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Preface

0.1 Dedication

This book is dedicated to y and B.
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0.3 Content overview
I think of analysis as the mathematics of estimation. When do we know our estimates are arbitrar-
ily precise? And what are we estimating? For instance, difference quotients estimate derivatives.
To me, the idea that brings it all together—the kernel of analysis—is a formal definition for the
phrase arbitrarily close. This line of inquiry often takes the form of studying linear combinations:
When we take the set of all points arbitrarily close to a set of linear combinations of some nice
objects, what do we get? For instance, polynomials are linear combinations of monomials, and
linear combinations of heights and widths (areas of rectangles) are arbitrarily close to the areas
under curves defined by (nearly) continuous functions. These ideas and more are made precise
and studied throughout.

This book is not a novel, it’s a resource for people who would like an introduction to real
analysis supported with a lot of detail. Please make use of it as you see fit.

For readers who have never taken a course on real analysis: Take your time, read as much
as you can, and take notes as you go. Familiarity with inequalities, basic algebra, trigonometry,
some set theory, and writing mathematical proofs is assumed.

Lots of details and figures are included to help you along the way. However, there is much
more to real analysis than is covered here. The choice of content is based on the course MAT 3140
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Introduction to Real Analysis I at Cal Poly Pomona. In particular, the material up to Chapter 4
and part of Chapter 5 deals with basics topics in analysis of Euclidean spaces, but thereafter the
focus is limited to the real line.

It’s easy to lose sight of a big picture if there’s too much focus on details. Please skip around
when it makes sense for you. The details are here for when you want to see them, but they don’t
tell the story.

For readers with more experience including instructors, please skip around as you see fit. How-
ever, I recommend you do not skip Sections 1.1, 1.3, and 1.5. These are vital to the development
of the entire book since they are where the kernel of analysis—arbitrarily close—is defined for
both the real line and Euclidean spaces, respectively.

To all my readers, please let me know what you think! If you spot any errors or have rec-
ommendations for ways to improve any aspect of what you find here, please reach out to me via
email: jarock@cpp.edu.

Remark 0.3.1: Unconventional terminology and notation

Informal use of the phrase “arbitrarily close” can be found across the literature on
analysis and topology. However, this book takes the unconventional approach of using
technical definitions to drive the development of material. See Definitions 1.1.8 and
1.5.1. Additionally, since “arbitrarily close” appears frequently throughout the book, the
shorthand notation “acl” is used to streamline arguments and computations much in the
way “lim” shortens work done with limits. See Definitions 2.2.1 and 5.1.2.

Another break from convention appears with the definitions for supremum and infimum in
Definition 1.1.14 where they are given in terms arbitrarily close. These are equivalent
but distinct characterizations of the more conventional definitions of least upper bound
(Definition 1.3.9) and greatest lower bound (Definition 1.4.2). Equivalence is established
with Theorems 1.3.10 and 1.4.3, respectively.

0.4 Mistakes, play, and learning
Failure is the amuse-bouche of learning.

- Chef Aurie Taamu, Tears of the Kingdom

The exercises are there to play with! Do scratch work, draw stuff, and make mistakes—
make lots of mistakes—before worrying about writing proofs. Mistakes are an unavoidable and
essential part of learning and writing mathematics. You will undoubtedly find some typos and even
mathematical mistakes as you read this book. And you know what, that’s a good thing. I encourage
you to read Dr. Francis Su’s wonderful book titled “Mathematics for Human Flourishing” [12].

If you find mistakes I’ve made, you’re learning. If you try something that ends up not working,
you’re learning. If an idea works for a bit and you get stuck, put the work aside and do something
else. You’re still learning. Your brain is amazing, it’ll keep churning on the math even if you’re
not actively thinking about it.
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For people who play video games, do you ever read an entire manual or guide before playing
a new game? Probably not. Even if you do, do you find that reading the manual made you into
an expert right away? I seriously doubt it. My guess is you just grabbed a controller and went
for it. Why not take the same approach with mathematics?

Play with the ideas! Playing and learning go hand-in-hand. Grab the controller, crash your
character into a wall, get a “Game Over”, and try again. When you figure something out, share
it with your friends, classmates, and instructors. When you get stuck, ask them what they did
or would do. Communicating your ideas (poorly formed, haphazard, and sometimes silly) and
thinking through the ideas shared by your friends, classmates, and instructors will get you through.

And how about driving a car? You can watch me do it, I can explain to you how I go about
the way I drive, you can read about it. But none of that compares to how much you will learn by
getting behind the wheel yourself.

A point I’m trying to make is that I can explain how I see the mathematics of real analysis,
but it’s more important for you to discover your own perspective on the material.

0.5 Color scheme
Colors are used to parse the types of content found in the book.

Definition 0.5.1: A unique color for definitions

Technical definitions of mathematical ideas can be found in boxes like this one.

Example 0.5.2: A unique color for examples

Examples contain varying degrees of detail.

Theorem 0.5.3: Lemmas, Theorems, and Corollaries have to share

Technical results appear in boxes like this one. Most are accompanied by Scratch Work and
a proof.

Scratch Work 0.5.4: Play around with ideas

Mathematics can be messy before we figure out nice ways of explaining what we have in
mind. As a result, the Scratch Work found in this book comes in variety of flavors with
no definitive structure. Some have lots of detail that are eventually used in a proof, some
provide a summary of an upcoming proof, and others are somewhere in between. The idea
of Scratch Work is really to motivate you to do your own. Play around with the ideas.
Let your own scratch work be messy until you figure things out. Jay Cummings’ wonderful
book Real Analysis: A Long-Form Mathematics Textbook also features a lot of scratch work
to go along with excellent dialogue around the technical material. (Nice work, Jay!)

Proofs look like this. Not every technical statement found in this book is proven here, but most
are. Many examples are accompanied by Scratch Work and proofs. For the most part, proofs are
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intentionally heavy on details and references (hyperlinks), as can be seen with Theorem 2.3.1. By
the way, Theorem 2.3.1 happens to be the fundamental result connecting the notion of arbitrarily
close (Definition 1.5.1) with convergence of sequences in Euclidean spaces (Definition 2.2.1).

The amount of technical detail found in the proofs is motivated by the lack thereof in many
mathematical textbooks on real analysis. This is especially true of the classic—to some, the
definitive classic—textbook by Walter Rudin [10], colloquially referred to as “Baby Rudin”. Don’t
get me wrong, I learned to love “Baby Rudin” and credit it as a reason to choose analysis for my
own field of study. The amount of detail there leaves a lot for readers to discern for themselves,
which is not necessarily a bad thing.

Remark 0.5.5: Notation, Remarks, and Problems have to share

Other blocks of text look like this. They are generally not as detailed, but something about
them is worth highlighting.

0.6 Walkthroughs
You are encouraged to write up walkthroughs as you read. Here are some activities to consider,
in no particular order:

• Rewrite statements in your own words.

• Come up with examples and nonexamples.

• Draw figures to accompany or supplement the given material.

• Create activities using Desmos, GeoGebra, WolframAlpha, or other freely available re-
sources.

• Come up with scratch work that may or may not fit a given proof.

• Write proofs that are more thorough.

• Write proofs that are more concise.

• Do any activity you can think of that will help you understand what’s going on.

Ultimately, walkthroughs are like Scratch Work in that they are what you make of them. Do
what makes sense for you. I believe the more you supplement your reading with walkthroughs,
whatever a walkthrough means to you, the more the mathematics will make sense and the more
beautiful it will become.

0.7 Themes
The book has a number of recurring themes.
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Remark 0.7.1: Arbitrarily close

A simple question drove the development of this book.

How close can a point be to a set?

The following answer redefined my perspective on analysis and topology.

So close there’s no distance between them: arbitrarily close.

Once I defined arbitrarily close in terms of comparing a point to a set, as opposed
to comparing one point and another, I felt like I was really onto something. See Def-
initions 1.1.8 and 1.5.1 along with the title of Chapter 1, and of course, the title of the book.

Here are some of the ways arbitrarily close appears throughout the book.

• The supremum of a set of real numbers is the upper bound arbitrarily close to the
set (Definition 1.1.14). Similarly, The infimum of a set of real numbers is the lower
bound arbitrarily close to the set.

• Zero is the only real number arbitrarily close to the sets of positive and negative real
numbers (Lemma 1.5.14).

• A limit of a sequence is arbitrarily close to its sequence (Theorem 2.3.1). In fact, the
precise connection between the concepts of limits for sequences and points arbitrarily
close to the range of a sequence is quite deep and forms a foundation for many of the
results presented in the book .

• A closed set comprises the points arbitrarily close to the set. See Definition 3.1.1 and
Theorem 3.2.4.

• A connected set comprises partitions with a point in one set which is arbitrarily close
to another. See Definitions 3.3.1 and 3.3.4.

• A function preserves closeness at a point if and only if it is continuous at the point.
See Definitions 4.2.5 and 4.3.2 as well as Theorem 4.4.7.

• A limit of a function is arbitrarily close to the range of the function. See Theorem
5.1.14.

• A derivative is arbitrarily close to the set of difference quotients. See Definition 5.3.1
and Corollary 5.3.14.

• An integral is arbitrarily close to sets of linear combinations defining sums of areas of
rectangles. See Definition 6.1.6.

• A continuous function on a closed and bounded interval is arbitrarily close to the set
of polynomials. See the Weierstrass Approximation Theorem 7.4.7.
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• The sum of a series is arbitrarily close to the set of partial sums. See Definitions 8.1.1
and 8.3.1.

The setting for arbitrarily close is limited to Euclidean spaces throughout the book, with
additional restrictions to the real line when warranted somehow. See Definitions 1.1.8 and
1.5.1.

Results stated for Euclidean spaces hold for the real line (as well as complete metric spaces
in many cases). The intuition of distance between points provided by metric spaces is at
the heart of the concept of arbitrarily close, but the definition itself is topological in nature.

Chapter 1 develops the main topic: A formal definition for the phrase arbitrarily close and
fundamental results on analysis built from there.

Remark 0.7.2: Linearity

Properties that distribute across addition and allow constants to factor out exhibit
linearity, a concept so pervasive in analysis that it is taken for granted. An attempt is
made to reverse this trend throughout the book by explicitly stating results on linearity
and mentioning them in scratch work and proofs.

Here are some of the ways linearity appears in analysis.

• Linearity of arbitrarily close, Theorem 1.6.12.

• Linearity of sequential limits, Theorem 2.3.9 and Corollary 2.3.13.

• Linearity of continuity, Theorem 4.5.5 and Corollary 4.5.7.

• Linearity of functional limits, Theorem 5.2.6 and Corollary 5.2.8.

• Linearity of differentiation, Theorem 5.4.1 and Corollary 5.4.3.

• Linearity of integration, Theorem 6.3.6 and Corollary 6.3.9.

• Linearity of uniform convergence, Theorem 7.2.8 and Corollary 7.2.10.

Remark 0.7.3: Thresholds and convergence

Thresholds take concepts of arbitrarily close a step further by telling us convergence is
ensured in some way. Roughly speaking:

Outputs are within a chosen distance whenever inputs are beyond or within a
suitable threshold.

As a result:

Thresholds control inputs to ensure outputs are as close as we like.
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Thresholds help us define a variety of concepts, including some notions of local behavior:

• threshold (continuity), 260

• threshold (functional limit), 314

• threshold (local maximum), 349

• threshold (local minimum), 349

• threshold (locally linear), 337

• threshold (pointwise series), 479

• threshold (pointwise), 423

• threshold (sequential limit), 91

• threshold (uniform continuity), 305

• threshold (uniform convergence), 425

• threshold (uniform series), 479

Remark 0.7.4: Cauchy criteria

French mathematician and engineer Augustin-Louis Cauchy had such a tremendous impact
on the world of mathematics that his last name is used as an adjective. In the context
of real analysis, the adjective Cauchy captures convergence without a candidate for the
limit in mind. For instance, see Definition 2.6.1. This freedom is used in many proofs
throughout the book.

Below is a list of Cauchy criteria with ties to convergence.

• Cauchy criterion for sequences, Theorem 2.6.5.

• Cauchy criterion for integrability, part (vi) of Theorem 6.2.12.

• Cauchy criterion for uniform convergence, Theorem 7.2.11.

• Cauchy criterion for series, Theorem 8.2.2.

0.8 QR codes
Links to a variety of free online computational activities on Desmos and GeoGebra appear through-
out the book to provide dynamic supplements to static figures and exercises. The links are given
as QR codes and hyperlinks. For example, Figure 0.8.1 provides a QR code for the Desmos ac-
tivity “y acl B” that accompanies the figure on the title page, Figure 1.5.1, and Definition 1.5.1.
Play around with these activities and make your own!
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B
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• •

ε

•
xε •

• y

Figure 0.8.1: QR code for the Desmos activity “y acl B” to accom-
pany the figure on the title page, Figure 1.5.1, and Definition 1.5.1.
https://desmos.com/calculator/nfbdjs8pdh

https://desmos.com/calculator/nfbdjs8pdh
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Chapter 1

Kernel of Analysis

A point is arbitrarily close to a set when every neighborhood of the point intersects
the set.

This notion of arbitrarily close establishes the theme of the book, serving as a foundation for
classic results in real analysis on closure, limits and convergence, connectedness, continuity, dif-
ferentiation, and integration.

1.1 Arbitrarily close
Let’s start with a couple of intervals and see if either has a largest element. The set of real numbers
is denoted by R throughout the book, and the notation “x ∈ R” means x is a real number.

Problem 1.1.1: Two intervals

Consider the closed interval F and open interval G in Figure 1.1.1 given by

F = (−∞, 3140] = {x ∈ R : x ≤ 3140} and (1.1.1)
G = (−∞, 3140) = {x ∈ R : x < 3140}. (1.1.2)

Which interval has a largest element? That is, which has a maximum?

Do you know what is meant by “largest element”, exactly? How is “large” used in this context?
The following definitions of upper bound, maximum, lower bound, and minimum codify the context
and allow us to prove results in a rigorous way.

Definition 1.1.2: Maximum of a set of real numbers

A real number b is an upper bound for a set of real numbers S if for every x in S we have
x ≤ b. In this case, we say S is bounded above. A real number q is the maximum of S if q
is an upper bound for S and q is an element of S. That is,

(i) for every x in S we have x ≤ q, and

15
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F ]
−∞ 3140

G )
−∞ 3140

Figure 1.1.1: The intervals F = (−∞, 3140] andG = (−∞, 3140) from Problem
1.1.1.

(ii) q is in S.

In this case, we write q = max S.

Similarly, a real number a is a lower bound for a set of real numbers S if for every x in S
we have a ≤ x. In this case, we say S is bounded below. A real number v is the minimum
of S if v is a lower bound for S and v is an element of S. That is,

(iii) for every x in S we have v ≤ x, and

(iv) v is in S.

In this case, we write v = minS.

Let’s use Definition 1.1.2 to prove a couple facts about F and G.

Example 1.1.3: Closed interval with a maximum

The interval F = (−∞, 3140] has a largest element. In other words, maxF exists.

Proof for Example 1.1.3. By checking the properties in Definition 1.1.2, since (i) x ≤ 3140 for
every x in F (thus 3140 is an upper bound for F ) and (ii) 3140 is in F , the interval F has a
maximum—its largest element—given by maxF = 3140.

What about an interval like G = (−∞, 3140)? My intuition suggests the maximum might be
3140. The problem is no real number is both (i) an upper bound for G and (ii) an element of G.

Example 1.1.4: Open interval with no maximum

The interval G = (−∞, 3140) has no largest element. In other words, maxG does not exist.

Proof for Example 1.1.4. Any real number greater than or equal to 3140 is not in G, so (ii) fails in
this case. Also, any real number in G is strictly less than 3140, so there’s always a larger number
in G. For instance, the midpoint between 3140 and the given real number in G is also in G. Thus,
no element of G is an upper bound for G, so (i) fails in this case.

Since no real number satisfies both parts (i) and (ii) of Definition 1.1.2 with respect to G, the
open interval G has no maximum. In other words, G has no largest element.
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Even though 3140 is not the maximum of G, it plays a special role: The point 3140 is an
upper bound for the set G which is as close to G as possible without actually being in G. In other
words, 3140 is both an upper bound for G and so close to G there is no distance between them.
But what does that mean, exactly? And how can we prove it?

In order to prove the results we can visualize and believe to be true, mathematical definitions
capture our intuition and allow us to control the context of the problems we’re trying to solve.
Definitions allow us to be specific in addressing intuitive ideas like how close a point can be to a
set or having no distance between a point and a set.

Remark 1.1.5: A first question

What does it mean for a point to be arbitrarily close to a set? To ensure we have a sound
mathematical foundation, let’s define a notion for distance between points in the real line
so we can eventually be precise about how close points and sets can be to each other. The
distance we use relies on a formal definition for the absolute value of a real number.

Definition 1.1.6: Absolute value and distance in the real line R

For every x in R, the absolute value of x, denoted by |x|, is given by

|x| =
 x, if x ≥ 0,
−x, if x < 0.

(1.1.3)

For every x and y in R, the distance between x and y, denoted by dR(x, y), is defined by

dR(x, y) = |x− y|. (1.1.4)

Remark 1.1.7: Absolute value and negative numbers

It may be odd to see absolute value defined piecewise as it is in Definition 1.1.6, but doing
so gives a rigorous way to work with absolute values when writing proofs.

Still, the “−x” part may look weird. I think of it as multiplying a negative real number x by
−1 rather than just “dropping the negative sign” since the latter sometimes fails to capture
the process of finding the absolute value of a negative number. For instance, x = 2−

√
5 is

a negative real number with no clear negative sign to “drop”. On the other hand,

x = 2−
√

5 < 0 =⇒ |x| = |2−
√

5| = (−1)(2−
√

5) =
√

5− 2,

where the symbol “ =⇒ ” is read as “implies”.

Again, by thinking of taking the absolute value of a negative real as multiplying the negative
number by −1, we have a rigorous mathematical process we can rely on for proofs involving
absolute value.

The definition for distance in Definition 1.1.6 is based on a comparison between two points in
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B [ ) ◦• • •
zyxε

εzε

Figure 1.1.2: Examples of real numbers y and z along with a set
B where y aclB and z awf B as in Definition 1.1.8. Also, a QR code
for the Desmos activity “y acl B interval” to accompany this figure.
https://www.desmos.com/calculator/ehogaxpv8v

the real line, not a point and a set as mentioned in Remark 1.1.5. Even so, it gives us something
to work with: Given a point and a set, we can consider any amount of distance around the point
and see if there are points from the set within that distance.

Here is a definition for arbitrarily close in the real line, what I consider to be the kernel of
analysis and the fundamental theme of the book. See Figure 1.1.2. (A more general definition in
the context of Euclidean spaces is presented in Definition 1.5.1.)

Definition 1.1.8: Arbitrarily close and away from (real line)

Let y be a real number and let B be a set of real numbers. The point y is said to be
arbitrarily close to the set B, and we write y aclB, if for every ε > 0 there is some xε in B
such that

dR(xε, y) = |xε − y| < ε. (1.1.5)

The phrase “B is arbitrarily close to y” is also defined and denoted in the same way. That
is, B acl y is taken to mean the same thing as y aclB.a

If some real number z is not arbitrarily close to B, then there is some εz > 0 such that for
every x in B we have

dR(x, z) = |x− z| ≥ εz > 0. (1.1.6)

In this case, we say z is away from B and write z awf B. The phrase “B is away from z” is
also defined and denoted in the same way.

aThanks to Berit Givens for suggesting the notation “y acl B” to represent the phrase “y is arbitrarily
close to B”.

In Figure 1.1.2, the set B is an interval that does not contain its right endpoint y. The point z

https://www.desmos.com/calculator/ehogaxpv8v
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G )
−∞ 3140 4710

◦
εz

Figure 1.1.3: The open interval G = (−∞, 3140) along with the real number
z = 4710 and distance εz = 785 from Example 1.1.11.

is away from B since the blue dashed circle centered at z has a positive radius εz with no points of
B inside. On the other hand, y is arbitrarily close to B since circles centered at y of any positive
radius ε have a point xε from the set B within them. Three such circles are dashed in red, and
each has at least one such xε within its radius indicated by one of the three •. In order to keep
things from getting too cluttered, only one red ε appears in the figure.

Remark 1.1.9: As small as we like

In Definition 1.1.8, it may help to think of the positive real number ε as the amount of
error or “wiggle room” we’d like to allow, the idea being that we can allow any amount
of error, no matter how small. In this way, y aclB means B gets as close to y as we like,
no matter how close that may be. So, y aclB is exactly what it means when there is no
distance between a point y and a set B.

Remark 1.1.10: Subscript or not

How can we prove y aclB and z awf B based on the definitions? To prove y aclB, we should
respond to each distance ε > 0 with a point xε in B that is within ε of y. To prove z awf B,
we need just one distance εz > 0 that separates z from all the points in B by a distance of
εz or more.

The notation for the variables in Definition 1.1.8 play subtle roles. The xε and εz both have a
subscript indicating something special is going on. Specifically, xε is a particular real number in
B that is found in response to ε > 0, and εz > 0 is a particular positive number found in response
to the real number z and its relationship to B. On the other hand, ε represents any positive real
number and x represents any real number in B.

Example 1.1.11: Points arbitrarily close and away from a set

For the open interval G = (−∞, 3140), I claim the real number y = 3140 is arbitrarily close
to G while z = 4710 is away from G. To prove 4710 awf G, we can find just one positive
distance εz to separate 4710 from all the points in G. Let’s do that first.

