (8.2.53)
= sj. (8.2.54)

Now, since ∑∞n=1 an converges and (sj) is increasing, the Monotone and Bounded Convergence
Theorem 2.4.9 implies

1
2tq ≤ sj ≤ sup{sj : j ∈ N} = lim

j→∞
sj =

∞∑
n=1

an. (8.2.55)

Thus, ∑∞n=1 an is an upper bound for (tq/2). Therefore, by another application of the Monotone
and Bounded Convergence Theorem 2.4.9 along with the fact that a supremum is the least upper
bound (Theorem 1.3.10), the series ∑∞k=0 2ka2k converges and

1
2 sup{tq : q ∈ N} = 1

2 lim
q→∞

tq = 1
2

∞∑
k=0

2ka2k ≤
∞∑
n=1

an. (8.2.56)

Therefore, the forward implication holds.
To prove the backward implication, assume ∑∞k=0 2ka2k converges and j ≤ 2q. Again, as in is

Scratch Work 8.2.14, we have

j ≤ 2q ≤
q∑

n=0
2n = 1 + 2 + 4 + · · ·+ 2q = 1− 2q+1

1− 2 = 2q+1 − 1 ∈ N. (8.2.57)

Then, as done in Scratch Work 8.1.16 on the divergence harmonic series, by grouping the terms
of the partial sum sj by taking indices in successive chunks of powers of two, and keeping in mind
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0 ≤ an+1 ≤ an for every n ∈ N, we get

sj = a1 + a2 + a3 + · · ·+ aj (8.2.58)
≤ a1 + (a2 + a3) + (a4 + a5 + a6 + a7) + · · ·+ (a2q + · · ·+ a2q+1−1) (8.2.59)
≤ a1 + (a2 + a2)︸ ︷︷ ︸

2 terms

+ (a4 + a4 + a4 + a4)︸ ︷︷ ︸
4 terms

+ · · ·+ (a2q + · · ·+ a2q)︸ ︷︷ ︸
2q terms

(8.2.60)

= a1 + 2a2 + 4a4 + · · ·+ 2qa2q (8.2.61)
= tq. (8.2.62)

Now, since ∑∞k=0 2ka2k converges converges and (tq) is increasing, the Monotone and Bounded
Convergence Theorem 2.4.9 implies

sj ≤ tq ≤ sup{tq : q ∈ N ∪ {0}} = lim
q→∞

tq =
∞∑
k=0

2ka2k . (8.2.63)

Thus, ∑∞k=0 2ka2k is an upper bound for (sj). Therefore, by another application of the Mono-
tone and Bounded Convergence Theorem 2.4.9 and noting a supremum is the least upper bound
(Theorem 1.3.10), ∑∞n=1 an converges and

sup{sj : j ∈ N} = lim
j→∞

sj =
∞∑
n=1

an ≤
∞∑
k=0

2ka2k . (8.2.64)

Therefore, the backward implication holds.
Overall, if either ∑∞n=1 an or ∑∞k=0 2ka2k converges, then both converge and

1
2

∞∑
k=0

2ka2k ≤
∞∑
n=1

an ≤
∞∑
k=0

2ka2k . (8.2.65)

One payoff of the Cauchy Condensation Test 8.2.13 is the p-series test from calculus.

Theorem 8.2.15: p-series

Suppose p ∈ R. Then the so-called p-series given by
∞∑
n=1

1
np

(8.2.66)

converges if and only if p > 1.

Proof of Theorem 8.2.15. First, suppose p ≤ 0. Then −p = α ≥ 0 and for each n ∈ N,
1
np

= n−p = nα ≥ 1. (8.2.67)

So (1/np) = (nα) does not converge to zero. Hence, the series
∞∑
n=1

1
np

=
∞∑
n=1

nα. (8.2.68)
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