To align with Figure 1.1.3, the radius of the dashed blue circle is half the distance between
4710 and 3140, which looks good enough to keep every point in G at least that far from
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G )• • • •
0 1570 3140

ε

Figure 1.1.4: The open interval G along with multiple distances (in red) and
corresponding points (the •) as in Scratch Work 1.1.12. The real number 1570 is
within the largest circle whose radius is ε (in red), but not the smaller circles.

4710a. So we can take

εz = |4710− 3140|
2 = 1570

2 = 785 > 0. (1.1.7)

aThe real number z = 4710 ensures the figure is to scale.

Proof of 4710 awf G in Example 1.1.11. Consider the real number z = 4710 and let x be any real
number in G = (−∞, 3140). Then we have

x < 3140 < 4710. (1.1.8)

Now let εz = 785 > 0. Since x− 4710 < 0 and x < 3140 according to (1.1.8), by the definition of
absolute value (Definition 1.1.6) we have

|x− 4710| = 4710− x > 4710− 3140 = 1570 > 785 = εz. (1.1.9)

Therefore, every point in G is more than εz = 785 > 0 away from 4710, and so 4710 awf G. See
Figure 1.1.3.

Proving 3140 is arbitrarily close to G takes more effort. It’s not good enough to consider just
one distance. To prove 3140 aclG, we should respond to every positive distance or “error” ε > 0
with its own point xε that’s both in G and within ε of 3140. See Figure 1.1.4.

Scratch Work 1.1.12: A point arbitrarily close to a set

Consider drawing figures whenever you do scratch work, such as Figure 1.1.4. The largest
circle has radius ε > 0. For that ε and any larger radius, it suffices to respond with

xε = 1570 (1.1.10)
which is good enough since 1570 is both in G and within ε of 3140. The other two circles
in Figure 1.1.4 have smaller radii and leave out 1570, but each has at least one point (one
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of the •) that is in G and also within the corresponding distance of 3140. To verify every
ε > 0 comes with at least one point xε that’s both in G and within ε of 3140, the variable
ε is taken to represent all positive distances at the same time and we respond to each with
a point xε defined by a function of ε.

On to the proof.

Proof of 3140 aclG in Example 1.1.11. Let ε > 0. (By not specifying a particular value of ε, we
are accounting for all positive distances, or “errors”.) Choose

xε = 3140− ε

2 . (1.1.11)

Since

xε = 3140− ε

2 < 3140, (1.1.12)

we have xε is in G = (−∞, 3140) and xε − 3140 < 0. Hence,

|xε − 3140| = −(xε − 3140) = −
(

3140− ε

2 − 3140
)

= ε

2 < ε. (1.1.13)

Therefore, 3140 aclG.

Remark 1.1.13: Does scratch work help?

Hang on. What just happened? Did every step make sense? Does Scratch Work 1.1.12 help
you see how I came up with this proof? Take your time reasoning through my proof and
consider writing up a walkthrough to help you find your own understanding.

After laying out Scratch Work 1.1.12, I reorganized and rewrote stuff to produce the proof
showing 3140 is arbitrarily close to G for Example 1.1.4. How would you have done the scratch
work and proof?

Moving forward, scratch work typically appears before a corresponding proof. The amount of
detail varies, but scratch work usually includes motivation for the steps in proofs. Scratch work
should entail anything that helps you figure stuff out.

With the definition for arbitrarily close we now have enough to define supremum. A supremum
is a lot like a maximum in that both are upper bounds for a given set, but the supremum is not
necessarily in the set like the maximum has to be. An analogous statement holds for the definition
of infimum which is defined in terms of a suitable lower bound and is a lot like minimum.1

Definition 1.1.14: Supremum and infimum

A real number u is the supremum of a nonempty set of real numbers S, and we write
u = supS, if u is an upper bound for S and arbitrarily close to S. That is, u = supS if

1The definitions for supremum and infimum in Definition 1.1.14 are not the classic versions, but they are
equivalent. See Theorems 1.3.10 and 1.4.3.
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(i) for every x ∈ S we have x ≤ u, and

(ii) u aclS.

Similarly, a real number ` is the infimum of S, and we write ` = inf S, if ` is a lower bound
for S and arbitrarily close to S. That is, ` = inf S if

(iii) for every x ∈ S we have ` ≤ x, and

(iv) ` aclS.

Have you noticed how similar the definitions for maximum and supremum are to one another?
Compare Definitions 1.1.2 and 1.1.14.

Example 1.1.15: Revisiting an open interval

As seen in Example 1.1.11, the real number 3140 is arbitrarily close to the open interval
G = (−∞, 3140). Since x < 3140 for each x in G, we have 3140 is also an upper bound
for G. Therefore, supG = 3140 and yet maxG does not exist (as pointed out in Example
1.1.3). Since G has no lower bounds, neither minG nor inf G exist.

Let’s consider one more example to see what our results give us regarding the open interval G
from Problem 1.1.1 as well as Examples 1.1.4 and 1.1.15, this time with specific values of ε > 0
in mind.

Example 1.1.16: Checking our reasoning

For the interval G = (−∞, 3140), we proved 3140 aclG with a key step of choosing

xε = 3140− ε

2 (1.1.14)

in response to any given ε > 0.

What does this formula give us for the specific values ε1 = 1, ε2 = 1/2, and ε3 = 1/100?
Are the values of xε really in G?

First, we can show x1, x2, and x3 are in G by verifying they satisfy the inequality defining
G in line (1.1.2). Respectively, we havea

x1 = 3140− ε1

2 = 3140− 1
2 < 3140, (1.1.15)

x2 = 3140− ε2

2 = 3140− 1
4 < 3140, and (1.1.16)

x3 = 3140− ε3

2 = 3140− 1
200 < 3140. (1.1.17)

Hence, x1, x2 and x3 are in G = (−∞, 3140).
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A ◦...
1 2
••••

B ◦ ◦......
−2 −1 2

• •• •

Figure 1.1.5: The sets A and B from Example 1.1.17. Neither set contains 2,
indicated by one of the ◦ in the figure. But how close do they get? What about
−2? Can you prove your answers?

Now, are these xk for k = 1, 2, 3 close enough to 3140? Yes, but each one only needs to be
within their corresponding εk to get their jobs done. Since xk < 3140 implies xε− 3140 < 0
for each k = 1, 2, 3, by the definition of absolute value (Definition 1.1.6) we have

|x1 − 3140| =
∣∣∣∣−1

2

∣∣∣∣ = 1
2 < 1 = ε1, (1.1.18)

|x2 − 3140| =
∣∣∣∣−1

4

∣∣∣∣ = 1
4 <

1
2 = ε2, and (1.1.19)

|x3 − 3140| =
∣∣∣∣− 1

200

∣∣∣∣ = 1
200 <

1
100 = ε3. (1.1.20)

We’re good!
aThe notation is changed from xε1 to x1 since the smaller subscript is so tiny.

Let’s play around with a pair of sets that are not intervals.

Example 1.1.17: Two countable sets

Consider the following sets of real numbers A and B where N denotes the set of positive
integers:

A =
{
an = 2− 1√

n
: n ∈ N

}
and (1.1.21)

B =
{
bn =

(
2− 1√

n

)
(−1)n : n ∈ N

}
. (1.1.22)

See Figure 1.1.5. I claim 2 aclA, 2 aclB, and −2 aclB while −2 awf A.

Before attempting proofs, consider some scratch work for the set A along with Figure 1.1.6.

Scratch Work 1.1.18: Two countable sets

The “away from” part looks like it might be easiest to prove since a radius of εz = 1 is
enough distance to keep z = −2 away from all the points in A.
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A ◦
2

...
a1−2

◦ 1 ••••
ε1

Figure 1.1.6: A figure to accompany Scratch Work 1.1.18 featuring the set
A along with a distance 1 around −2 and a distance ε1 > 1 around −2 along
with a QR code for the Desmos activity “2 acl A” to accompany this figure.
https://www.desmos.com/calculator/ceczc717wa

The “arbitrarily close” part—2 aclA—deserves more scrutiny. See Figure 1.1.6. For the
largest red circle around 2 (the center ◦ on the right) whose radius ε1 is greater than
1, the real number xε1 = a1 is in A and close enough to 2. But a1 is not close enough
for the smaller circle whose radius is less than 1. That’s okay, though. For each radius
ε > 0, we need just one point xε that’s in A and within ε of 2, and each ε can have its own xε.

So, if we can find a way to take a given but arbitrary ε > 0 and respond to it with a suitably
defined xε, we’re good.

Remark 1.1.19: Careful choice

Setting

xε = 2− ε

2 (1.1.23)

will not be good enough to show 2 aclA, even though a similar choice was made for xε and the
interval G in Example 1.1.4. To see why, temporarily set ε = 3/2. Since 0 < ε = 3/2 < 2,
we have

xε = 2− 3/2
2 = 2− 3

4 = 5
4 . (1.1.24)

Since 5/4 < 2, the definition of absolute value (Definition 1.1.6) yields

dR(xε, 2) = |xε − 2| = 2− 5
4 = 3

4 <
3
2 = ε, (1.1.25)

which means xε = 5/4 is close enough to 2. The problem is, 5/4 is not in A. For xε = 5/4
to be an element of A, there must be a positive integer nε where

xε = 2− 1
√
nε

= 5/4. (1.1.26)

https://www.desmos.com/calculator/ceczc717wa
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But solving for nε yields nε = 16/9, which is not a positive integer. So, we need to be more
careful when choosing xε in response to ε.

Let’s start over with some new scratch work.

Scratch Work 1.1.20: Start at the end

With any scratch work, consider starting at the end. To show 2 aclA, we want to consider
each ε > 0 and end up with a point xε which is both in A and within ε of 2. Since A is
defined in terms of the set of positive integers N, work with

xε = anε = 2− 1
√
nε

(1.1.27)

where nε is in N. Such xε is in A, but we also need xε to be within ε of 2, like this:

|xε − 2| =
∣∣∣∣∣
(

2− 1
√
nε

)
− 2

∣∣∣∣∣ = 1
√
nε

< ε. (1.1.28)

This amounts to solving the inequality for nε and making sure we choose nε to be a positive
integer. We get

1
√
nε

< ε ⇐⇒ nε >
1
ε2 . (1.1.29)

So, choosing a positive integer nε large enough to satisfy nε > 1/ε2 ensures the choice

xε = anε = 2− 1
√
nε
, (1.1.30)

which is both in A and within ε of 2.

Time for a proof. While Scratch Work 1.1.20 is where I really figured things out, the proof
amounts to a careful reorganization of the scratch work where the details are put in an appropriate
order.

Proof of −2 awf A and 2 aclA in Example 1.1.17. First, to show −2 awf A, note that for every n
in N we have

|an − (−2)| =
∣∣∣∣∣
(

2− 1√
n

)
− (−2)

∣∣∣∣∣ = 4− 1√
n
≥ 3 > 1 > 0. (1.1.31)

Hence, every real number an in A is a distance of at least 1 away from −2.
Next, to show 2 aclA, let ε > 0. (By not specifying a particular value of ε, we are accounting

for all positive distances, or radii or “errors”, at the same time.) Choose a positive integer nε
large enough to satisfy nε > 1/ε2. We have

nε >
1
ε2 ⇐⇒ 1

√
nε

< ε. (1.1.32)
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B ◦ ◦......
−2 −1 2

• •• •
ε ε

Figure 1.1.7: The set B from Example 1.1.17 along with various distances
around 2 and −2 as well as a QR code for the Desmos activity “2 acl B” to
accompany this figure. https://www.desmos.com/calculator/ysaphndtqh

Now consider anε = 2− (1/√nε). Then anε is in A and

dR(anε , 2) = |anε − 2| =
∣∣∣∣∣
(

2− 1
√
nε

)
− 2

∣∣∣∣∣ = 1
√
nε

< ε. (1.1.33)

Therefore, 2 aclA.

Remark 1.1.21: Different indices

In the proofs of −2 awf A and 2 aclA as stated in Example 1.1.17, I used the variables n
and nε in subtly different ways, much like the differences between ε versus εz and x versus
xε. Both n and nε represent positive integers, but n represents any positive integer while
nε is a particular positive integer chosen in response to ε > 0 (hence the subscript) and how
the scratch work turned out based on the definition of the set A.

Proving −2 aclB and 2 aclB from Example 1.1.17 is similar to proving 2 aclA, but there is a
significant difference. When proving 2 aclA, it was enough to find a positive integer nε in response
to ε. But when proving −2 aclB and 2 aclB, the parity of nε—whether nε is even or odd—changes
whether the corresponding point in B is close to 2 or −2. Such a point in B might be close enough
to either 2 or −2, but maybe not both.

For instance, Figure 1.1.7, b1 = −1 is in B and within the largest red circle on the left, so it is
within the corresponding radius ε of −2. Hence, b1 = −1 is close enough to −2 for that particular
ε. But −1 is not close enough to 2 since it is outside the largest red circle on the right which has
the same radius ε. Hence, for the ε > 0 that gives the radius of the two largest red circles, nε = 1
produces b1 = −1 which is close enough to −2 but not close enough to 2. On the other hand,
nε + 1 = 2 produces b2 = 2− (1/

√
2), which is close enough to 2.

Loosely speaking, the bn with even indices are near 2 while those with odd indices are near −2.
In turn, parity of positive integers affects the proof. And again, by not specifying a particular value
of ε, we are accounting for all positive distances, or “errors”, around both−2 and 2 simultaneously.

Proof of −2 aclB and 2 aclB in Example 1.1.17. Let ε > 0. Choose an odd positive integer jε

https://www.desmos.com/calculator/ysaphndtqh
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large enough to satisfy jε > 1/ε2. We have

jε >
1
ε2 ⇐⇒ 1√

jε
< ε. (1.1.34)

Now, since jε is odd, we have (−1)jε = −1 and so bjε = −2 + (1/
√
jε). Then bjε is in B and

dR(bjε ,−2) =
∣∣∣∣∣
(
−2 + 1√

jε

)
− (−2)

∣∣∣∣∣ = 1√
jε
< ε. (1.1.35)

Hence −2 aclB.
Next, choose an even positive integer kε large enough to satisfy kε > 1/ε2. We have

kε >
1
ε2 ⇐⇒ 1√

kε
< ε. (1.1.36)

Now, since kε is even, we have (−1)kε = 1 and so bkε = 2− (1/
√
kε). Then bkε is in B and

dR(bkε , 2) =
∣∣∣∣∣
(

2− 1√
kε

)
− 2

∣∣∣∣∣ = 1√
kε
< ε. (1.1.37)

Hence 2 aclB as well.

Before going any deeper, Section 1.2 lays out some of the assumptions I’ve made about the
mathematical knowledge and experiences readers are expected to have. In some ways, it may
have been better to put these assumptions first, but I wanted to start with a notion for arbitrarily
close in the real line that serves as the foundation for the entire book. This comes at the cost of
using some facts before proving them; a small price to pay for a first section on such a difficult
topic. Section 1.2 also establishes more notation and background material.

Exercises
Once again, here are the sets discussed throughout Section 1.1:

F = (−∞, 3140] = {x ∈ R : x ≤ 3140}, (1.1.38)
G = (−∞, 3140) = {x ∈ R : x < 3140}, (1.1.39)
A = {2− (1/

√
n) : n ∈ N}, and (1.1.40)

B = {[2− (1/
√
n)](−1)n : n ∈ N}. (1.1.41)

1.1.1. For the sets F,G,A, and B given above and visualized in Figure 1.1.8, determine whether
each set has a maximum, minimum, supremum, and infimum and prove your results. (Some cases
have already been discussed and proven in Section 1.1, so don’t prove those again unless you want
to. You can treat those proofs like templates, carefully adjusting what I’ve done to fit a similar
situation accordingly.)
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F ]
3140

G )
3140

A ◦...
1 2
••••

B ◦ ◦......
−2 −1 2

• •• •

Figure 1.1.8: The sets F,G,A, and B are explored further in the following
exercises.

T [ )
0 2

◦...
3 4
• •

Figure 1.1.9: The set of real numbers T from Exercise 1.1.3.

1.1.2. The following statement is false: For any set of real numbers S that is bounded above we
have

u = max S if and only if u = supS. (1.1.42)

(i) Find a counterexample for this statement and prove your result. That is, find, describe, and
draw a set of real numbers S that is bounded above but for which the “if and only if” part
of line (1.1.42) does not hold.

(ii) Revise the above false statement to create an implication which is true and prove your result.

(iii) Write a similar implication involving minimum and infimum, and prove it too.

1.1.3. Consider the set of real numbers T given by

T = [0, 2) ∪ {4− (1/n) : n ∈ N}. (1.1.43)

See Figure 1.1.9. That is, every real number x in T satisfies either 0 ≤ x < 2 or x = 4− (1/n) for
some positive integer n. The symbol ∪ stands for union and is discussed in the next section.

(i) Prove minT = inf T = 0, supT = 4, and max T does not exist.

(ii) What can you say and prove about the real numbers 2 and 3 here? Are either of them
arbitrarily close to T? Away from T? Can you prove your answers?

1.1.4. Find examples of sets of real numbers with the following properties:

(i) A set U where neither supU nor inf U exist and U 6= R.
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(ii) A set V where min V and max V exist with min V < max V , but V is not an interval.

(iii) A set W where inf W exists, supW exists, and we have inf W = supW .

Be sure to draw figures for each of your sets and justify your results. What other properties do
your examples have?

1.2 Preliminary concepts and
background material

To set the stage for the more technical aspects of the book, this section provides some notation
and terminology. I am assuming a fair amount of familiarity with inequalities, basic algebra,
trigonometry, set theory, and writing mathematical proofs.

Notation 1.2.1: Conventions used throughout

(i) Lower case letters like a, b, c, f, g, x, y, z, ε, and δ typically denote real numbers or
functions.

(ii) Capital letters like B, S, and V typically denote sets.

(iii) Boldface lower case letters like y and w typically denote points (or vectors) in some
Euclidean space Rm.

(iv) Along these lines, notation that starts with lower case letters such as “max”, “sup”,
and “lim” represent real numbers or points while “Coda” and “Slim” represent sets.

(v) The notation “ =⇒ ” reads “implies”.

(vi) The notation “⇐⇒” reads “if and only if”.

Notation 1.2.2: Sets and points

If S is any set comprising any kind of elements we like, we write x ∈ S when x is in—or x is
an element of, or x belongs to—the set S. If z is not in S, we write z /∈ S. Throughout the
book, elements are also referred to as points. The set with no elements is called the empty
set, denoted by ∅. If a set has one or more elements, it is called nonempty.

Notation 1.2.3: Subsets and equality of sets

If A and B are sets where every element of A is also an element of B, we say A is a subset
of B or B contains A and write A ⊆ B. If A is a subset of B but there is an element of B
that is not in A, we say A is a proper subset of B and write A ( B. In the case where we
have both A ⊆ B and B ⊆ A, we say A and B are equal and write A = B. Equivalently,
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A = B if and only if A and B have the exact same elements.

Notation 1.2.4: Set builder

Sets can be described in many different ways, all of which are useful and provide a variety
of perspectives. For instance, with Z denoting the set of integers, consider:

(i) Let S = {−3,−2,−1, 0, 1, 2, 3}.

(ii) Let S be the set of integers between −3.5 and 3.999.

(iii) Let S = {z ∈ Z : |z| ≤ 3}.

Items (i), (ii), and (iii) define the same exact set S in three different ways, each of which is
perfectly valid for the purposes of writing proofs.

Another way to describe a set is to draw a figure. Many figures are provided throughout the
text because I think they can be incredibly helpful for building intuition and exploring technical
ideas. In fact, I regularly encourage you to draw figures to supplement proofs, examples, and
pretty much everything in the book. However, figures don’t suffice for proofs (...but just barely).

Unions and intersections of sets play a significant role.

Definition 1.2.5: More set theory

For sets A and B, the union of A and B is denoted by A ∪B and defined by

A ∪B = {x : x ∈ A or x ∈ B}. (1.2.1)

The “or” within the definition of A ∪ B is the “inclusive or”. That is, A ∪ B is the set of
elements in A, in B, or in both A and B. The intersection of A and B is denoted by A∩B
and defined by

A ∩B = {x : x ∈ A and x ∈ B}. (1.2.2)

The notation A\B denotes the set of points in A that are not in B. That is,

A\B = {x : x ∈ A and x /∈ B}. (1.2.3)

The variables xε, εz, and nε from Section 1.1 show us that indexing variables can be helpful.
Similarly, we sometimes want to consider intersections and unions of collections of sets. Also,
variables and sets can be indexed by other sets like N, Z, or the set of positive real numbers.

Definition 1.2.6: Indexed sets

Given a set B, a nonempty set Λ is an index set for B if for each λ ∈ Λ there is a subset
Sλ of B. The collection of these sets is called an indexed family of sets and is denoted by
{Sλ}λ∈Λ.
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Definition 1.2.7: Operations with indexed sets

Given an indexed family of sets {Sλ}λ∈Λ, the union and intersection of all of the sets in the
indexed family are defined by⋃

λ∈Λ
Sλ = {x : x ∈ Sλ for at least one λ ∈ Λ} and (1.2.4)

⋂
λ∈Λ

Sλ = {x : x ∈ Sλ for all λ ∈ Λ}, respectively. (1.2.5)

In other words and slightly different notation, we have x ∈ ∪λ∈ΛSλ whenever x is in some of
the Sλ. We have x ∈ ∩λ∈ΛSλ only when x is in every Sλ. In the special case where the index set
is the set of positive integers N, we write

∞⋃
n=1

Sn and
∞⋂
n=1

Sn, respectively. (1.2.6)

Notation 1.2.8: Important sets

The following sets appear throughout the book.a

positive integers: N = {1, 2, 3, . . .}.
integers: Z = {. . . ,−2,−1, 0, 1, 2, 3, . . .}.

rational numbers: Q = {m/n : m,n ∈ Z and n 6= 0}.
real numbers: R = {x : x ∈ Q or x is a gap near Q}.

aThe set of positive integers is also known as the set of natural numbers, among other things.

Intervals are used throughout as well.

Definition 1.2.9: Intervals

For a, b ∈ R with a < b, each of the following sets is an interval.

(i) (−∞,∞) = R

(ii) (−∞, b) = {x ∈ R : x < b}

(iii) (a,∞) = {x ∈ R : a < x}

(iv) (−∞, b] = {x ∈ R : x ≤ b}

(v) [a,∞) = {x ∈ R : a ≤ x}

(vi) (a, b) = {x ∈ R : a < x < b}

(vii) [a, b] = {x ∈ R : a ≤ x ≤ b}

(viii) (a, b] = {x ∈ R : a < x ≤ b}

(ix) [a, b) = {x ∈ R : a ≤ x < b}

See Figure 1.2.1. Furthermore, we have:

• (a, b), (−∞, b), (a,∞), and (−∞,∞) are open intervals;

• [a, b], (−∞, b], [a,∞), and (−∞,∞) are closed intervals;
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(a, b) ( )
a b

[a, b] [ ]
a b

(a, b] ( ]
a b

[a, b) [ )
a b

(−∞, b) | )
−∞ a b

(a,∞) ( |
a b ∞

(−∞, b] | ]
−∞ a b

[a,∞) [ |
a b ∞

(−∞,∞) | |
−∞ a b ∞

Figure 1.2.1: Plots of all nine types of intervals. See Definition 1.2.9.

• (−∞, b) and (−∞, b] are bounded above, but unbounded;

• (a,∞) and [a,∞) are bounded below, but unbounded;

• (a, b), [a, b], (a, b], and [a, b) are bounded, meaning they are both bounded above and
bounded below.

The real line R = (−∞,∞) is both an open interval and a closed interval. If this doesn’t seem
right to you, you’re not alone. However, this choice of terminology is conventional and so prevalent
I will not try to replace it. The study of open, closed, and other types of sets—topology—is the
focus of Chapter 3.

Other sets playing a prominent role in the book are the set of irrational numbers denoted by
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R\Q and Euclidean spaces denoted by Rm where m is a positive integer. We have

R\Q = {x : x ∈ R and x /∈ Q} and (1.2.7)

Rm =

x =


x1
x2
...
xm

 : m ∈ N and x1, x2, . . . , xm ∈ R

 , (1.2.8)

where the real numbers x1, x2, . . . , xm are the coordinates (or components or entries) of the point
(or vector) x ∈ Rm. Similarly, the coordinates of a point y ∈ Rm are denoted by y1, y2, . . . , ym.
In every Euclidean space Rm, the special zero vector 0 is the vector whose coordinates all are 0.

There are many deep relationships between the sets described so far. For instance, we have

N ⊆ Z ⊆ Q ⊆ R, (1.2.9)

and each of these relationships represents a proper subset. With that said, there are some impor-
tant differences between these sets that influence the way I choose to state theorems and write
proofs. For instance, the set of rational numbers Q has addition, multiplication, and inequalities
that all play nicely together, but the set has gaps. The real line R has addition, multiplication,
and inequalities that all play nicely together while having no gaps. (We will look at this much
more closely in the next section.)

Remark 1.2.10: Euclidean spaces provide the setting

Many of the results presented throughout are in the setting of an arbitrary Euclidean space
Rm where the positive integer m is left unspecified. This allows us to discuss and prove
results in all of these spaces simultaneously. In particular, for m = 1 we have R1 = R (the
real line) and for m = 2 we have R2 (the plane).

Remark 1.2.11: Important vector spaces

We will often use the fact that R and Rm for any m ∈ N are vector spaces. Basically,
this means their points can be multiplied by constants (called scalars) and their points can
added together, both processes creating new points as follows: For any scalar α ∈ R and
any x,y ∈ Rm we have

αx =


αx1
αx2
...

αxm

 and x + y =


x1 + y1
x2 + y2

...
xm + ym

 . (1.2.10)

Functions are an integral part of mathematics which allow us to talk about the various ways
we can transform points and sets. A fairly formal definition for functions is provided here along
with related terminology and properties.
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Definition 1.2.12: Function

A function f is a relation between two sets A and B where every element of A is associated
with exactly one element of B. In this case we write

f : A→ B (1.2.11)

and say f is a function from A to B or f maps A to B.

Furthermore, each element x ∈ A is called an input and is associated with an element y ∈ B
called an output. When f associates an input x with an output y, we write

f(x) = y. (1.2.12)

For functions that map one Euclidean space to another—not just the real line to the real
line—boldface variables like x and y are used to represent inputs and outputs.

Definition 1.2.13: Domain, codomain, and range

Given a function f : A → B, the set of inputs A is called the domain of f , the set B is
called the codomain of f , and the set of outputs is called the range of f . Furthermore, the
range of f is denoted by f(A) and given by

f(A) = {y ∈ B : f(x) = y for some x ∈ A}. (1.2.13)

Functions can be thought of as transforming elements of the domain into elements of the range.
Similarly, functions transform subsets of the range into subsets of the range. We capture these
ideas with the notion of images.

Definition 1.2.14: Image

When f : A→ B and given an input x ∈ A, the image of x is its output f(x) ∈ B. Given
a subset S of the domain A, the image of S is the subset of B whose elements are outputs
of at least one element in S. In this case, the image of S is denoted by f(S) and we have

f(S) = {y ∈ B : f(x) = y for some x ∈ S} ⊆ f(A). (1.2.14)

Example 1.2.15: Range is not codomain

In general, the range is a subset of the codomain, but they are not necessarily the same set.
For instance, when f : R→ R is given by f(x) = x2, we have codomain B = R with range
f(R) = [0,∞). So, −1 ∈ B but there is no input x ∈ A = R where f(x) = −1. Hence,
−1 /∈ f(R).
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Definition 1.2.16: Onto

A function f : A→ B is onto if every element in the codomain B is an output of f . That
is, f is onto if

B ⊆ f(A), (1.2.15)

meaning for every point y ∈ B there is an input x ∈ A where f(x) = y.

Remark 1.2.17: Onto

Again, whenever f : A→ B, the range is a subset of the codomain. That is,

f(A) ⊆ B. (1.2.16)

So, f is onto if and only if the range equals the codomain and we have

f(A) = B. (1.2.17)

Definition 1.2.18: One-to-one

A function f : A → B is one-to-one (also written 1-1) if distinct inputs yield distinct
outputs. That is, f is one-to-one if for every x, y ∈ A where x 6= y we have f(x) 6= f(y).

Functions that are both one-to-one and onto play a special role throughout mathematics.

Definition 1.2.19: Bijection

A function is a bijection if it is both one-to-one and onto.

Remark 1.2.20: Injective and surjective

The terms one-to-one and onto are essentially adjectives, but there are other equivalent
adjectives used by mathematical community. Basically:

one-to-one ←→ injective (1.2.18)
onto ←→ surjective (1.2.19)

bijective ←→ injective and surjective (1.2.20)

Similarly, the word bijection is a noun and we have:

f is 1-1 ←→ f is an injection (1.2.21)
f is onto ←→ f is a surjection (1.2.22)
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Remark 1.2.21: Clarifying our notion of graphs

The graphs of functions provided throughout the text—along with their domains and
ranges—are designed to help fuel our discussion and drive us towards a formal definition
for continuity (Definition 4.3.2).

By the graph of a function from the real line to the real line, I mean a single plot that
combines the domain and range, technically plotted in the plane. I believe there is value
at looking at all three types of figures for a given function, namely its graph, domain, and
range.

The concepts of finite and infinite sets will appear in various ways throughout the book.

Definition 1.2.22: Finite and infinite sets

A set is finite if it is empty or if it has n0 elements for some positive integer n0. On the
other hand, a set is infinite if it not finite.

Factorials and binomial coefficients play a role in defining some important sequences and
functions.

Notation 1.2.23: Factorial and binomial coefficient

Given a nonnegative integer n ∈ N ∪ {0} we have 0! = 1 and

n! = n(n− 1) · · · (2)(1) (1.2.23)

for n ∈ N. Also, the notation n! is pronounced “n factorial”.

For n ∈ N ∪ {0} and k = 0, 1, . . . , n, the binomial coefficient is given by(
n

k

)
= n!
k!(n− k)! . (1.2.24)

From the perspective of combinatorics, we have that for any set S with n elements, the
binomial coefficient

(
n
k

)
is the number of subsets of S with k elements. As a result, they

provide a classic way to expand binomials.

The proof of the following theorem is interesting but omitted for the sake of brevity and
exposition.

Theorem 1.2.24: Binomial Theorem

For any pair x, y ∈ R and any n ∈ N ∪ {0} we have

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k (1.2.25)

where we use the convention a0 = 1 for all a ∈ R.
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Distance is a recurring theme in analysis. Basically, the notions for distance we use in this
book are functions which assign a nonnegative real number to every pair of points in some set.

Notation 1.2.25: Distance and norm

The types of distance we consider are limited to the standard notions in the real line R
and Euclidean spaces of the form Rm. In all cases, these distances stem from the standard
norms and metrics on Euclidean spaces Rm, denoted by ‖ · ‖m and dm, respectively.a

Given a point x ∈ Rm, we have the norm of x given by

‖x‖m =
√
x2

1 + x2
2 + · · ·+ x2

m. (1.2.26)

Given a pair of points x,y ∈ Rm, the distance between x and y is given by the classic
Pythagorean distance formula:

dm(x,y) = ‖x− y‖m
=
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xm − ym)2. (1.2.27)

The notation for points, norms, and distances in Rm represents any Euclidean space, in-
cluding the real line R1 = R and the plane R2 as special cases. When working in the real
line R, we use absolute value of the difference for distance:

dR(x, y) = |x− y|. (1.2.28)
aThe concept of arbitrarily close can be explored in the much more general settings of metric spaces

(where a wide variety of distances are taken into consideration) and even topological spaces (where notions
of distance are not necessarily in play).

The distances dR and dm are metrics: They satisfy a special set of properties which will be
used throughout the book.

Definition 1.2.26: Metric and triangle inequality

Suppose S is a nonempty set. A function d is a metric on S if it satisfies all of the following
properties for any x, y, and z in S:

d(x, y) ≥ 0; (1.2.29)
d(x, y) = 0 ⇐⇒ x = y; (1.2.30)
d(x, y) = d(y, x); and (1.2.31)
d(x, y) ≤ d(x, z) + d(z, y). (1.2.32)

Inequality (1.2.32) is called the triangle inequality.



38 CHAPTER 1. KERNEL OF ANALYSIS

Remark 1.2.27: Recap of metrics

To rephrase the defining properties of a metric:

• (1.2.29) Distances given by a metric are nonnegative.

• (1.2.30) The distance between two points is zero if and only if the points are the same.

• (1.2.31) Metrics are symmetric: The order doesn’t matter.

• (1.2.32) The distance between two points is the same or shorter than the total distance
when an additional point is considered.

Our notions of distance are metrics, but the proof of this fact is left as an exercise. The
establishment of the triangle inequality is the key step.

Theorem 1.2.28: Distances are metrics

The functions dR and dm (for any positive integer m) are metrics on R and Rm, respectively.

Remark 1.2.29: An important difference

Instances of the distances ‖x − c‖m in Euclidean spaces and |x− c| in the real line appear
throughout the textbook.

The following corollary stems from Theorem 1.2.28 and, likewise, the proof is omitted.

Corollary 1.2.30: Norms, distances, and inequalities

For any scalar α ∈ R and any three points x,y, c ∈ Rm, the triangle inequality (1.2.32)
combined with properties of vector spaces, norms, and metrics yield:

‖αx‖m = |α|‖x‖m; (1.2.33)
‖x− c‖m = ‖x−y + y︸ ︷︷ ︸

add 0

−c‖m ≤ ‖x− y‖m + ‖y− c‖m; (1.2.34)

‖x + c‖m ≤ ‖x‖m + ‖c‖m; (1.2.35)
‖x− c‖m ≤ ‖x‖m + ‖c‖m; and both (1.2.36)

‖x‖m − ‖c‖m ≤ ‖x− c‖m and ‖c‖m − ‖x‖m ≤ ‖x− c‖m. (1.2.37)

Remark 1.2.31: Triangle inequalities

The property given by (1.2.33) is called the homogeneity of the Euclidean norm. Inequality
(1.2.34) is another version of the triangle inequality (1.2.32) which is appropriately named
thanks to figures like Figure 1.2.2. The intermediate step in (1.2.34) amounts to adding
0 (the vector whose coordinates are all 0) inside the norm before applying the triangle
inequality (1.2.32). We’ll use little techniques like this often when writing proofs. Adding
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•
x

•
c

•
y

‖x− c‖m

‖x− y‖m ‖y− c‖m

Figure 1.2.2: The version of the triangle inequality found in line (1.2.34).

a nice version of 0 in conjunction with the triangle inequality is particularly common.

Inequalities (1.2.35) and (1.2.36) are also particular instances of the triangle inequality
(1.2.32). Inequalities (1.2.37) are each a version of the reverse triangle inequality. Combined,
they are equivalent to

|‖x‖m − ‖c‖m| ≤ ‖x− c‖m. (1.2.38)

One last fact to conclude the section. The proof is left as an exercise.

Lemma 1.2.32: Important factorizations

Suppose x, c ∈ R, n ∈ N, and the convention a0 = 1 is used as appropriate. Then each of
the following holds:

x2 − c2 = (x− c)(x+ c), (1.2.39)
x3 − c3 = (x− c)(x2 + cx+ c2), (1.2.40)

... (1.2.41)

xn − cn = (x− c)
n−1∑
j=0

cjxn−1−j (1.2.42)

= (x− c)(xn−1 + cxn−2 + · · ·+ cn−2x+ cn−1). (1.2.43)

The following section focuses on introducing properties of the real line R, especially the subtle
notion of completeness.

Exercises
1.2.1. Prove that if x is irrational and q is rational where q 6= 0, then both q + x and qx are
irrational.

1.2.2. Determine which of the following statements are true and which are false regarding sets
A,B, and C. Find counterexamples for the false ones.
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(i) A ∩ (B ∪ C) = (A ∩B) ∪ C.

(ii) A ∩ (B ∩ C) = (A ∩B) ∩ C.

(iii) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

1.2.3. Find a collection of infinite sets A1, A2, A3, . . . (that is, each set is infinite) where

Aj ∩ Ak = ∅ when j 6= k and yet
∞⋃
n=1

An = Z. (1.2.44)

1.2.4. For sets S1 ⊇ S2 ⊇ S3 . . ., determine which of the following statements are true and which
are false. Find counterexamples for the false ones.

(i) If Sn is infinite for each n ∈ N, then the union ∪∞n=1Sn is infinite.

(ii) If Sn is infinite for each n ∈ N, then the intersection ∩∞n=1Sn is infinite.

(iii) If Sn is nonempty and finite for each n ∈ N, then the union ∪∞n=1Sn is nonempty and finite.

(iv) If Sn is nonempty and finite for each n ∈ N, then the intersection ∩∞n=1Sn is nonempty and
finite.

1.2.5. For sets T1 ⊆ T2 ⊆ T3 . . ., determine which of the following statements are true and which
are false. Find counterexamples for the false ones.

(i) If Tn is infinite for each n ∈ N, then the union ∪∞n=1Tn is infinite.

(ii) If Tn is infinite for each n ∈ N, then the intersection ∩∞n=1Tn is infinite.

(iii) If Tn is nonempty and finite for each n ∈ N, then the union ∪∞n=1Tn is nonempty and finite.

(iv) If Tn is nonempty and finite for each n ∈ N, then the intersection ∩∞n=1Tn is nonempty and
finite.

1.2.6. Consider the square function s : R → R given by s(x) = x2, and Let I = [0, 3] and
J = [1, 4]. Find and compare the images s(I), s(J), s(I ∩J), s(I)∩ s(J), s(I ∪J), and s(I)∪ s(J).
Draw stuff.

1.2.7. Prove that for any function g, we have the image of an intersection is a subset of the
intersection of images, as follows: For any two subsets A and B of the domain, we have

g(A ∩B) ⊆ g(A) ∩ g(B). (1.2.45)

Also, state a prove a similar statement regarding the image of a union and the union of images.

1.2.8. Infinite sets are weird: They have bijections with proper subsets of themselves.

(i) Find a bijection f where f : N→ Z.

(ii) Find a bijection g where g : (0,∞)→ R.
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(iii) Prove a set S is infinite if and only if there is a bijection between S and a proper subset of
S.

1.2.9. Prove Theorem 1.2.28. Draw figures for each statement, too.

1.2.10. Prove Corollary 1.2.30. Draw figures for each statement, too.

1.2.11. Prove the Parallelogram Law: For all x,y ∈ Rm, we have

‖x + y‖2
m + ‖x− y‖2

m = 2‖x‖2
m + 2‖y‖2

m. (1.2.46)

To get a geometric sense of how this equation earned its name, draw figures in the case of the
plane R2.

1.2.12. Prove that if x1,x2, . . . ,xk ∈ Rm, then

‖x1 + x2 + · · ·+ xk‖m =
∥∥∥∥∥

k∑
n=1

xn
∥∥∥∥∥
m

≤
k∑

n=1
‖xn‖m = ‖x1‖m + ‖x2‖m + · · ·+ ‖xk‖m. (1.2.47)

1.2.13. Prove Lemma 1.2.32.

1.3 The real line R is a complete ordered field
To help motivate a rigorous investigation into real analysis, we will work with the following
underlying assumption:

The real line R is a complete ordered field.

But what does this mean?
The goal of this section is to define each part of the phrase “complete ordered field”. Loosely

speaking: a field is a set of mathematical objects where both addition and muliplication are
defined and play nicely together; a set is ordered if inequalities make sense in a concrete and
(hopefully) familiar way; and a set is complete if it knows its limits in some specific sense. The
assumption above amounts to the existence of a set with these three properties, and we call this
set the real line R.

A formal description of what makes R an ordered field is provided by Axiom 1.3.1 below. I
am assuming properties therein are familiar and will work without explicitly citing them.

But what about completeness? Among the concepts of fields, order, and completeness, the
latter is very much at the heart of real analysis but it is possibly the least familiar. We’ll get to
it in a bit.

Axiom 1.3.1: The real line is an ordered field

There exists a set called the real line or the set of real numbers which is denoted by R
and has the following properties involving addition, multiplication, and inequalities for any
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x, y, z ∈ R:

(i) Commutativity:
x+ y = y + x and xy = yx.

(ii) Associativity:
(x+ y) + z = x+ (y + z) and (xy)z = x(yz).

(iii) Distributive property:
x(y + z) = xy + xz.

(iv) Additive identity:
There is a unique 0 ∈ R such that
for every x ∈ R we have x+ 0 = x .

(v) Additive inverse:
For each x ∈ R, there is a unique y ∈ R where x+ y = 0.
(We write y = −x.)

(vi) Multiplicative identity:
There is a unique 1 ∈ R such that 1 6= 0 and
for every x ∈ R we have x(1) = x.

(vii) Multiplicative inverse:
For each x ∈ R where x 6= 0, there is a unique y ∈ R where xy = 1.
(We write y = 1/x or y = x−1.)

(viii) Translation invariance:
If x < y, then x+ z < y + z.

(ix) Transitivity:
If x < y and y < z, then x < z.

(x) Trichotomy:
For any x, y ∈ R, exactly one of the following is true:
x = y, x < y, or x > y.

(xi) Multiplication inequality:
If x < y and z > 0, then xz < yz.

Here are some consequences of the assumption that R is an ordered field (Axiom 1.3.1). I
believe these ideas are familiar from calculus and other courses, so the proof is left as an exercise
for those who would like to explore the details.
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• • • •
w x y z

| ||w − z| = z − w

| ||x− y| = y − x

Figure 1.3.1: A quartet of real numbers w < x < y < z and a comparison of
the distance between the outer endpoints w and z to the distance between the
inner endpoints x and y. See part (vi) of Theorem 1.3.2.

Theorem 1.3.2: Properties of inequalities

For any w, x, y, z ∈ R we have:

(i) If x < y, then −y < −x.

(ii) 0 < 1.

(iii) If 0 < x < y, then 0 < 1/y < 1/x.

(iv) If x < y and z < 0, then xz > yz.

(v) x2 ≥ 0.

(vi) If w ≤ x ≤ y ≤ z, then

0 ≤ |x− y| = y − x ≤ z − w = |w − z|. (1.3.1)

To get into what it means to say the real line R is complete, first consider my perspective on
an important and subtle feature of the set of rational numbers Q. I hope it helps you find your
own perspective:

The set of rational numbers Q has arbitrarily small gaps.

For instance, no rational number is the square root of 2. And yet there are rational numbers
that are as close together as we like whose squares are less than and greater than 2, respectively.
To make this pair of assertions more concrete, consider the following theorem and problem.

Theorem 1.3.3: No rational number is the square root of two

If r is a rational number, then r2 6= 2.

Let’s prove this with a classic contradiction argument.

Proof of Theorem 1.3.3. First, if r = 0, then r2 = 0 6= 2. Now, to set up a contradiction, suppose
r is a nonzero rational number where r2 = 2. We can write r = m/n where m and n are integers
that are not both even and neither is zero. We then have r2 = m2/n2 = 2 and so m2 = 2n2, thus
m2 is even. This means m itself is even as well since the square of an odd integer is odd.
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As an even number, we can write m = 2k for some integer k. So now we have

m2 = 2n2 = 4k2. (1.3.2)

The right-hand side simplifies to

n2 = 2k2. (1.3.3)

This means n2 is even, which implies n is even, too.
We have arrived at our contradiction: We assumed m and n are not both even, yet both must

be even when r2 = m2/n2 = 2. Therefore, 2 is not the square of any rational number.

Loosely speaking, Theorem 1.3.3 says that the set of rational numbers Q has a gap at the
square root of 2. And yet, the size of that gap is arbitrarily small.

Problem 1.3.4: Arbitrarily close to the square root of two

Consider the pair of rational numbers

a1 = 1.5 = 15/10 and b1 = 1.4 = 14/10. (1.3.4)

We have

|a1 − b1| = |1.5− 1.4| = 0.1 = 1/10 (1.3.5)

while

b2
1 = 1.96 < 2 < 2.25 = a2

1. (1.3.6)

Next, consider a2 = 1.42 = 142/100 and b2 = 1.41 = 141/100. Then

|a2 − b2| = |1.42− 1.41| = 0.01 = 1/100 (1.3.7)

while

b2
2 = 1.9881 < 2 < 2.0164 = a2

2. (1.3.8)

The process results in something like Figure 1.3.2. Try to describe how to continue finding
pairs of rational numbers an and bn where, for each positive integer n, we have

|an − bn| = 1/10n and b2
n < 2 < a2

n. (1.3.9)

There’s no need to find formulas for an and bn, but you should try to describe any process
you use.
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•
b1

•
b2

•
a1

•
a2

◦
?

Figure 1.3.2: The rational numbers a1, a2, b1, and b2 from Problem 1.3.4 giving
initial approximations to the square root of two.

Remark 1.3.5: Arbitrarily small

Intuitively, 1/10n can be made as small as we like by taking a positive integer n to be as large
as we need. So the inclusion of the bound 1/10n in Problem 1.3.4 is my way of indicating
the size of the gap in the rationals at the square root of 2 is indeed arbitrarily small. We can
and will prove this concretely once we have more mathematical tools—definitions, theorems,
etc.—at our disposal.

Between any two rational numbers there is another, despite gaps like the square root of 2.

Lemma 1.3.6: Rationals between rationals

Suppose p and q are rational numbers where p < q. Then there is some rational number r
where p < r < q.

Taking r to be the average of p and q gives us the result.

Proof of Lemma 1.3.6. Suppose p = m/n and q = s/t where m,n, s, and t are integers where n
and t are nonzero. Let

r = p+ q

2 . (1.3.10)

With p < q and after applying some algebra we have

p = p+ p

2 <
p+ q

2 <
q + q

2 = q, (1.3.11)

and so p < r < q. Also, by finding a common denominator we get

r = p+ q

2 = mt+ ns

2nt . (1.3.12)

Since mt+ ns and 2nt are integers and 2nt is nonzero, we have r is rational.

To recap, the set of rational numbers Q has arbitrarily small gaps and yet between any two
there are always more. So what about the set of real numbers R?

Remark 1.3.7: Rationals with gaps

The assumption that the real line R is complete is a way to ensure, from the start, that it
has no gaps. In my opinion:

The real line R is the set of rational numbers and the arbitrarily small gaps
between them.
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S [ ) ◦
b

...• •
xy

◦
y

Figure 1.3.3: As in Definition 1.3.9, when b is the least upper bound of a set
S and y < b, y is not an upper bound for S. So, there must be a point xy in S
where y < xy.

There are a number of interesting, robust, and beautiful ways to construct the real line R
from the set of rational numbers Q. But to me they all amount to starting with the rational
numbers then identifying the gaps from different perspectives.a Identifying an arbitrarily
small gap in the rational numbers amounts to identifying an irrational number.

aDedekind cuts use sets to partition Q in nice ways to identify the gaps. Equivalence classes of certain
sequences (called Cauchy sequences) of rational numbers can be used to identify the gaps in a very different
way.

Finally, here is a formal description of what it means for the real line R to be complete.

Axiom 1.3.8: Axiom of Completeness

Every nonempty subset of the real line that is bounded above has a supremum.

The Axiom of Completeness 1.3.8 formally describes what it means that the real line R has no
arbitrarily small gaps (unlike the set of rational numbers Q, see Problem 1.3.4). However, you’re
not expected to see why this means the real line has no gaps just yet. This perspective is a goal
to be approached gradually as we explore the structure of the real line.

Also, the Axiom of Completeness 1.3.8 ensures every rational number and every arbitrarily
small gap in the rational numbers can be identified as a real number: Each is the supremum of a
set of rational numbers that is bounded above.

A more conventional way to set up an Axiom of Completeness is to use the notion of a least
upper bound to define supremum (unlike, but equivalent to, Definition 1.1.14). Convention is often
and deliberately broken throughout the book.

Definition 1.3.9: Least upper bound

Suppose S is a nonempty subset of the real line R. A real number b is the least upper bound
of S if

(i) for every x ∈ S we have x ≤ b, and

(ii) if y < b, then y is not an upper bound for S.

Statement (i) says b is an upper bound for S while (ii) says no real number smaller than b is
an upper bound for S. When a real number y is not an upper bound for S, there is some xy in S
where y is less than xy. See Figure 1.3.3.

On the other hand, any real number that’s greater than b is another upper bound for S. Thus,
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S [ ) ◦
u

...• •

Figure 1.3.4: A set of real numbers S along with its supremum u which is also
its least upper bound. See Theorem 1.3.10.

S [ ) ◦
u

...• •◦
y

εy

Figure 1.3.5: As in the proof of Theorem 1.3.10, any real number y strictly less
than the supremum u of a set S creates a positive distance εy = u− y.

(i) and (ii) combine to identify b as the unique least upper bound for S. Try drawing stuff!
The concept of supremum as presented in Definition 1.1.14 is equivalent to that of least upper

bound in Definition 1.3.9, so the Axiom of Completeness 1.3.8 is equivalent to more conventional
notions found in other texts such as [1] and [10]. The following theorem codifies this equivalence.

Theorem 1.3.10: Supremum is the least upper bound

Suppose u ∈ R is an upper bound for a set S ⊆ R. Then u = supS if and only if u is the
least upper bound of S.

See Figure 1.3.4 for a set of real numbers S, which is neither an interval nor a sequence, along
with its supremum u.

Scratch Work 1.3.11: A thorough application of definitions

The proof of Theorem 1.3.10 uses the definitions of absolute value, arbitrarily close, supre-
mum, and least upper bound (Definitions 1.1.6, 1.1.8, 1.1.14, and 1.3.9, respectively). For
this particular proof, my goal is to be thorough and indicate where some definitions are
used as clearly as I can, though this makes the proof longer than it would otherwise need
to be. That’s okay, especially this early in the book.

Proof of Theorem 1.3.10. First, assume u is an upper bound for S and u = supS. Next, suppose
y < u with the goal to show that y is not an upper bound for S. Then u − y > 0 and we let
εy = u− y, thinking of this as a specific distance or “error” we want to allow. See Figure 1.3.5.

Since u aclS ((ii) in Definition 1.1.14), by the definition of arbitrarily close (Definition 1.1.8)
there must be some xy in S where

dR(xy, u) = |xy − u| < εy = u− y. (1.3.13)

See Figure 1.3.6.
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S [ ) ◦
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...• •
xy
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Figure 1.3.6: As in the proof of Theorem 1.3.10, since u aclS, there must be a
point xy in S within εy = u− y of u = supS.

S [ ) ◦
u

...• •◦
u− ε

ε

Figure 1.3.7: As in the proof of Theorem 1.3.10, the least upper bound u is
within every positive distance ε of the set S. Only one ε is drawn to keep things
from getting too cluttered.

Since u is also an upper bound for S, we have x ≤ u for every x in S. So xy − u ≤ 0, and by
the definition of absolute value (Definition 1.1.6) we have

|xy − u| = −(xy − u) = u− xy < u− y. (1.3.14)

By subtracting u from the right hand side of the inequality above then multiplying the result by
−1, we get y < xy. (This might seem clear from Figure 1.3.6, but the figure falls just short for
the purposes of this proof.) Thus, as we wanted to show, y is not an upper bound for S. That is,
no real number smaller than u is an upper bound for S. So, u satisfies both parts of Definition
1.3.9 and is the least upper bound of S.

Next, for the other direction of the proof, assume u is an upper bound for S that is also the
least upper bound. Now let ε > 0. (We let ε > 0 to allow for any amount of “error” and set up a
verification of the definition of arbitrarily close, Definition 1.1.8). Then we have u − ε < u. See
Figure 1.3.7.

Since u is the least upper bound of S, u− ε is not an upper bound for S. This means there is
a real number xε in S where

u− ε < xε. (1.3.15)

See Figure 1.3.8.
Rearranging inequality (1.3.15) slightly yields

u− xε < ε. (1.3.16)

Since u is an upper bound for S and xε is in S we have xε ≤ u, and so u − xε ≥ 0. By the
definition of absolute value (Definition 1.1.6), we have

|xε − u| = −(xε − u) = u− xε < ε. (1.3.17)
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S [ ) ◦
u

...• •
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ε

Figure 1.3.8: As in the proof of Theorem 1.3.10, xε is only close enough to the
least upper bound u for the largest value of ε, as shown. It is not close enough
for smaller values of ε (the smaller radii), but the proof only requires us to find
one xε in the set S for each ε distance, separately.

We have shown u is an upper bound for S and arbitrarily close to S. Therefore, u = supS
according to Definition 1.1.14.

To recap the above proof: When u is the supremum of S, no smaller number can be an upper
bound for S, so u is the least upper bound. Also, when u is the least upper bound for S, it must
be arbitrarily close to S since otherwise some smaller number would be an upper bound for S.

Remark 1.3.12: Walkthrough

Did the proof of Theorem 1.3.10 make sense to you? Every line of it? At first, reading and
understanding proofs in analysis can take a long time. Please be patient. There are often
so many details to parse and double-check, or so many steps left out, that it can be difficult
to get a feeling for what’s going on. But this is okay, and to me learning how to deal with
parsing and understanding proofs is part of the development of every mathematician.

When you’re confronted with a proof you find hard to follow, I suggest you write up a
walkthrough. This can and should be whatever you want it to be, but basically a walkthrough
should reflect your own thoughts and perspectives on the proof you’ve been given. Maybe
drawing a figure will help, or writing out some algebraic steps that were left out, or writing
out the definition or statement of a theorem when it is cited in the proof, or just rewriting
the proof in your own words. If you can’t see why a certain step works, don’t hesitate to
ask a friend, a professor, or even me what’s going on.

Exercises
1.3.1. Prove that if x < y, then x < x+y

2 < y.

1.3.2. This exercise compares the arithmetic mean a+b
2 to the geometric mean

√
ab. Suppose

a ≥ 0 and b ≥ 0. Prove
√
ab ≤ a+ b

2 . (1.3.18)
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1.3.3. Suppose 0 < x < y.

(i) Prove 0 < x2 < y2. (The square function is increasing for positive inputs.)

(ii) Prove 0 <
√
x <
√
y. (The square root function is increasing.)

1.3.4. Prove
√

3 is irrational by showing no rational number has square equal to 3.

1.3.5. Prove
√

6 is irrational by showing no rational number has square equal to 6.

1.3.6. Determine which of the following statements regarding two real numbers a and b is true
statements and which is false. Write a proof for the true statement and find a counterexample for
the false one.

(i) a < b if and only if a < b+ ε for every ε > 0.

(ii) a ≤ b if and only if a < b+ ε for every ε > 0.

1.3.7. Consider the real numbers a1, a2, a3 . . . defined recursively by

a1 = 6 and an+1 = 2an − 6
3 for each n ∈ N. (1.3.19)

(See Exercise 1.2.12 of [1].)

(i) Use induction to prove an > −6 for all n ∈ N.

(ii) Use induction again to show an+1 ≤ an for all n ∈ N. (This shows the sequence (an) is
decreasing, see Chapter 2.)

1.3.8. Prove Theorem 1.3.2. Hint: Use Axiom 1.3.1.

1.3.9. Use Axiom 1.3.1 to prove the following statements about real numbers x, y, and z when
x 6= 0.

(i) If x 6= 0 and xy = xz, then y = z.

(ii) If x 6= 0 and xy = x, then y = 1.

(iii) If x 6= 0 and xy = 1, then y = 1/x.

1.3.10. Find an example of sets A,B ⊆ R where supA ≤ supB and yet no element of B is an
upper bound for A.

1.3.11. Suprema have interesting relationships with unions of sets.

(i) Suppose S, T ⊆ R where both S and T are bounded above. Prove

sup(S ∪ T ) = max{supS, supT}. (1.3.20)

(ii) Suppose S1, S2, S3, . . . be an infinite collection of sets where, for each n ∈ N, Sn is a set of
real numbers which is bounded above. Prove that for any k ∈ N we have

sup
(
∪kn=1Sn

)
= max{supS1, supS2, . . . , supSk}. (1.3.21)



1.4. IMPLICATIONS OF COMPLETENESS 51
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Figure 1.4.1: A set of real numbers S along with a lower bound a and their
“mirror images” T and −a. See the proof of Theorem 1.4.1.

(iii) Find an infinite collection of sets T1, T2, T3, . . . where, for each n ∈ N, Tn is a set of real
numbers which is bounded above and yet

sup (∪∞n=1Tn) 6= max{supT1, supT2, . . .}. (1.3.22)

1.4 Implications of completeness
What does completeness do for us? Generally speaking, it provides a way for us to ensure the
existence of real numbers: They could be rational numbers, positive integers, or something else,
but the big idea is for us to be able to assert their existence when the time is right.

This section explores a collection of results stemming from the Axiom of Completeness 1.3.8,
including its mirror image in terms of infimum.

Theorem 1.4.1: Bounded below means the infimum exists

Every nonempty set of real numbers that is bounded below has an infimum.

Multiplication of real numbers by −1 flips them around 0 and reverses order. So, the idea
behind the proof of Theorem 1.4.1 is to identify the infimum of one set as the negative of the
supremum of another.

Proof of Theorem 1.4.1. Suppose S is a set of real numbers that is bounded below by a. Let
T = {−s : s ∈ S}. Loosely speaking, T is the “mirror image” of S comprising the negatives of
every point in S. See Figure 1.4.1.

Since a ≤ s for every s ∈ S, by part (i) of Theorem 1.3.2 we have −s ≤ −a, so −a is an upper
bound for T . By the Axiom of Completeness 1.3.8, T has a supremum, so let u = supT .

For the final step we show −u = inf S. Since u is an upper bound for T , we have −s ≤ u for
every s in S. Hence, −u ≤ s for every s in S, so −u is a lower bound for S. See Figure 1.4.2. We
also have u aclT , so for every ε > 0 there is some xε in S where

|u− (−xε)| = |(−u)− xε| < ε. (1.4.1)

Hence, −u aclS and we have −u = inf S.
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Figure 1.4.2: The set of real numbers T along with its supremum u and their
“mirror images” S and −u, where −u is the infimum of S. See the proof of
Theorem 1.4.1.

Theorem 1.3.10 has a mirror image as well, this one is in terms of infimum and greatest lower
bound.

Definition 1.4.2: Greatest lower bound

Suppose S is a nonempty subset of the real line R. A real number w is the greatest lower
bound of S if

(i) for every x ∈ S we have w ≤ x, and

(ii) if w < y, then y is not a lower bound for S.

Theorem 1.4.3: Infimum is the greatest lower bound

Suppose ` ∈ R is a lower bound for a set S ⊆ R. Then ` = inf S if and only if ` is the
greatest lower bound of S.

Theorem 1.4.3 is so similar to Theorem 1.3.10 even their proofs are mirror images of each other.
So the proof of Theorem 1.4.3 is left as an exercise. A careful consideration and modification of
one of the proofs can lead to a proof of the other, making for some good practice.

The proof of the following corollary makes use of Theorems 1.3.10 and 1.4.3 which allow us
to interpret supremum and infimum in the classic sense as the least upper bound and greatest
lower bound, respectively. The corollary itself plays a key role in the development of properties
of integrals in Chapter 6.

Corollary 1.4.4: Order properties of suprema and infima

Suppose A and B are nonempty bounded sets of real numbers. Then

A ⊆ B =⇒ supA ≤ supB and inf B ≤ inf A. (1.4.2)

Scratch Work 1.4.5: Draw stuff!

Draw some pairs of sets A and B that fit the hypothesis of Corollary 1.4.4. When I do this,
I generally see that the smaller set A does not reach as far to the left nor as far to the right
as the larger set B. This means B has a potentially smaller infimum or larger supremum
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than A.

Proof of Corollary 1.4.4. Suppose A and B are nonempty bounded sets of real numbers.
Case (i): Suppose A = B. Then supA = supB and inf B = inf A.
Case (ii): Suppose A ( B and there is some real number w where w ∈ B, w /∈ A, and x < w

for all x ∈ A. Then w is an upper bound for A. By Theorem 1.3.10, supA is the least upper
bound for A, making it less than or equal w. Therefore, since w ∈ B and supB is an upper bound
for B, we have

supA ≤ w ≤ supB. (1.4.3)

Case (iii): Suppose A ( B and there is some real number z where z ∈ B, z /∈ A, and z < x
for all x ∈ A. Then z is a lower bound for A. By Theorem 1.4.3, inf A is the greatest lower bound
for A, making it greater than or equal to z. Therefore, since z ∈ B and inf B is a lower bound
for B, we have

inf B ≤ z ≤ inf A. (1.4.4)

An intuitive idea is that given any real number, there is a larger positive integer. Actually, we
already used this idea in the proofs for Example 1.1.17, but we are now in position to formally
prove it.

Theorem 1.4.6: Archimedean Property

Given a real number x there is some positive integer nx where x < nx.

Proof of the Archimedean Property (Theorem 1.4.6). To set up a contradiction, let x ∈ R and
assume the set of positive integers N is bounded above by x so that n ≤ x for every n in N. By
the Axiom of Completeness 1.3.8, N has a supremum u = supN. Since 7 > 0 and u is both an
upper bound for N and arbitrarily close to N, there must be some n ∈ N where

|u− n| = u− n < 7. (1.4.5)

Rearranging the inequality yields u < n + 7, which implies u is not an upper bound for N since
n+ 7 is also a positive integer. This contradicts the assertion that u = supN, meaning x cannot
be an upper bound for N. Therefore, there must be some nx in N where x < nx.

Remark 1.4.7: Why 7?

Did 7 play a special role in the proof of the Archimedean Property 1.4.6 somehow? No, not
really. It was good enough and that’s all I needed. While preparing the scratch work for
the previous proof, there was a choice I was free to make. I needed a positive number to
play the role of ε from the definition of arbitrarily close (Definition 1.1.8) so the inequality
in line (1.4.5) is valid, and I needed this positive number to be an integer so that n + 7 is
also a positive integer. So 7 was good enough, but any positive integer could have played
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1/nε

ε

Figure 1.4.3: Corollary 1.4.8 shows there is no smallest real number. In partic-
ular, no matter how small a positive real number ε is, there’s a rational number
of the form 1/nε that’s less than ε.

the role just as well.

There is no smallest positive real number. This subtle and perhaps surprising fact follows
immediately from the Archimedean Property 1.4.6. A formal statement is provided by the next
corollary which also gives us a way to guarantee there is a positive integer large enough that its
reciprocal (a rational number) is as small as we like. See Figure 1.4.3.

Corollary 1.4.8: A consequence of the Archimedean Property

Given ε > 0, there is a positive integer nε where

0 < 1
nε

< ε. (1.4.6)

Proof of Corollary 1.4.8. Suppose ε > 0. Then 1/ε is a real number and we can apply the
Archimedean Property 1.4.6. So there is a positive integer nε such that 1/ε < nε. Using some
algebraic properties of inequalities and noting nε is positive yields

0 < 1
nε

< ε. (1.4.7)

See Figure 1.4.3.

Yet another intuitive idea we can formally prove is the notion that every real number is between
two consecutive integers. See Figure 1.4.4.

Corollary 1.4.9: Between consecutive integers

For every x ∈ R there is some mx ∈ Z such that

mx ≤ x < mx + 1. (1.4.8)

The proof addresses a subtlety: The set to which we want to apply the Axiom of Completeness
1.3.8 may or may not be empty.
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Figure 1.4.4: Each given real number x lies between a pair of consecutive
integers mx and mx + 1. See Corollary 1.4.9.

Proof of Corollary 1.4.9. Let x ∈ R and let Sx = {z ∈ Z : z ≤ x}. Since −x ∈ R, by the
Archimedean Property 1.4.6, there is an n−x ∈ N where −x < n−x. Hence, −n−x < x and
−n−x ∈ Z. Thus, −n−x ∈ Sx, so Sx is nonempty and bounded above by x.

Now, since Sx is nonempty and bounded above, by the Axiom of Completeness 1.3.8 we have
u = supSx exists. By Theorem 1.3.10, u is the least upper bound for Sx, which implies u − 1
is not an upper bound for Sx. So, there is some mx ∈ Sx ⊆ Z where u − 1 < mx. This implies
u < mx + 1, and since u is an upper bound for Sx, we have mx + 1 is an integer that is not in Sx.
Hence, x < mx + 1. Therefore, mx is an integer where mx ≤ x < mx + 1.

No matter how close two distinct real numbers are, there is always a rational number between
them.

Theorem 1.4.10: Density of the rationals in the reals

Let x, y ∈ R where x < y. Then there is some r ∈ Q where x < r < y.

The proof below has some steps which may not make sense on a first reading. So, before that,
let me share some of my scratch work with you.

Scratch Work 1.4.11: Density of the rationals in the reals

The goal is to come up with an integer m and a positive integer n where

x < r = m

n
< y. (1.4.9)

How can we prove this in a mathematically rigorous way? By that I mean, can we get the
result we want by relying on the Axioms, Definitions, Theorems, Corollaries, and other
technical statements we’ve come across so far?

We can use Corollary 1.4.8 to find an n ∈ N where 1/n is small enough to be less than the
distance between x and y as in Figure 1.4.5. That is

1/n < |x− y| = y − x. (1.4.10)

But we still need a numerator m ∈ Z to produce the inequalities in line (1.4.9). We can
aim for m to specifically give us

m− 1
n
≤ x <

m

n
< y. (1.4.11)
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Figure 1.4.5: The distance between any two real numbers x and y is larger than
the reciprocal 1/n of some positive integer n. See line (1.4.10) in Scratch Work
1.4.11.

[
m

•
nx+ 1

)
m+ 1

Figure 1.4.6: As in line (1.4.13) from the proof of Theorem 1.4.10, the real
number nx+ 1 is between two consecutive integers m and m+ 1.

Such a numerator m will be furnished by Corollary 1.4.9, stemming from a real number
that lines up nicely for the conclusion of the proof. But which real number exactly? Solving
for m in the leftmost inequality in (1.4.11) yields m ≤ nx+ 1. Now for the proof.

Proof of Theorem 1.4.10. Suppose x, y ∈ R where x < y. Then y − x > 0, so Corollary 1.4.8
guarantees there is an n ∈ N where 1/n < y − x. We can rearrange the inequality to get

nx+ 1 < ny. (1.4.12)

Since nx+1 is a real number, it is between consecutive integers. See Figure 1.4.6. By Corollary
1.4.9, there is an m ∈ Z where

m ≤ nx+ 1 < m+ 1. (1.4.13)

The right-hand side of (1.4.13) implies nx < m, so x < m/n. In fact,

m− 1
n
≤ x <

m

n
. (1.4.14)

See Figure 1.4.7. Also, combining the left-hand side of (1.4.13) with (1.4.12) yields

m ≤ nx+ 1 < ny. (1.4.15)

•
x
•
m

n

| |
1/n

Figure 1.4.7: As in line (1.4.14) from the proof of Theorem 1.4.10, the rational
number m/n is less than 1/n away from the real number x.
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•
x

•
y

•
m

n

Figure 1.4.8: As in line (1.4.16) at the end of the proof of Theorem 1.4.10, the
rational number m/n is between the real numbers x and y.

Hence, m < ny and so m/n < y. Therefore, as in Figure 1.4.8,

x <
m

n
< y. (1.4.16)

Theorem 1.3.3 shows that no rational number is the square root of 2, but that doesn’t imme-
diately imply the square root of 2 is a real number. This is something we can prove using the
completeness of the real line and its consequences.

Theorem 1.4.12: The square root of two is a real number

There is an x ∈ R where x2 = 2.

The proof makes use of a carefully chosen set of real numbers that’s bounded above whose
supremum plays a key role along with a pair of contradictions. The supremum of this set exists
by the Axiom of Completeness 1.3.8 and the way the set is chosen allows us to show, using a pair
of similar contradictions, that the square of its supremum can be neither larger nor smaller than
2. So by the trichotomy property of R, the supremum must be 2 (see Axiom 1.3.1). However,
only one of the contradictions is derived here.

Half of the proof of Theorem 1.4.12. Let S be the set of real numbers whose squares are less than
2. That is, S = {y ∈ R : y2 < 2}.

Since 12 = 1 < 2 we have 1 ∈ S, so S is nonempty. Since 1 < 7 < y implies 2 < 49 = 72 < y2,
we have that 7 is an upper bound for S. By the Axiom of Completeness 1.3.8, there is a real
number u where u = supS. Since u is an upper bound for S, we have 0 < 1 ≤ u. In particular, u
is positive.

To establish a contradiction, suppose u2 < 2. The goal is to find an element in S that is
greater than u. Since u2 < 2, we have 2− u2 > 0. Since u > 0, we have 2u+ 1 > 0 as well. Thus,

2− u2

2u+ 1 > 0, (1.4.17)

which is enough wiggle room to work with. By Corollary 1.4.8, there is a positive integer n large
enough where both

0 < 1
n
<

2− u2

2u+ 1 and n > 1. (1.4.18)

Thus, after some algebraic manipulation we have
2u+ 1
n

< 2− u2, (1.4.19)



58 CHAPTER 1. KERNEL OF ANALYSIS

and by choosing n > 1 we have 1/n2 < 1/n. Combining these results we have
(
u+ 1

n

)2
= u2 + 2u

n
+ 1
n2 (1.4.20)

< u2 + 2u
n

+ 1
n

(1.4.21)

= u2 + 2u+ 1
n

(1.4.22)

< u2 + 2− u2. (1.4.23)

This implies (u+ (1/n))2 < 2, therefore u+ (1/n) is in S and greater than u. But this contradicts
the assertion that u is an upper bound for S, so we must have u2 ≥ 2.

The case where u2 > 2 is assumed leads to another contradiction following from a similar
argument. So, the completion of the proof of Theorem 1.3.3 is left as an exercise.

Theorem 1.4.12 tells us that there is a positive real number whose square is 2 and this number
is denoted by

√
2. Theorem 1.3.3 tells us

√
2 is not a rational number, so it must be irrational.

That is,
√

2 ∈ R\Q. We can use this to prove that between any two real numbers, there is an
irrational number.

Corollary 1.4.13: Density of irrationals in the reals

Let x, y ∈ R where x < y. Then there is some v ∈ R\Q where x < v < y.

Proof of Corollary 1.4.13. Suppose x < y so that x −
√

2 < y −
√

2. By the Density of Q in R
(Theorem 1.4.10), there is a rational number r such that

x−
√

2 < r < y −
√

2. (1.4.24)

Therefore, x < r +
√

2 < y.
Now let, v = r +

√
2. To complete the proof, we should show v is irrational. This can be

done by establishing a contradiction. We have r ∈ Q, so suppose v ∈ Q as well. Then there are
integers m and s along with positive integers n and t where r = m/n and v = s/t. Then we have

√
2 = v − r = ns−mt

nt
. (1.4.25)

Since ns−mt is an integer and nt is a positive integer, we have that
√

2 is rational, establishing
a contradiction of Theorem 1.3.3.

The Axiom of Completeness 1.3.8 allows us to prove many results about the structure and
properties of the real line. Some of which you may have seen or worked with before, others may be
new. Still, more questions remain to be asked and answered: In addition to

√
2, what other kinds

of real numbers are irrational? How many irrational numbers are there? What other properties
does the real line have in store for us?
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Exercises
1.4.1. Prove Theorem 1.4.3: Suppose ` ∈ R is a lower bound for a set S ⊆ R. Then ` = inf S
if and only if ` is the greatest lower bound of S. Hint: Carefully modify the proof of Theorem
1.3.10, which connects supremum and least upper bound.

1.4.2. Prove for any prime number p and every rational number r that r2 6= p. (So √p is
irrational). Modify proof of Theorem 1.3.3.

1.4.3. Complete the proof of Theorem 1.4.12 for the case where u = supS and it is assumed
u2 > 2. Hint: Carefully modify the half of the proof already provided.

1.4.4. This exercise justifies the definitions and properties of rational and irrational powers of
real numbers, under meaningful conditions. (See Exercise 1.6 of [10].)

Fix b > 1.

(i) Suppose m, p ∈ Z and p, q ∈ N where r = m/n = p/q. Show that

(bm)1/n = (bp)1/q. (1.4.26)

(This allows us to define br = (bm)1/n for all r ∈ Q.)

(ii) Prove that if r, s ∈ Q, then br+s = brbs.

(iii) Suppose x ∈ R and define T (x) by

T (x) = {bt : t ∈ Q and t ≤ x}. (1.4.27)

Prove that when r ∈ Q, we have

br = supT (r). (1.4.28)

(So, it makes sense to define bx = supT (x) for each x ∈ R.)

(iv) Prove bx+y = bxby for all x, y ∈ R.

1.4.5. This exercise justifies the definition and properties of logarithms. (See Exercise 1.7 of [10].)
Fix b > 1 and y > 0, and assume the results of Exercise 1.4.4 hold. Complete the following

steps to prove there is a unique x ∈ R such that bx = y. Here, x is called the logarithm of y with
respect to the base b.

(i) For any positive integer n ∈ N, we have bn − 1 ≥ n(b− 1).

(ii) By (i), show b− 1 ≥ n(b1/n − 1).

(iii) Prove that if t > 1 and n > (b− 1)/(t− 1), then b1/n < t.

(iv) Prove that if z ∈ R is such that bz < y, then bz+(1/n) < y for sufficiently large n by applying
(iii) with t = y · b−z.

(v) Prove that if z is as in (iv), bz > y, then bz−(1/n) > y for sufficiently large n ∈ N.
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(vi) Let By = {w ∈ R : bw < y}. Prove x = supBy satisfies bx = y.

(vii) Prove that the value of x in (vi) is unique.

1.5 Arbitrarily close in Euclidean spaces
In the more general setting of points and sets in a Euclidean space Rm, we have the following
definition for arbitrarily close. To replace the notion of distance in the real line given by a difference
in absolute values, here we use the more general Pythagorean distance

dm(x,y) = ‖x− y‖m
=
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xm − ym)2. (1.5.1)

Definition 1.5.1: Arbitrarily close

Let y be a point in Rm and let B ⊆ Rm. The point y is said to be arbitrarily close to the
set B, and we write y aclB, if for every ε > 0 there is a point xε in B such that

dm(xε,y) = ‖xε − y‖m < ε. (1.5.2)

The phrase “B is arbitrarily close to y” is defined in the same way.

Example 1.5.2: A point arbitrarily close to a set

In Figure 1.5.1, B is a solid rectangle containing three of its corners and two of its sides.
The point y is the corner of the rectangle that is not in B but is arbitrarily close to B.

Remark 1.5.3: As small as we like, revisited

As in the definition for arbitrarily close in the real line (Defintion 1.1.8), we can think of
the positive real number ε as the amount of error or “wiggle room” we’d like to allow. In
Figure 1.5.1, just one radius ε is drawn to keep things from getting too cluttered. However,
since Definitions 1.1.8 and 1.5.1 allow for any ε > 0, we can take the error to be as small
as we like. So, y aclB means B gets as close to y as we like, no matter how close. In order
to prove y aclB, it suffices can respond to each ε > 0 with a point xε which is in B and
within ε of y.

As a first result, points in a set are arbitrarily close to the set.

Lemma 1.5.4: A point in a set is arbitrarily close

Let y ∈ Rm and let B ⊆ Rm. If y ∈ B, then y aclB.

The idea of the proof is to choose the same point xε = y for each distance ε > 0.
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B

•

• •

ε

•
xε •

• y

Figure 1.5.1: A point y arbitrarily close to a set B in the plane R2. The point xε
is in B and within a distance of ε from y. That is, xε ∈ B∩Vε(y). See Definition
1.5.1. Also, a QR code for the Desmos activity “y acl B” to accompany this figure
and the one on the title page. https://www.desmos.com/calculator/nfbdjs8pdh

Proof of Lemma 1.5.4. Assume y ∈ B and let ε > 0. Choosing xε = y yields

dm(xε,y) = ‖xε − y‖m = ‖y− y‖m = 0 < ε. (1.5.3)

Hence, y aclB.

A natural question students have asked is: “What does it mean when two points are arbitrarily
close?” Since the definition of arbitrarily close (Definition 1.5.1) compares a point to a set, we
need to be creative in order to properly to use it to answer this question. We can replace one of
the points with a singleton.

Lemma 1.5.5: Equal points are arbitrarily close

Let x,y ∈ Rm. We have x = y if and only if x acl{y}.

Proof of Lemma 1.5.5. Suppose x = y. Then for every ε > 0 we have ‖x − y‖m = 0 < ε.
Therefore, x acl{y}.

Now, suppose x 6= y. Then 0 < ‖x− y‖m/2 ≤ ‖x− y‖m. Therefore, x is not arbitrarily close
to {y}.

Remark 1.5.6: Two points arbitrarily close are equal

Lemma 1.5.5 says that in any Euclidean space Rm two points are arbitrarily close if and
only if they are equal. But this is not necessarily the case when we extend the definition of
arbitrarily close to topological spaces! If you’re not familiar with topology yet, don’t worry.
I’m just pointing out that cool things happen in topology when other beautiful structures
aside from Euclidean spaces are in play.

https://www.desmos.com/calculator/nfbdjs8pdh
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Problem 1.5.7: Drawing figures for a lemma

Draw some figures to go with the proofs of Lemmas 1.5.4 and 1.5.5. Playing with examples
in the plane R2 isn’t a bad idea.

To provide another perspective for notions of closeness, consider the terminology of neighbor-
hoods found in topology.

Definition 1.5.8: Neighborhood

Let ε > 0 and c ∈ Rm. The ε-neighborhood of c, denoted by Vε(c), is the set of points
within ε of c. That is,

Vε(c) = {x ∈ Rm : dm(x, c) = ‖x− c‖m < ε}. (1.5.4)

The value of ε used here can still be thought of as an “error” or as a bound for the distance from
c we want to allow. Also, the word neighborhood means the same thing as an “ε-neighborhood of
c” and is used when ε and c need not be specified.

Given a fixed m ∈ N and its Euclidean space Rm, what do ε-neighborhoods look like? See
Figure 1.5.2 for ε-neighborhoods of some fixed ε > 0 centered at c3 in R3, c2 in R2, and c1 in R,
respectively.

• Vε(c3) is the open sphere of radius ε centered at c3 and does not include points on its surface
exactly ε away from c3.

• Vε(c2) is the open disk of radius ε centered at c2 and does not include points on the circle
exactly ε away from c2.

• Vε(c1) is the open interval of length 2ε centered at c1 and does not include the endpoints
c1 − ε and c1 + ε.

Remark 1.5.9: Arbitrarily close via neighbhorhoods

As suggested at the start of this chapter, neighborhoods provide an important perspective
for defining notions of arbitrarily close. For a point y and a set B in a Euclidean space Rm,
we have y aclB if and only if every ε-neighborhood of y intersects B. That is, y aclB if
and only if for every ε > 0 we have

Vε(y) ∩B 6= ∅, (1.5.5)

where ∅ denotes the empty set. See Definitions 1.5.1 and 1.5.8.

The following lemma highlights a special property of neighborhoods in the real line that turns
out to be quite useful. In particular, the real line is ordered, so any neighborhood of a real number
has only two directions to go in. This effect is established by the Trichotomy Property of the real
line (see Axiom 1.3.1) and the definition of absolute value (Definition 1.1.6). Specifically, every
pair real numbers x and y satisfy exactly one of the following: x < y, y < x, or x = y. The proof
of the lemma is left to Exercise 1.5.3.
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Vε(c3) ⊆ R3 •
c3

ε

Vε(c2) ⊆ R2 ε•
c2

Vε(c1) ⊆ R )( •
c1 − ε c1 c1 + ε

Figure 1.5.2: Some ε-neighborhoods centered at c3 in R3, c2 in R2, and c1 in
R, respectively, for some fixed ε > 0.
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◦
w

B
εw

Figure 1.5.3: A point w away from a set B where all points in B are more than
some positive distance εw away from w. Thus, Vεw(w) ⊆ Rm\B. See Definition
1.5.11.

Lemma 1.5.10: Breakdown of neighborhoods in the real line

Let c and x be real numbers. For each ε > 0, the following are equivalent:

x ∈ Vε(c) ⇐⇒ |x− c| < ε (1.5.6)
⇐⇒ −ε < x− c < ε (1.5.7)
⇐⇒ c− ε < x < c+ ε. (1.5.8)

Let’s try turning things around. What if some point w ∈ Rm is not arbitrarily close to B?
Negation leads immediately to the following definition.

Definition 1.5.11: Away from

We say w is away from B and write w awf B if there is some εw > 0 such that for every x
in B we have

dm(x,w) = ‖x−w‖m ≥ εw. (1.5.9)

Remark 1.5.12: Distance between a set and a point

To recap, we have y aclB if there is no distance between y and B, while w awf B if there is
some distance between w and B. Equivalently, w awf B if there is some εw-neighborhood
Vεw(w) where we have Vεw(w) ⊆ Rm\B. So in order to prove w awf B, all we need is one
fixed distance εw > 0 that keeps the all points in B that far from w or more. See Figure
1.5.3.

Theorem 1.4.10, Corollary 1.4.13, and Lemma 1.5.10 combine to produce a nice result on the
relationships between rational numbers, irrational numbers, and ε-neighborhoods in the real line.

Theorem 1.5.13: All neighborhoods in the real line contain
rationals and irrationals

Let c ∈ R and ε > 0. There is a rational number and an irrational number in the ε-
neighborhood Vε(c) = (c− ε, c+ ε).
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Proof of Theorem 1.5.13. Let c ∈ R and ε > 0. Then c − ε < c + ε, so by Theorems 1.4.10 and
Corollary 1.4.13, there is an r ∈ Q and a v ∈ R\Q where

c− ε < r < c+ ε and c− ε < v < c+ ε. (1.5.10)

By Lemma 1.5.10 we have r ∈ (c− ε, c+ ε) and v ∈ (c− ε, c+ ε).

Another property of real numbers that might seem intuitive is the notion that the only real
number arbitrarily close to both positive and negative real numbers is zero. To this end, let
R+ = (0,∞) and R− = (−∞, 0).

Lemma 1.5.14: Zero, positive, and negative

A real number ` is equal to 0 if and only if ` aclR+ and ` aclR−.

Proof of Lemma 1.5.14. First, assume ` = 0 and let ε > 0. Then ε/2 ∈ R+, −ε/2 ∈ R−, and

−ε <− ε

2 < ` = 0 < ε

2 < ε. (1.5.11)

By Lemma 1.5.10, 0 aclR+ and 0 aclR−.
Next, assume ` > 0 and let y < 0. Then

y < 0 < `

2 < `. (1.5.12)

Since ε0 = `/2 > 0, it follows that |` − y| > `/2. Therefore ` awf R−. Similarly, no negative
number is arbitrarily close to R+.

To close out this chapter, we will often want to consider the set of points arbitrarily close to
a given set.

Definition 1.5.15: Closure

Let S ⊆ Rm. The closure of S, denoted by S, is the set of points arbitrarily close to S.
Thus,

S = {y ∈ Rm : y aclS}. (1.5.13)

Example 1.5.16: Arbitarily close and closure

In Figure 1.5.4, B is the closure of the rectangle B. B is a solid rectangle that contains its
corners and sides, thus the corner y is in B.

Example 1.5.17: Closed neighborhoods

There are subtle differences between ε-neighborhoods and their closures. Can you spot the
differences between Figures 1.5.2 and 1.5.5?
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• y

B

•

• •

ε

•
xε •

•

Figure 1.5.4: The closure B contains all points in and arbitrarily close to the
rectangle B, including the corner y and the sides.

Vε(c3) ⊆ R3 •
c3

ε

Vε(c2) ⊆ R2 ε•
c2

Vε(c1) ⊆ R ][ •
c1 − ε c1 c1 + ε

Figure 1.5.5: Closures of ε-neighborhoods centered at c3 in R3, c2 in R2, and
c1 in R, respectively, for some fixed ε > 0. Which points are in these sets that
are not in their counterparts in Figure 1.5.2?
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• Vε(c3) is the closed sphere of radius ε centered c3, including the points on the surface
exactly ε away from c3.

• Vε(c2) is the closed disk of radius ε centered c2, including the points on the circle
exactly ε away from c2.

• Vε(c1) is the closed interval of length 2ε centered c1, including the endpoints c1 − ε
and c1 + ε.

Remark 1.5.18: Convential notion of closure

Some of you may have seen a definition for closure in a class on real analysis, topology,
or some other topic. Definition 1.5.15 is equivalent to more conventional definitions of
closure, but the justification is left to Chapter 3. For now, closures give us a powerful
tool for exploring properties of sets before the boss fight in Chapter 2: Defining limits and
convergence for sequences.

Example 1.5.19: Closures of some sets

Recall the sets A,B, F, and G from previous Examples 1.1.4 and 1.1.17 from Section 1.1.
What are their closures? We have:

A = {2− (1/
√
n) : n ∈ N} =⇒ A = A ∪ {2},

B = {[2− (1/
√
n)](−1)n : n ∈ N} =⇒ B = B ∪ {−2, 2},

F = (−∞, 3140] = {x ∈ R : x ≤ 3140} =⇒ F = (−∞, 3140] = F,

G = (−∞, 3140) = {x ∈ R : x < 3140} =⇒ G = (−∞, 3140] = F.

As usual, I think figures help. See Figure 1.5.6.

Each of the sets in Example 1.5.19 is bounded above. See Figure 1.5.6. In Euclidean spaces
that are not the real line, the notions of bounded above and bounded below lose meaning since
there are infinitely many directions to move around in. Even so, boundedness is a property sets
in Euclidean space can have. The idea is to bound the norms.

Definition 1.5.20: Bounded set

A set S ⊆ Rm is bounded if there is a b ≥ 0 such that for all x in S we have

‖x‖m ≤ b. (1.5.14)

In this case, b is called a bound for S and we say S is bounded by b.

Remark 1.5.21: Bounded above and below

In the real line R, a set S is bounded if and only if it is bounded above and bounded below.
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A ◦...
1 2
••••

A •...
1 2
••••

B ◦ ◦......
−2 −1 2

• •• •

B • •......
−2 −1 2

• •• •

F ]
3140

F ]
3140

G )
3140

G ]
3140

Figure 1.5.6: The sets of real numbers A,B, F, and G from Examples 1.1.4 and
1.1.17, along with their closures. In each case, the closure contains the points in
the original set along with points arbitrarily close to the original set.
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S ◦
a

◦
b

[ )
y

◦...• •

Figure 1.5.7: As in Lemma 1.5.23, here is a set of real numbers S along with a
lower bound a, an upper bound b, and a point y where y aclS.

This section wraps up with a trio of results about bounded sets. Lemmas 1.5.22 and 1.5.23
stem from the order inherent to the real line, while Lemma 1.5.24 pertains to bounded sets in
Euclidean space. All of these results make use of arbitrarily close in some way (Definitions 1.1.8
and 1.5.1).

Lemma 1.5.22: Sided arbitrarily close

Suppose x, a, and b are real numbers. Then

(i) x ≤ b if and only if for every ε > 0 we have x < b+ ε.

(ii) x ≥ a if and only if for every ε > 0 we have x > a− ε.

The proofs of statements (i) and (ii) in Lemma 1.5.22 are similar enough that we will only
work on (i) here and leave (ii) as an exercise. Also, since b < b+ ε for every ε > 0, one direction
of (i) has a short proof. For the other direction, a contraposition argument yields the result.

Proof of (i) in Lemma 1.5.22. First, suppose x ≤ b and let ε > 0. Then

x ≤ b < b+ ε. (1.5.15)

For the other direction, assume x > b to set up a contraposition argument. Then x − b > 0
and so

ε0 = x− b
2 > 0. (1.5.16)

Hence,

b+ ε0 = b+ x− b
2 = x+ b

2 <
x+ x

2 = x. (1.5.17)

Therefore, there is some ε0 > 0 where x > b+ ε0.

Lemma 1.5.23: Order and arbitrarily close

Suppose S ⊆ R and y aclS.

(i) If b is an upper bound for S, then y ≤ b.

(ii) If a is a lower bound for S, then a ≤ y.

The statements (i) and (ii) in Lemma 1.5.23 are similar enough that we will only work on (i)
here and leave (ii) as an exercise. See Figure 1.5.7.



70 CHAPTER 1. KERNEL OF ANALYSIS

S

b
•
0

y

Figure 1.5.8: As in Lemma 1.5.24 and Lekha Patil’s proof, a set S in the plane
R2 bounded by a positive real number b along with a point y in R2 where y aclS
and ‖y‖m ≤ b.

Proof of (i) in Lemma 1.5.23. To set up a contraposition argument, suppose y aclS and y > b.
Then εb = y − b > 0. By the definition of arbitrarily close (Definition 1.5.1), there is some xb in
S where

|xb − y| < εb = y − b. (1.5.18)

Therefore,

y − xb ≤ |xb − y| < y − b. (1.5.19)

So, by subtracting y then multiplying through by −1 in (1.5.19) we have

xb > b. (1.5.20)

Since xb is in S, b is not an upper bound for S.

The points in the closure of a bounded set are so close to the original set that there is no
distance between them. As a result, a bounded set and its closure respect the same bounds. See
Figure 1.5.8.

Lemma 1.5.24: A bound is a bound for the closure

Suppose S ⊆ Rm is bounded by b. Then S is bounded by b as well. That is, if y aclS, then

‖y‖m ≤ b. (1.5.21)

Lemma 1.5.24 was presented as an exercise to my undergraduate real analysis class in Summer
2021. One student, Lekha Patil, came up with an elegant proof. Her proof is provided below
along with Figure 1.5.8. An alternate proof is provided thereafter.

Lekha Patil’s proof of Lemma 1.5.24. Suppose y aclS and b is a bound for S. Then for every
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S

b
•
0

εw

w
◦

Figure 1.5.9: In the second proof of Lemma 1.5.24, a set S in the plane R2

bounded by a positive real number b is away from any point w in R2 where
‖w‖m > b.

point x in S we have
‖y‖m = ‖y− x + x‖m (1.5.22)

≤ ‖y− x‖m + ‖x‖m (triangle inequality (1.2.32)) (1.5.23)
≤ ‖y− x‖m + b. (Definition 1.5.20) (1.5.24)

Now let ε > 0. Since y aclS, there is some xε in S where
‖y‖m ≤ ‖y− xε‖m + b < ε+ b. (1.5.25)

Since ε > 0 is arbitrary (standing for any positive number, so Lemma 1.5.22 applies), we have
‖y‖m ≤ b. (1.5.26)

Hence, b is a bound for S as well.

The line “Since ε > 0 is arbitrary” highlights a key intuitive idea behind the definition of
arbitrarily close, much like Lemma 1.5.5: If the difference between two objects is less than every
ε > 0, then there’s no difference at all. To me, this intuition is reinforced by Lemmas 1.5.22 and
1.5.24.

An alternative proof of Lemma 1.5.24 makes use of a contraposition argument and the defini-
tion of away from (Definition 1.5.11). Basically, a point whose norm is greater than a bound for
a set is away from the set. See Figure 1.5.9.

Alternate proof of Lemma 1.5.24. Suppose b is a bound for S and ‖w‖m > b. For every x in S
we have ‖x‖m ≤ b, so −b ≤ −‖x‖m. Define

εw = ‖w‖m − b > 0. (1.5.27)
Then we have

0 < εw = ‖w‖m − b (1.5.28)
≤ ‖w‖m − ‖x‖m (1.5.29)
≤ ‖w− x‖m (reverse tri. ineq. (1.2.37)) (1.5.30)

Hence, w awf S and w is not in S.
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The following chapter explores properties of sequences through the lens of arbitrarily close
(Definition 1.5.1). In particular, a central tenet of this book is the way arbitrarily close allows us
to parse the definitions of convergence and limits (Definition 2.2.1).

Exercises
1.5.1. Prove the claims about the closures in Example hold 1.5.19 hold. See Figure 1.5.6.

1.5.2. Determine the closures of the following sets.

(i) A = (0, 1)

(ii) B = [0, 1]

(iii) C = Z

(iv) D = Q

(v) E = {(−1)n : n ∈ N}

(vi) F = {(−2)n : n ∈ N}

(vii) G = {(−1)n/n : n ∈ N}

(viii) H = {(−1)n + (1/n) : n ∈ N}

1.5.3. Prove Lemma 1.5.10. Hint: Use the definition of absolute value (Definition 1.1.6) and
Axiom 1.3.1, especially the Trichotomy property.

1.5.4. Prove that if x ∈ R, then x aclQ and x aclR\Q. Thus, both the set of rational numbers
Q and the set of irrational numbers R\Q are dense in R. (See Definition 3.6.13.)

1.5.5. Prove part (ii) of Lemma 1.5.22. The proof follows from a careful consideration and
modification of the proof of part (i).

1.5.6. Prove the closure of a set is closed. That is, given A ⊆ Rm, prove A = A.

1.5.7. Pick a nonempty set S in the plane R2. Draw S and, depending on what you drew, try to
draw three points as follows: One that is arbitrarily close to both S and its complement R2\S,
one that is away from S, and one that is away from R2\S. Next, draw the three following sets:
The set of all points arbitrarily close to both S and its complement R2\S, the set of all points
away from S, and the set of all points away from R2\S. Are there any points away from both S
and R2\S?

1.6 Linearity and arbitrarily close
Linearity is a recurring theme in analysis. This section lays out some of the ways linearity appears
throughout the textbook, mainly as the pair of properties called additivity and homogeneity. Most
of the proofs are omitted.

Vector spaces provide the general context for linearity whose objects are called vectors. The
following definitions may be familiar from coursework on linear algebra.



1.6. LINEARITY AND ARBITRARILY CLOSE 73

Definition 1.6.1: Vector space

A vector space over the real line R is a nonempty set V with two operations, called addition
and scalar multiplication, acting on objects called vectors and satisfying the following ten
properties for all vectors u,v,w ∈ V and all scalars a, b ∈ R.

(i) u + v ∈ V (additivity).

(ii) au ∈ V (homogeneity).

(iii) There is a vector 0 ∈ V called the zero vector such that for all u ∈ V we have
u + 0 = u (additive identity).

(iv) u + v = v + u (commutativity of vector addition).

(v) (u + v) + w = u + (v + w) (associativity of vector addition).

(vi) a(u + v) = au + av (distributivity of scalars).

(vii) (a+ b)u = au + bv (distributivity of vectors).

(viii) a(bu) = (ab)u (associativity of scalar multiplication).

(ix) For every u ∈ V there is vector −u ∈ V called the negative of u where u + (−u) = 0
(additive inverse).

(x) 1u = u (scalar identity).

In the context of analysis, linear combinations of certain vectors are rich enough to be arbi-
trarily close to all objects in a given vector space while being malleable enough to work with.

Definition 1.6.2: Linear combination and span

A linear combination is a finite sum of scaled vectors. That is, linear combinations are of
the form

m∑
j=1

ajvj = a1v1 + a2v + · · ·+ amvm (1.6.1)

where m ∈ N, aj ∈ R, and vj ∈ V where V is a vector space.

The span of a set of vectors A ⊆ V , denoted by Span (A), is the set of all linear combinations
of vectors in A. That is,

Span (A) =


m∑
j=1

ajvj : m ∈ N,vj ∈ A

 . (1.6.2)

Vector spaces contain all linear combinations of their vectors. The next lemma formalizes this
result, but its proof is omitted since it follows from an induction argument using parts (i) and (ii)
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of Definition 1.6.1.

Lemma 1.6.3: Vector spaces contain linear combinations

If V is a vector space, m ∈ N, and vj ∈ V for each j = 1, . . . ,m, then the linear combination∑m
j=1 ajvj is also in V .

Euclidean spaces are fundamental examples of vector spaces.

Example 1.6.4: Euclidean spaces and vector spaces

The following sets are vector spaces.

• The real line R is a vector space where each real number is both a vector and a scalar.

• More generally, every Euclidean space Rm is a vector space.

• The set of sequences of real numbers denoted by RN is a vector space where vector
addition amounts to term-by-term addition.

• More generally, the set of sequences of vectors in a Euclidean space is a vector space.

• Given a nonempty set A, the set of all functions from the common domain A to a
Euclidean space Rm is a vector space. The special case of functions from A to the real
line R is denoted by RA.

Remark 1.6.5: Vectors are functions

Although it may not look like it, every vector space in Example 1.6.4 is a special case of a
set of functions. For instance, we have:

Rm =

x =


x1
x2
...
xm

 : x1, x2, . . . , xm ∈ R

 (1.6.3)

= {f : f : {1, . . . ,m} → R} (1.6.4)
and

RN = {(xn) : (xn) ⊆ R} (1.6.5)
= {f : f : N→ R}. (1.6.6)

Subspaces are subsets of vector spaces which are themselves vector spaces. Lots of them pop
up in analysis.
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Definition 1.6.6: Subspace

A subset S of a vector space V is a subspace of V if S is a vector space whose addition and
scalar multiplication are given by those of V .

Given a subset of a vector space, there is a relatively simple way to determine if the subset is
a subspace. The following lemma codifies this notion, but the proof is omitted.

Lemma 1.6.7: Determining subspaces

A subset S of a vector space V is a subspace of V if S satisfies each of the following
conditions.

(i) S is closed under vector addition: If u,v ∈ S, then u + v ∈ S.

(ii) S is closed under scalar multiplication: If a ∈ R and u ∈ S, then au ∈ S.

(iii) S contains 0, the zero vector of V : 0 ∈ S.

Polynomials are linear combinations of monomials.

Definition 1.6.8: Polynomials and monomials

A monomial is a function fn : R→ R given by

fn(x) =
1, if n = 0,
xn, if n ∈ N.

(1.6.7)

A polynomial is a linear combination of monomials. That is, a polynomial is a function
p : R→ R given by

p(x) =
n∑
j=0

ajx
j = a0 + a1x+ a2x

2 + · · ·+ an−1x
n−1 + anx

n (1.6.8)

where n ∈ N∪{0}, the coefficients a0, a1, a2, . . . , an−1, an are real numbers, and the conven-
tion x0 = 1 is used.

Remark 1.6.9: The set of polynomials is a span

The set of all polynomials over the real line R is the span of the set of monomials. That is,
we have

p(x) ∈ Span{xk : k ∈ N} ⇐⇒ p(x) =
n∑
j=0

ajx
j (1.6.9)

where the coefficients a0, a1, a2, . . . , an−1, an are real numbers.

Vector spaces of functions are plentiful and appear throughout the textbook. Given a, b ∈ R



76 CHAPTER 1. KERNEL OF ANALYSIS

where a < b, the set of functions from the closed and bounded interval [a, b] to the real line R,
denoted by R[a,b], is a vector space with a wealth of interrelated subspaces. Relationships between
these subspaces are explored throughout the textbook.

Example 1.6.10: Subspaces of R[a,b]

Each of the following sets is a subspace of the vector space of real-valued functions R[a,b]

with a common domain [a, b]:

• C[a, b], the set of real-valued continuous functions on [a, b] (see Definition 4.3.2).

• D[a, b], the set of real-valued differentiable functions on [a, b] (see Definition 5.3.1).

• Cn[a, b] where n ∈ N∪{0}, the set of real-valued functions whose nth derivative exists
and is continuous on [a, b]. By convention, C0[a, b] = C[a, b].

• C∞[a, b], the set of real-valued functions whose nth derivative exists for every n ∈ N.

• R[a, b], the set of integrable functions over [a, b] (see Definition 6.1.6).

Also, these subspaces satisfy the following string of strict containments: For all n ∈ N, we
have

C∞(a, b) ( Cn[a, b] ( D[a, b] ( C[a, b] ( R[a, b] ( R[a,b]. (1.6.10)

Connections between linearity, linear combinations, span, subspaces, and arbitrarily close per-
meate analysis. One unconventional connection that seems to belong in this section is the notion
of arbitrarily close exhibiting its own version of linearity when it comes to sums of sets. This idea
also sets the stage for many results stated later on.

Definition 1.6.11: Linear combination of sets

Suppose V is a vector space over the real line, A,B ⊆ V , and c ∈ R. The sum of sets A
and B, denoted by A+B, is defined by

A+B = {x + y : x ∈ A and y ∈ B}. (1.6.11)

The scaled set denoted by cA is defined by

cA = {cx : x ∈ A}. (1.6.12)

Finally, a linear combination of sets is a finite sum of scaled sets. That is, given n ∈ N, sets
A1, . . . , An ⊆ V , and scalars {c1, . . . , cn} ⊆ R, the set given by

n∑
j=1

cjAj = c1A1 + c2A2 + · · ·+ cn−1An−1 + cnAn (1.6.13)

is a linear combination of sets.
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Next up is a look at the interplay between linearity and arbitrarily close. These results are not
terribly important in the sense that they do not appear elsewhere in the textbook, but the scratch
work and arguments for their proofs provide an amuse-bouche for similar results throughout
analysis.

Theorem 1.6.12: Linearity of arbitrarily close

Suppose x,y ∈ Rm, and A,B ⊆ Rm.

(i) If x aclA and y aclB, then (x + y) acl (A+B) (additivity).

(ii) If c ∈ R and x aclA, then (cx) acl (cA) (homogeneity).

Remark 1.6.13: Recurring techniques

To prove each statement in Theorem 1.6.12, we can verify the definition of arbitrarily close
(Definition 1.5.1) holds by considering an arbitrary ε > 0 and finding a suitable point from
the set under consideration within the distance ε of the given point. Recurring techniques
used whenever linearity is to be shown in some way include starting scratch work at the
end, splitting the distance ε into smaller chunks or scaling it by some positive amount,
applying definitions that yield distances each within some chunk or scaling of ε, then using
some form of the triangle inequality (1.2.32) to bring the argument together.

Scratch Work 1.6.14: Additivity of arbitrarily close

To derive some scratch work for directly showing

(x + y) acl (A+B), (1.6.14)

let’s start at the end. Given ε > 0, we want to end up with a ∈ A and b ∈ B where

‖(a + b)− (x + y)‖m < ε. (1.6.15)

We can assume

x aclA and y aclB, (1.6.16)

so by Definition 1.5.1 applied twice, given any ε > 0 there are points aε ∈ A and bε ∈ B
where

‖aε − x‖m < ε and ‖bε − y‖m < ε. (1.6.17)

Combining both inequalities in (1.6.17) and applying triangle inequality (1.2.35) gives us

‖(aε + bε)− (x + y)‖m = ‖(aε − x) + (bε − y)‖m (1.6.18)
≤ ‖aε − x‖m + ‖bε − y)‖m (1.6.19)
< ε+ ε (1.6.20)
= 2ε. (1.6.21)
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This doesn’t quite get us to our goal (1.6.15), but we can adapt: The definition of arbitrarily
close (Definition 1.5.1) ensures that we can respond to any positive distance we like with
suitable points from the set. So, split ε in half and consider ε/2 > 0 and apply the definition
of arbitrarily close twice, yielding aε/2 ∈ A and bε/2 ∈ B where

‖aε/2 − x‖m <
ε

2 and ‖bε/2 − y‖m <
ε

2 . (1.6.22)

From there, the sum aε/2 + bε/2 is both in A + B and, thanks to the triangle inequality
(1.2.35), within ε of x + y.

Proof of (i) in Theorem 1.6.12. Suppose x,y ∈ Rm and A,B ⊆ Rm where x aclA and y aclB.
Let ε > 0. Since ε/2 > 0, the definition for arbitrarily close (Definition 1.5.1) applies and there
exist aε/2 ∈ A and bε/2 ∈ B where

‖aε/2 − x‖m <
ε

2 and ‖bε/2 − y‖m <
ε

2 . (1.6.23)

Then by the definition of the sum of sets (Definition 1.6.11) and the triangle inequality (1.2.35),
we have (aε/2 + bε/2) ∈ (A+B) and

‖(aε/2 + bε/2)− (x + y)‖m = ‖(aε/2 − x) + (bε/2 − y)‖m (1.6.24)
≤ ‖aε/2 − x‖m + ‖bε/2 − y)‖m (1.6.25)

<
ε

2 + ε

2 (1.6.26)

= ε. (1.6.27)

Therefore, (x + y) acl (A+B).

Next, let’s prove the homogeneity of arbitrarily close, part (ii) of Theorem 1.6.12.

Scratch Work 1.6.15: Homogeneity of arbitrarily close

Once again, let’s start at the end. Given a distance ε > 0 and a scalar c ∈ R, we want to
end up a point a ∈ A where

‖ca − cx‖m < ε. (1.6.28)

By the homogeneity of the Euclidean norm (1.2.33), we have

‖c a − cx‖m = |c|‖a − x‖m < ε. (1.6.29)

So if c 6= 0, then |c| 6= 0 as well and we can divide both sides of the rightmost inequality in
(1.6.29) to get

‖a − x‖m <
ε

|c|
. (1.6.30)

The definition for arbitrarily close (Definition 1.5.1) ensures a point aε/|c| ∈ A can be found
in response to the positive distance ε/|c| that will suffice, as long as c 6= 0.
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Proof of part (ii) in Theorem 1.6.12. This proof has two cases: (i) c = 0 and (ii) c 6= 0.
Case (i), c = 0: Suppose c = 0, x aclA, and ε > 0. Then for every a ∈ A (or Rm for that

matter), we have

cA = 0A = {0} and ‖c a − cx‖m = ‖0− 0‖m = 0 < ε. (1.6.31)

Since 0 acl {0} by Lemma 1.5.4, we have (cx) acl (cA).
Case (ii), c 6= 0: Suppose c 6= 0, x aclA, and ε > 0. Then ε/|c| > 0 and by the definition of

arbitrarily close (Definition 1.5.1), there is a point aε/|c| ∈ A such that

‖aε/|c| − x‖m <
ε

|c|
. (1.6.32)

So, by the definition for scaled sets (Definition 1.6.11) and the homogeneity of the Euclidean norm
(1.2.33), we have c aε/|c| ∈ cA and

‖c aε/|c| − cx‖m = |c|‖aε/|c| − x‖m < |c| ε
|c|

= ε. (1.6.33)

Therefore, (cx) acl (cA).

The linearity of arbitrarily close established in Theorem 1.6.12 extends to linear combinations
via induction. Actually, the same is true for the numerous results on linearity throughout the
textbook.

Corollary 1.6.16: Arbitrarily close and linear combinations of sets

Suppose Aj ⊆ Rm for each j = 1, . . . , n where n ∈ N. If xj aclAj and cj ∈ R for each
j = 1, . . . , n, then  n∑

j=1
cjxj

 acl
 n∑
j=1

cjAj

. (1.6.34)

Scratch Work 1.6.17: Induction extends linearity to linear combinations

An induction argument allows us to extend the linearity of arbitrarily close to linear com-
binations of sets. This extension applies to all the other notions of linearity explored later
in the textbook.

Proof of Corollary 1.6.16. The base case follows from the linearity of arbitrarily close (Theorem
1.6.12) and the inductive case follows from the base case.

Base case: Suppose r, s ∈ R, A,B ⊆ Rm, x aclA, and y aclB. By the homogeneity of ar-
bitrarily close (part (ii) of Theorem 1.6.12), we have (rx) acl (rA) and (sy) acl (sB). So by the
additivity of arbitrarily close (part (i) of Theorem 1.6.12), we have

(rx + sy) acl (rA+ sB). (1.6.35)
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Inductive case: Suppose cj ∈ R, Aj ⊆ Rm, and xj aclAj for each j = 1, . . . , k + 1. For the
inductive hypothesis, suppose

 k∑
j=1

cjxj

 acl
 k∑
j=1

cjAj

 and xk+1 aclAk+1. (1.6.36)

Set r = 1, s = ck+1,x = ∑k
j=1 cjxj,y = xk+1, A = ∑k

j=1 cjAj, and B = Ak+1. Then

rx + sy =
k+1∑
j=1

cjxj and rA+ sB =
k+1∑
j=1

cjAj. (1.6.37)

So, by the inductive hypothesis and the base case we have
k+1∑
j=1

cjxj

 acl
k+1∑
j=1

cjAj

. (1.6.38)

Therefore, for every n ∈ N, if xj aclAj and cj ∈ R for each j = 1, . . . , n, then

 n∑
j=1

cjxj

 acl
 n∑
j=1

cjAj

. (1.6.39)

Remark 1.6.18: Linearity throughout analysis

Notions of linearity like those for arbitrarily close in Theorem 1.6.12 and its extension to
linear combinations in Corollary 1.6.16 hold for all kinds of concepts in analysis. As in the
preface (Chapter 0), here’s a list of some of the results found throughout the textbook.

• Linearity of sequential limits, Theorem 2.3.9 and Corollary 2.3.13.

• Linearity of continuity, Theorem 4.5.5 and Corollary 4.5.7.

• Linearity of functional limits, Theorem 5.2.6 and Corollary 5.2.8.

• Linearity of differentiation, Theorem 5.4.1 and Corollary 5.4.3.

• Linearity of integration, Theorem 6.3.6 and Corollary 6.3.9.

• Linearity of uniform convergence, Theorem 7.2.8 and Corollary 7.2.10.

For readers familiar with the fruitful combination of linear algebra and analysis in the context
of Hilbert spaces, this chapter concludes with a definition for orthonormal basis in terms of
orthonormal vectors, span, and arbitrarily close.
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Definition 1.6.19: Orthonormal basis

An orthonormal basis of a Hilbert space is a set of orthonormal vectors whose span is
arbitrarily close to every vector in the space.
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Chapter 2

Sequences, Tails, and Limits

The technical definitions of limit and convergence (Definition 2.2.1) along with continuity (Def-
inition 4.3.2) are among the most difficult in undergraduate mathematics. As explored in this
chapter, the definition of arbitrarily close (Definitions 1.1.8 and 1.5.1) provides a stepping stone
towards understanding these challenging concepts.

If you’re interested, you might like to take a look at [3, 4, 6, 9, 11] for various approaches to
address this difficulty. Also see [5, 9] for a thorough discussion of the challenges that come with
teaching convergence and limits.

This chapter explores limits and convergence for sequences, highlighted by Definition 2.2.1.
We start with a formal definition of a sequence (Definition 2.1.1) and an investigation of what it
means for points to be arbitrarily close to sequences.

2.1 Sequences and tails

One way to think of a sequence is as an unending list of objects. More specifically, a sequence
imbues two structures on a collection of objects: (i) The objects are listed in ordered (first, second,
third...); and (ii) the list is infinitely long, even if some objects are repeated.

Formally, a sequence is a function from the set of positive integers N into some nonempty
set. The ordering of the domain N becomes an ordering on the range of the function, generating
the terms of the sequence. This ordering pairs with the notion of tails to expand the notion of
arbitrarily close to limits and convergence.

Definition 2.1.1: Sequence, index, term, and range

A sequence (xn) is a function whose domain is N. For a nonempty set B ⊆ Rm, a sequence
of points in B is a function f : N → B. Each input n ∈ N is called an index and has a
corresponding output called a term written

xn = f(n). (2.1.1)

83
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The range of a sequence is the set of terms given by

f(N) = {xn ∈ B : n ∈ N and xn = f(n)}. (2.1.2)

Remark 2.1.2: Conventional notation for sequences

Following convention, sequences in this book are written (xn) or (xn) when the terms are
real numbers. We also write

(xn) = (x1,x2,x3, . . .) (2.1.3)

to help us expand the terms and identify patterns.

The conventional notation (xn) suppresses the fact that a sequence represents a function
but keeps the ordering inherited from N intact. Technically, the range f(N) does not repeat
elements and does not have any particular ordering on its own.

Throughout the book, figures for sequences of real numbers are sometimes graphs with both
inputs (positive integers) on a horizontal axis and outputs (terms) on a vertical axis. Other
times, figures for sequences are just plots of the ranges.

Notation 2.1.3: Sequence arbitrarily close to a point

Following another convention which is a mild abuse of notation, for a sequence (xn) defined
by f : N→ B we take the phrase “y is arbitrarily close to the sequence (xn)” to mean the
point y is arbitrarily close to the range f(N). So,

y acl (xn) means y acl f(N). (2.1.4)

Similarly,

(xn) ⊆ Rm means f(N) ⊆ Rm. (2.1.5)

The following examples give us a basis for comparison throughout this section. They will help
us build a bridge from arbitrarily close to limits for sequences with a keystone highlighted by their
differences with their tails.

Example 2.1.4: Two sequences of real numbers

Consider the sequences of real numbers (an) and (bn) defined for each n ∈ N by

an = 2− 1√
n

and bn =
(

2− 1√
n

)
(−1)n. (2.1.6)

See Figure 2.1.1 which is nearly indentical to Figure 1.1.5 from Example 1.1.17. I claim
2 acl (an) and 2 acl (bn).
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(an) ◦...
a1 a2 2
••••

(bn) ◦ ◦
−2 2

...... • •• •
b1 b2b3 b4

Figure 2.1.1: The ranges of the sequences (an) and (bn) from Example 2.1.4
are the sets A and B, respectively, from Example 1.1.17. The black dots, like
•, represent the terms of the sequences while the circles, like ◦, represent points
arbitrarily close to the sequence but are not terms.

In Example 1.1.17, we proved 2 aclA and 2 aclB. Since A is the range of (an) and B is the
range of (bn), we can already conclude 2 acl (an) and 2 acl (bn). However, revisiting some of the
scratch work and proofs will help us parse the definition of convergence using arbitrarily close and
tails.

Scratch Work 2.1.5: Start at the end

To show 2 acl (an), we should consider an unspecified ε > 0 and end up with a term an =
2− (1/

√
n) where

|an − 2| =
∣∣∣∣∣
(

2− 1√
n

)
− 2

∣∣∣∣∣ = 1√
n
< ε. (2.1.7)

See Figure 2.1.2. We can find a suitable term by solving the rightmost inequality for the
index n. We get

1√
n
< ε ⇐⇒ n >

1
ε2 . (2.1.8)

From there, we can choose our index nε to be any positive integer large enough to satisfy
nε > 1/ε2 to give us a suitable term anε = 2− (1/√nε).

Proof for 2 acl (an) in Example 2.1.4. Let ε > 0. Choose an index nε ∈ N large enough to satisfy
nε > 1/ε2. We have

nε >
1
ε2 ⇐⇒ 1

√
nε

< ε. (2.1.9)

Hence, the term anε = 2− (1/√nε) is within ε of 2:

dR(anε , 2) = |anε − 2| =
∣∣∣∣∣
(

2− 1
√
nε

)
− 2

∣∣∣∣∣ = 1
√
nε

< ε. (2.1.10)

Therefore, 2 acl (an).
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(an) ◦
2

...

a1

••••

(an) ◦
2

...

a1

••••

(an) ◦
2

...

a1

••••

ε

Figure 2.1.2: The real number 2 is arbitrarily close to the sequence (an)
from Example 2.1.4. For every distance ε > 0, an infinite number of the
an terms are within ε of 2 and only a finite number of the terms are more
than ε away from 2. So, every ε-neighborhood Vε(2) contains a tail of (an).
Also, use the QR code to play around with the Desmos activity “2 acl A”.
https://www.desmos.com/calculator/ceczc717wa

(bn) • •• •
b1 b2b3 b4

◦ ◦......
−2 2

(bn) • •• •
b1 b2b3 b4

◦ ◦......
−2 2

(bn) • •• •
b1 b2b3 b4

◦ ◦......

−2 2

ε

Figure 2.1.3: The real number 2 is arbitrarily close to the sequence (bn) from
Example 2.1.4. For every distance ε > 0, an infinite number of the bn terms—
with even indices—are within ε of 2. Unlike the sequence (an), an infinite number
of the bn terms—with odd indices—are more than ε away from 2 when ε is
relatively small. For these small ε, no ε-neighborhood Vε(2) contains a tail of
(bn). Also, use the QR code to play around the Desmos activity “2 acl B”.
https://www.desmos.com/calculator/ysaphndtqh

https://www.desmos.com/calculator/ceczc717wa
https://www.desmos.com/calculator/ysaphndtqh
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The scratch work and proof showing 2 acl (bn) are similar to those for 2 acl (an), except the
parity of the index n ∈ N as either an even or odd integer plays a key role. See the scratch work
and proof showing 2 aclB in Example 1.1.17, if you’d like a refresher.

Scratch Work 2.1.6: Start at the end

To show 2 acl (bn), we should consider an unspecified ε > 0 and end up with a term bn =
[2− (1/

√
n)](−1)n where

|bn − 2| < ε. (2.1.11)
See Figure 2.1.3.

In this example, the term bn and distance |bn − 2| do not simplify readily since bn depends
on whether the index n is even or odd. More specifically,

(−1)n =
−1, when n is odd,

1, when n is even,
(2.1.12)

which implies

bn =
(

2− 1√
n

)
(−1)n =



−2 + 1√
n
, when n is odd,

2− 1√
n
, when n is even.

(2.1.13)

Hence, the distance |bn − 2| depends on the parity of n as well:

|bn − 2| =
∣∣∣∣∣
(

2− 1√
n

)
(−1)n − 2

∣∣∣∣∣ =



4− 1√
n
, when n is odd,

1√
n
, when n is even.

(2.1.14)

So, in order to ensure |bn − 2| < ε for any given distance ε > 0, we should consider only
terms bn whose indices are even since we can make the distance |bn − 2| = 1/

√
n as small

as we like. Therefore, we should choose an index n which is both even and large enough to
give us a term bn within ε of 2.

When n is even we have |bn− 2| = 1/
√
n, so we can determine how large the index n needs

to be by solving the following inequality for n:

|bn − 2| =
∣∣∣∣∣
(

2− 1√
n

)
(−1)n − 2

∣∣∣∣∣ = 1√
n
< ε ⇐⇒ n >

1
ε2 . (2.1.15)

From there, we should choose our index nε to be an even positive integer large enough to
satisfy nε > 1/ε2. This index nε gives us a suitable term

bnε =
(

2− 1
√
nε

)
(−1)nε = 2− 1

√
nε
. (2.1.16)
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Proof for 2 acl (bn) in Example 2.1.4. Let ε > 0. Choose an even index nε large enough to satisfy
nε > 1/ε2. We have

nε >
1
ε2 ⇐⇒ 1

√
nε

< ε. (2.1.17)

Since (−1)nε = 1, the corresponding term bnε satisfies

bnε =
(

2− 1
√
nε

)
(−1)nε = 2− 1

√
nε
. (2.1.18)

Hence, the term bnε is within ε of 2:

dR(bnε , 2) = |bnε − 2| =
∣∣∣∣∣
(

2− 1
√
nε

)
− 2

∣∣∣∣∣ = 1
√
nε

< ε. (2.1.19)

Therefore, 2 acl (bn).

Compare Figures 2.1.2 and 2.1.3 featuring the sequences (an) and (bn) from Example 2.1.4
along with a few ε-neighborhoods of 2. Can you describe the differences you see? Does the
behavior of each sequence seem to depend on the parity of the indices? Better yet, can you define
what you’re seeing?

In Figure 2.1.2, every ε-neighborhood of 2 captures all of the terms of (an) except for a finite
number which are more than ε away from 2. In Figure 2.1.3, the given ε-neighborhoods are too
small to contain the terms of (bn) with odd indices. So, sometimes an infinite number of the terms
of (bn) are more than ε away from 2.

The notion of capturing all but a finite number of the terms of a sequence is codified by the
tails of a sequence.

Definition 2.1.7: Tail of a sequence

A tail of a sequence (xn) is a sequence of the form

(xn≥k) = (xk,xk+1,xk+2, . . .) (2.1.20)

which is a copy of (xn) starting at the kth term xk for some positive integer k. When we
want to be more specific, we refer to (xn≥k) as the k-tail.

Example 2.1.8: Tails and not a tail

Once again, consider the sequences (an) and (bn) from Example 2.1.4 which are defined for
each n ∈ N by

an = 2− 1√
n

and bn =
(

2− 1√
n

)
(−1)n. (2.1.21)

Which of the following are tails of (an)? Of (bn)? Each figure displays a graph of the
corresponding sequence where the points in the plane stem from indices along the horizontal
axis and terms along the vertical axis.
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••••••••••••••••graph of

(an)

−

−

−

0

1

2

terms

| | | |
4 8 12 16 indices

Figure 2.1.4: A graph of the sequence (an) from Examples 2.1.4 and 2.1.8.
Technically, the black dots are not the terms of the sequence. The terms are
represented by heights which would lie on the vertical axis, but they are not
plotted here.

• Figure 2.1.4: (an) = (a1, a2, a3, . . .)

• No figure: (an≥4) = (a4, a5, a6, . . .)

• Figure 2.1.5: (an≥8) = (a8, a9, a10, . . .)

• Figure 2.1.6: (bn) = (b1, b2, b3, . . .)

• Figure 2.1.7: (bn≥8) = (b8, b9, b10, . . .)

• Figure 2.1.8: (b2k) = (b2, b4, b6, . . .)

Every sequence is its own 1-tail, so we have (an) = (an≥1) and (bn) = (bn≥1). The sequence
(an≥4) is the 4-tail of (an) whose first term is a4 while (an≥8) is the 8-tail whose first term
is a8. The sequence (bn≥8) is the 8-tail of (bn) whose first term is b8.

On the other hand, the sequence (b2k) comprising the terms of (bn) with even indices, is not
a tail of (bn). Every tail must contain all terms of some original sequence after a particular
initial term, whether the indices are even or odd. The sequence (b2k) is not a tail of (bn)
since (b2k) contains no terms with odd indices.

Remark 2.1.9: Subsequences are discussed later

While they are not tails of (bn), the sequences (b2k) and (b2k−1) comprising the terms with
even and odd indices, respectively, are subsequences of (bn). See Figure 2.1.8. The formal
definition for subsequences and their properties are explored in Section 2.9.

The purpose of this section is to put us in position to explore the definition of convergence
and limits for sequences in the next section by considering arbitrarily close and tails. One more
look at the sequences (an) and (bn) from Examples 2.1.4 and 2.1.8 will help us prepare.
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•••••••••graph of

(an≥8)

−

−

−

0

1

2

terms

| | | |
4 8 12 16 indices

Figure 2.1.5: A graph of the 8-tail (an≥8) from Example 2.1.8. The first seven
terms (heights) of the original (an) are discarded while all remaining terms with
index n ≥ 8 are included.
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graph of

(bn)
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0
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2

terms

| | | |
4 8 12 16 indices

Figure 2.1.6: A graph of the sequence (bn) from Examples 2.1.4 and 2.1.8.
Note the terms (heights) alternate between being close to 2 or −2 as the indices
increase.
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•
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graph of

(bn≥8)
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2

terms

| | | |
4 8 12 16 indices

Figure 2.1.7: A graph of the 8-tail sequence (bn≥8) from Example 2.1.8. The
first seven terms of (bn) are discarded while all remaining terms with index n ≥ 8
are included. The terms (heights) of the 8-tail (bn≥8) alternate between being
close to 2 or −2 as the indices increase.

• • • • • • • •

◦
◦ ◦ ◦ ◦ ◦ ◦ ◦

graph of

(b2k)
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−

−

−

−

−2

−1

0
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2

terms

| | | |
4 8 12 16 indices

Figure 2.1.8: A graph of the subsequence (b2k) featuring the terms (heights) of
(bn) whose indices are even. See Example 2.1.8. The black dots, like •, represent
the sequence (b2k) while the circles, like ◦, represent the subsequence (b2k−1) with
odd indices which are not part of (b2k). Neither (b2k) nor (b2k−1) is a tail of the
original (bn).
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Example 2.1.10: Neighborhoods and tails

Once again, consider the sequences (an) and (bn) defined for each index n ∈ N by

an = 2− 1√
n

and bn =
(

2− 1√
n

)
(−1)n. (2.1.22)

Even though 2 acl (an) and 2 acl (bn) as proven for Example 2.1.4, every ε-neighborhood of
2 contains a tail (an), but some ε-neighborhoods of 2 do not contain a tail of (bn). See
Figures 2.1.2, 2.1.3, and 2.1.9.

Remark 2.1.11: Scratch work for arbitrarily close versus convergence

A benefit of exploring points arbitrarily close to sequences before convergence is the scratch
work. In order to show all ε-neighborhoods of a point contain a tail of a sequence, we can
build on the scratch work developed to prove the point is arbitrarily close to the sequence.
This process allows us to prove such a sequence converges to the point. See Definition 2.2.1.

Scratch Work 2.1.12: From arbitrarily close to convergence

To prove every ε-neighborhood of 2 contains a tail of (an), we can build on Scratch Work
2.1.5 by showing that not only do we have a term anε within a given distance ε of 2, but a
whole tail (an≥nε) is also within ε of 2. Equivalently, this shows (an≥nε) ⊆ Vε(2). The proof
itself considers the terms an with indices large enough to satisfy n ≥ nε where the index nε
is found in scratch work.

Proof that every neighborhood of 2 contains a tail of (an) in Example 2.1.10. Let ε > 0. Choose
an index nε ∈ N large enough to satisfy nε > 1/ε2, as motivated by Scratch Work 2.1.5. We have

nε >
1
ε2 ⇐⇒ 1

√
nε

< ε. (2.1.23)

Now consider every index n ∈ N large enough to have n ≥ nε. Then, since the square root function
is increasing, we have

n ≥ nε >
1
ε2 =⇒ 1

n
≤ 1
nε

< ε2 =⇒ 1√
n
≤ 1
√
nε

< ε. (2.1.24)

Hence, every term an = 2− (1/
√
n) where n ≥ nε is in the nε-tail (an≥nε) and within ε of 2:

dR(an, 2) = |an − 2| =
∣∣∣∣∣
(

2− 1√
n

)
− 2

∣∣∣∣∣ = 1√
n
≤ 1
√
nε

< ε. (2.1.25)

Therefore, every ε-neighborhood of 2 contains its nε-tail (an≥nε).

Now to show an ε0-neighborhood of 2 contains no tails of (bn).
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(bn) • •• •
b1 b2b3 b4

◦ ◦......
−2 2

ε0

Figure 2.1.9: The distance ε0 = 3/2 defines a neighborhood around 2 which
contains no tails of the sequence (bn) from Examples 2.1.4 and 2.1.8. That is,
the ε0-neighborhood Vε0(2) does not contain a tail of (bn).

Scratch Work 2.1.13: Arbitrarily close but not convergence

See Figure 2.1.9 where the distance ε0 = 3/2 yields a neighborhood Vε0(2) which does not
seem to contain any tails of (bn). The proof entails showing all terms with odd indices are
more than ε0 = 3/2 away from 2.

Proof regarding tails of (bn) in Example 2.1.10. Consider the distance ε0 = 3/2 > 0. Following
Scratch Work 2.1.6, for every odd index n ∈ N we have (−1)n = −1 and so

bn =
(

2− 1√
n

)
(−1)n = −2 + 1√

n
. (2.1.26)

Hence, the distance |bn − 2| yields

dR(bn, 2) = |bn − 2| =
∣∣∣∣∣−2 + 1√

n
− 2

∣∣∣∣∣ = 4− 1√
n
. (2.1.27)

Therefore, the distance |bn − 2| is more than ε0 = 3/2 when n is odd:

|bn − 2| = 4− 1√
n
≥ 3 > 3

2 = ε0. (2.1.28)

Finally, since every tail of (bn) must contain terms with even and odd indices, the ε0-neighborhood
of 2 contains no tails of (bn).

The remainder of this section considers a sequence in the plane R2.
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(zn)

•

•

•

•

◦
u
...

z1z3

...
◦ v

z2

z4

Figure 2.1.10: The terms zn where n is odd seem to be bunching together near
u while the terms where n is even are bunching together near v. See Example
2.1.14.

Example 2.1.14: A sequence arbitrarily close to two points in the plane

Consider the sequence in the plane R2 given by

zn =



 2 + (2/n)
1

 , if n is odd,

 −1
3− (2/n)

 , if n is even.

(2.1.29)

Also, consider the points u and v given by

u =
[

2
1

]
and v =

[
−1
3

]
. (2.1.30)

See Figure 2.1.10 for a plot of the sequence (zn) along with the points u and v. It turns
out we have both u acl(zn) and v acl(zn).

Proof for Example 2.1.14. Let ε > 0. By the Corollary of the Archimedean Property 1.4.8, there
is an odd integer jε that’s large enough to give us1

d2(zjε ,u) = ‖zjε − u‖2 = 2
jε
< ε. (2.1.31)

Again by the Corollary of the Archimedean Property 1.4.8, there is also an even integer kε that’s
large enough to give us

d2(zkε ,v) = ‖zkε − v‖2 = 2
kε
< ε. (2.1.32)

Hence, every ε-neighborhood of u and every ε-neighborhood of v contains a term of (zn). So,
u acl(zn) and v acl(zn).

1Don’t see how these computations work out? If so, that’s okay. Some steps were skipped. Fill them in!
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In Definition 2.2.1 below, we build on the notions of arbitrarily close and tails to define limits
and convergence for sequences, also called sequential limits and convergence. This definition is
notoriously difficult to understand. See the works [3, 4, 6, 9, 11] for other approaches to teaching
real analysis at the undergraduate level which are, in part, designed to address this difficulty. Also
see [5, 9] for a thorough discussion of the challenges that come with the pedagogy of convergence
and limits.

Exercises
2.1.1. Consider the sequence of real numbers (xn) defined for each index n ∈ N by

xn = 4(−1)n√
n+ 1

. (2.1.33)

(i) Prove 0 acl (xn).

(ii) Prove every ε-neighborhood of 0 contains a tail of (xn).

2.1.2. Consider the sequence of real numbers (zn) defined for each index n ∈ N by

zn = 4(−1)n√
n+ 1

+ 2(−1)n. (2.1.34)

(i) Prove 2 acl (zn).

(ii) Find an ε0-neighborhood of 2 which contains no tails of (zn) and prove your result.

2.1.3. Determine the set of points arbitrarily close to the range of each sequence defined below.
Draw stuff, and note n ∈ N.

(i) an = n.

(ii) bn = 8− (−1)n
n

.

(iii) cn = 3(−1)n + 1
n
.

(iv) dn = 1− 1
10n .

(v) en =
0, n is odd
n/2, n is even.

Note we have (dn) = (.9, .99, .999, . . .) and (en) = (0, 1, 0, 2, 0, 3, . . .).

2.1.4. Let ε0 = 1/101 > 0 and n ∈ N.

(i) For an = n, prove V1/101(3140) contains no tails of (an).

(ii) For bn = 8− (−1)n
n

, prove V1/101(8) contains a tail of (bn).

(iii) For cn = 3(−1)n + 1
n
, prove V1/101(3) contains no tails of (cn).
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(iv) For dn = 1− 1
10n , prove V1/101(1) contains a tail of (dn).

(v) For en =
0, n is odd,
n/2, n is even,

prove V1/101(0) contains no tail of (en).

Note we have (dn) = (.9, .99, .999, . . .) and (en) = (0, 1, 0, 2, 0, 3, . . .).

2.1.5. This exercise explores an example of a sequence defined as the sum of two other sequences.

(i) Consider the sequences (xn) and (yn) defined for each index n ∈ N by

xn = 100 + 1
n2 and yn = π + 1√

n
. (2.1.35)

Given the distance ε0 = 1/3140, find indices s0, t0 ∈ N where

|xs0 − 100| < 1
3140 and |yt0 − π| <

1
3140 . (2.1.36)

(ii) Consider the sequence (zn) defined for each index n ∈ N by

zn = xn + yn = 100 + 1
n2 + π + 1√

n
. (2.1.37)

Given the distance ε0 = 1/3140, find an index m0 ∈ N where

|zm0 − (100 + π)| < 1
3140 . (2.1.38)

(iii) Once again, consider the sequence (zn) from part (ii). Given an arbitrary positive distance
ε > 0, prove there is an index nε ∈ N where

|znε − (100 + π)| < ε. (2.1.39)

(iv) One more time, consider the sequence (zn) from part (ii). Prove every ε-neighborhood of
100 + π contains a tail of (zn).

2.1.6. This exercise explores another example of a sequence defined as the sum of two other
sequences.

(i) Consider the sequences (an) and (bn) defined for each n ∈ N by

an = 100(−1)n + 1
n2 and bn = π(−1)n+1 + 1√

n
. (2.1.40)

Given the distance ε0 = 1/3140, find indices s0, t0 ∈ N where

|as0 − 100| < 1
3140 and |bt0 − π| <

1
3140 . (2.1.41)
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(ii) Consider the sequence (cn) defined for each n ∈ N by

cn = an + bn = 100(−1)n + 1
n2 + π(−1)n+1 + 1√

n
. (2.1.42)

Given the distance ε0 = 1/3140, explain why there is no index n ∈ N where

|cn − (100 + π)| < 1
3140 . (2.1.43)

2.1.7. Given a real number y, construct a sequence of real numbers (xn) where y is the only point
arbitrarily close to every tail of (xn) and yet no neighbhorhood of y contains a tail of (xn). Note
that neither (an) nor (bn) from Example 2.1.4 satisfies this condition.

2.2 Limit of a sequence

The convergence of a sequence can be summarized as follows:

A sequence converges to a point if every neighborhood of the point contains a tail of
the sequence.

A purpose of formal definitions is to capture our intuition about concepts such as convergence.
As we delve into the formal definitions, please keep in mind whatever properties you expect limits
and converging sequences to have. The technical versions of these concepts take time to fully
understand, so please be patient. Play around with the ideas and let the understanding come to
you.

Definition 2.2.1: Convergence, threshold, and limit of a sequence

Let (xn) be a sequence of points in Rm and let y be a point in Rm. The sequence (xn)
converges to y if for every distance ε > 0 there is an index nε ∈ N such that for every index
n ∈ N we have

n ≥ nε =⇒ dm(xn,y) = ‖xn − y‖m < ε. (2.2.1)

In this case, the index nε is called a threshold, y is called the limit of the sequence (xn),
and we write

lim
n→∞

xn = y or limn→∞ xn = y. (2.2.2)

A sequence diverges if it does not converge to any point.
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Remark 2.2.2: Thresholds define tails

The definition of convergence and limit for a sequence in Definition 2.2.1 is equivalent to
saying every neighborhood of the point contains a tail of the sequence. In particular, the
implication (2.2.1) is equivalent to

(xn≥nε) = (xnε , xnε+1, xnε+2, . . .) ⊆ Vε(y). (2.2.3)

So when (xn) converges to y, a threshold nε defines an nε-tail of (xn) contained in the
neighborhood Vε(y).

Remark 2.2.3: Arbitrarily close and convergence are not equivalent

The concepts arbitrarily close and convergence are deeply related but they are not equiva-
lent. A key difference is the role played by the index nε and whether it is a threshold for
convergence or not. Every index defines both a term and a tail of a given sequence. When
nε produces a term within ε of a point, it leads to the point being arbitrarily close to the
sequence. When a whole nε-tail is within ε of a point, the point is the limit of the sequence.

By first working with a formal definition for arbitrarily close in the context of sequences, we
can parse convergence and limits using arbitrarily close and tails. You may find that finding a
suitable threshold nε—which we do for both arbitrarily close and convergence—is often the most
difficult part about proving convergence.

Definition 1.5.1: Definition 2.2.1:
y is arbitrarily close to (xn) y is the limit of (xn)

y acl (xn) y = limn→∞(xn)

Every neighborhood of y Every neighborhood of y
contains a term of (xn). contains a tail of (xn).

∀ ε > 0, ∀ ε > 0,
∃nε ∈ N such that ∃nε ∈ N such that

xnε ∈ Vε(y). (xn≥nε) ⊆ Vε(y).

∀ ε > 0, ∀ ε > 0,
∃nε ∈ N such that ∃nε ∈ N such that
‖xnε − y‖m < ε. n ≥ nε =⇒ ‖xn − y‖m < ε.
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The table above compares the technical definitions of arbitrarily close and convergence for
sequences. The quantifier “∀” means “for all” while “∃” means “there exists”. With both arbitrarily
close and convergence, ε > 0 tells us how close we would like the terms of the sequence (xn) to
be to y. Again, the key difference is role played by the index nε ∈ N. In both cases, nε depends
on the given positive distance or “error” ε and the corresponding ε-neighborhood Vε(y). With
arbitrarily close, nε ensures at least one term xnε is within ε of y, so xnε is in the neighborhood
Vε(y). With convergence, nε is a threshold ensuring all terms in the tail (xn≥nε) are within ε of
y, thus Vε(y) contains the nε-tail of (xn). See the following table and Figure 2.2.1.

It turns out the scratch work for showing a point is arbitrarily close to a sequence often leads
to a suitable threshold to prove the point is actually the limit of the sequence. See Example 2.1.10
and the scratch work for the related proofs. Scratch work is an important part of developing any
proof, but it is vital to proving some point is the limit of a sequence (equivalently, a sequence
converges).

Remark 2.2.4: Guide for sequential limit proofs

Below is a guide for developing scratch work and proving limn→∞ xn = y via Definition 2.2.1.

Scratch work for limn→∞ xn = y:

• Consider the inequality you want to end up with, typically:

dm(xn,y) = ‖xn − y‖m < ε. (2.2.4)

• Key step: Work backwards from this inequality to find a formula for a potential
threshold nε, likely involving an inequality with ε. The triangle inequality as it appears
in (1.2.32) and (1.2.34) is used quite often in scratch work and proofs involving limits
and convergence.

• Consider all indices n ≥ nε and their distances dm(xn,y) = ‖xn − y‖m in order to
ensure nε is a threshold for the convergence of (xn) to its limit y. Ultimately, we want
to verify the neighborhood Vε(y) contains the nε-tail of (xn).

• Draw a figure with the sequence (xn) and the point y which serves as a candidate for
the limit.

Proving limn→∞ xn = y:

• Early in the proof, perhaps the first step, write “Let ε > 0” or something similar,
indicating you are accounting for all positive distances at the same time.

• Define or choose an index nε based on your scratch work using a formula or expression
that depends on ε.

• Verify nε is truly a threshold and y is the limit by showing

n ≥ nε =⇒ dm(xn,y) = ‖xn − y‖m < ε. (2.2.5)

This shows the neighborhood Vε(y) contains the nε-tail of (xn) and limn→∞ xn = y.
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I ◦
`

......• • • •••
x1 x2

II ◦
`

• • •
x1 x2 xnε

ε

III ◦
`

......• •••
xnε xn

ε

Figure 2.2.1: A visual progression through the definition of sequential limit
and convergence (Definition 2.2.1) using the sequence xn = 3140 − (1/n) from
Example 2.2.5 whose limit is ` = 3140. I: Consider the range of the sequence
and the candidate for the limit `. II: The variable ε > 0 represents a distance
around `, giving us the ε-neighborhood Vε(`). The term xnε is within ε of `. III:
Consider the nε-tail by ignoring the terms with indices n = 1, 2, . . . , nε − 1. The
index nε is a threshold for the convergence since each xn where n ≥ nε is within
ε of `. Equivalently, Vε(`) contains the nε-tail (xn≥nε).

Time for some examples.

Example 2.2.5: A convergent sequence of real numbers

Consider the sequence (xn) given by xn = 3140 − (1/n) for each n ∈ N. See Figure 2.2.1.
We have

lim
n→∞

xn = ` = 3140. (2.2.6)

Scratch Work 2.2.6: Convergence of a sequence

To prove limn→∞ xn = ` = 3140 via the definition of sequential limits and convergence
(Definition 2.2.1), we must show every neighborhood of 3140 contains a tail of xn. The
idea of the scratch work is to find a candidate for the threshold nε much in the way we



2.2. LIMIT OF A SEQUENCE 101

found suitable indices throughout Chapter 1 and Section 2.1 when working to show points
arbitrarily close to sets and sequences. However, for convergence we must further verify
our index nε defines a whole tail that’s contained in the neighborhood Vε(3140) by showing
all terms with indices large enough to have n ≥ nε are within ε of ` = 3140. See Figure 2.2.1.

To consider every neighborhood of 3140, we can work with an unspecified ε > 0 (which
establishes how close to ` = 3140 we’d like to get). The value of nε will depend on ε, hence
the subscript.

As mentioned in and around Definition 1.5.8, neighborhoods in the real line are defined by
an inequality involving the absolute value of a difference. We have

xnε ∈ Vε(3140) ⇐⇒ dR(xnε , `) = |xnε − 3140| < ε. (2.2.7)

Since xn = 3140− (1/n) in our case, we have

dR(xnε , `) = |xnε − `| =
∣∣∣∣3140− 1

nε
− 3140

∣∣∣∣ = 1
nε

< ε. (2.2.8)

The inequality on the right satisfies the equivalence

1
nε

< ε ⇐⇒ nε >
1
ε
. (2.2.9)

Note that a precise value of nε is not specified by the inequalities in (2.2.9) since any
positive integer greater than 1/ε would suffice. But that’s okay! We only need the existence
of a suitable threshold, so we can choose nε to be any positive integer that’s large enough.

Once we choose nε ∈ N in the proof, we need to follow through and verify the whole nε-tail
(xn≥nε) is contained in the neighborhood Vε(3140). That is, we need to verify

n ≥ nε =⇒ dR(xn, `) = |xn − `| < ε. (2.2.10)

We now have enough to attempt a proof. Once again, by not specifying a particular value
of ε, we are accounting for all positive distances—therefore all neighborhoods—at the same
time.

Proof for limn→∞ xn = ` = 3140 in Example 2.2.5. Let ε > 0. Choose an index nε ∈ N where
nε > 1/ε. Then for every index n ∈ N we have

n ≥ nε =⇒ 1
n
≤ 1
nε

< ε. (2.2.11)

To verify nε is a threshold for the convergence of (xn) to ` = 3140, note that n ≥ nε implies

dR(xn, `) = |xn − `| =
∣∣∣∣(3140− 1

n

)
− 3140

∣∣∣∣ = 1
n
≤ 1
nε

< ε. (2.2.12)
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Therefore, limn→∞ xn = ` = 3140. Additionally, we have shown that for every ε > 0, the
neighborhood Vε(3140) contains the nε-tail of (xn).

Example 2.2.7: Another convergent sequence of real numbers

Recall the sequence (an) from Examples 1.1.17, 2.1.4, 2.1.8, and 2.1.10 whose terms are
defined for each index n ∈ N by

an = 2− 1√
n
. (2.2.13)

We have limn→∞ an = 2. See Figures 2.1.1, 2.1.2, and 2.1.4.

Scratch Work 2.2.8: Arbitrarily close has already been shown

In Example 2.1.10, we proved every ε-neighborhood of 2 contains a tail of (an). So, as
noted in Remark 2.2.2, this is equivalent to proving (an) converges to 2. Actually, we found
a suitable threshold nε earlier on with Scratch Work 1.1.20 following Example 1.1.17, but
we had not yet developed the notation and terminology.

The choice of an index nε ∈ N satisfying nε > 1/ε2 was developed to show 2 aclA as well as
2 acl (an) in Scratch Work 2.1.5 for Example 2.1.4. Now we show the same choice of index
nε is a threshold for the convergence of (an) to 2 and therefore limn→∞ an = 2.

Proof for limn→∞ an = 2 in Example 2.2.7. Let ε > 0. Based on Scratch Work 2.1.5 developed to
show 2 acl (an) in Example 2.1.4, we can choose an index nε ∈ N large enough to give us

nε >
1
ε2 ⇐⇒ 1

√
nε

< ε. (2.2.14)

Note 0 ≤ x ≤ y implies
√
x ≤ √y (that is, the square root function is increasing on the domain

[0,∞)). So, for every index n ∈ N we have

n ≥ nε =⇒ 1√
n
≤ 1
√
nε

< ε. (2.2.15)

Thus, nε is a threshold since every index n ≥ nε satisfies

dR(an, 2) = |an − 2| =
∣∣∣∣∣2− 1√

n
− 2

∣∣∣∣∣ = 1√
n
≤ 1
√
nε

< ε. (2.2.16)

Therefore, limn→∞ an = 2 and Vε(2) contains the nε-tail of (an).

The next example explores a convergent sequence in the plane R2. The algebra behind deter-
mining a suitable threshold is more complicated, but we can leverage properties of inequalities to
make the process a bit smoother.
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(xn)
•

••• ◦ y

x1

x2 ...

Figure 2.2.2: The sequence (xn) and point y from Example 2.2.9.

Example 2.2.9: A convergent sequence in the plane

Consider the sequence (xn) and point y in the plane R2 defined by

xn =

 2− (1/
√
n)

1 + (1/n2)

 for each n ∈ N, and y =
[

2
1

]
. (2.2.17)

See Figure 2.2.2. We have limn→∞ xn = y.

Scratch Work 2.2.10: Start at the end

For each distance ε > 0, we want to end up with an nε-tail of the sequence (xn) that is
within ε of y. We can start by finding an index nε ∈ N where

d2(xnε ,y) = ‖xnε − y‖2 (2.2.18)

=

√√√√( −1
√
nε

)2

+
(

1
n2
ε

)2

(2.2.19)

=
√

1
nε

+ 1
n4
ε

(2.2.20)

< ε. (2.2.21)
However, solving directly for nε in the inequality√

1
nε

+ 1
n4
ε

< ε (2.2.22)

is not really feasible, but thankfully we don’t need to. Any positive integer nε that’s large
enough to ensure xnε is within ε of y will do. There’s no need for nε to be as small as
possible or anything like that. With this in mind, we can try to find a simpler inequality
to work with that will still get the job done.

Note that for every index n ∈ N we have
1
n4 ≤

1
n

=⇒ 1
n

+ 1
n4 ≤

2
n
. (2.2.23)

Also, since 0 ≤ x ≤ y implies
√
x ≤ √y (the square root function is increasing, another

consequence of Theorem 1.3.2), we have√
1
n

+ 1
n4 ≤

√
2
n
. (2.2.24)
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So all we really need is a positive integer nε large enough to give us√
2
nε

< ε. (2.2.25)

Solving for nε in the more manageable (2.2.25) yields

nε >
2
ε2 . (2.2.26)

In the proof, we want to verify this choice for nε is truly a threshold for the convergence by
showing n ≥ nε implies xn is within ε of y, thus Vε(y) contains the nε-tail of (xn).

Proof for limn→∞ xn = y in Example 2.2.9. Let ε > 0. (Once again, we let ε > 0 be arbitrary so
we are considering every distance or neighborhood around y.) Based on our Scratch Work 2.2.10
and thanks to the Archimedean Property (Theorem 1.4.6), there is an index nε large enough so
that

nε >
2
ε2 ⇐⇒

√
2
nε

< ε. (2.2.27)

For each index n ≥ nε we also have n ≥ 1, hence

1
n4 ≤

1
n

=⇒ 1
n

+ 1
n4 ≤

2
n
. (2.2.28)

Furthermore, since 0 ≤ x ≤ y implies
√
x ≤ √y (the square root function is increasing), we have√

1
n

+ 1
n4 ≤

√
2
n
≤
√

2
nε

< ε. (2.2.29)

Therefore, for every index n ≥ nε we have

d2(xn,y) = ‖xn − y‖2 (2.2.30)

=

√√√√(−1√
n

)2

+
( 1
n2

)2
(by (1.2.27)) (2.2.31)

=
√

1
n

+ 1
n4 (2.2.32)

≤
√

2
n

(by (2.2.29)) (2.2.33)

≤
√

2
nε

(2.2.34)

< ε. (2.2.35)

Since ε > 0 is arbitrary, we have limn→∞ xn = y and the nε-tail of (xn) is contained in Vε(y).
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(xn)
•

••• ◦y

x1 x2
...

1

Figure 2.2.3: In Example 2.2.9, all of the terms xn with index n ≥ 2 are within
a distance of 1 away from the point y. Thus, the 2-tail of (xn) is contained in
V1(y).

(bn) • •• •
b1 b2b3 b4

◦ ◦......
−2 2

ε0

Figure 2.2.4: The sequence (bn) from Examples 2.1.4, 2.1.8, and 2.2.4 does not
converge to 2 (or anything else for that matter). Here, an infinite collection of
the terms bn are ε0 = 3/2 or more away from 2.

Remark 2.2.11: Thresholds need not be optimal

The inequality (2.2.23) we used to determine a threshold nε is not optimal, but it is good
enough. For instance, in Figure 2.2.3, ε1 = 1 provides a radius around y. Based on the
inequality (2.2.23), we can choose the index

n1 = 3 > 2
ε2

1
= 2

12 = 2, (2.2.36)

which ensures xn1 = x3 is within ε1 = 1 of y. However, as Figure 2.2.3 indicatesa, the
point x2 is also within ε1 = 1 of y, so we could’ve chosen nε = n1 = 2 to be our threshold.
But this doesn’t matter. Convergence requires the existence of a sufficient threshold, not
necessarily the smallest one.

aIn fact, d2(x2, y) =
√

9/16 = 3/4 < 1 = ε1.

Example 2.2.12: The limit is not 2

Once again, consider the following sequence of real numbers (bn) from Example 2.1.4 defined
for each n ∈ N by

bn =
(

2− 1√
n

)
(−1)n. (2.2.37)

See Figure 2.2.4. It turns out 2 is not the limit of (bn).
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Proof for limn→∞ bn 6= 2. An infinite number of the terms of (bn), specifically those whose index
is odd, are more than ε0 = 3/2 away from the point 2. For any given index n, there is an odd
integer jn ≥ n that yields

dR(bjn , 2) = |bjn − 2| = 4− 1√
jn
>

3
2 = ε0. (2.2.38)

Therefore, the distance ε0 = 3/2 has no corresponding threshold since V3/2(2) does not contain
any tails of (bn). Hence, (bn) does not converge to 2 and limn→∞ bn 6= 2.

The above proof only shows that (bn) does not converge to 2. A similar proof shows that (bn)
also does not converge to −2. The arguments rely on an idea mentioned in Remark 2.2.3 due to
my former student Dylan Alvarenga: When a sequence converges and we have any ε > 0, only a
finite number of the terms can be more than ε away from the limit.

But such an argument is not enough to say (bn) diverges. For that, we could show (bn) does
not converge to any real number at all. Instead, let’s wait until we have more tools at our disposal.

To wrap up the section, there are more ways to think of the role the threshold nε plays for us in
the definition of limits and convergence for sequences (Definition 2.2.1). For instance, the existence
of thresholds allows us to say a property eventually holds, and the thresholds’ relationship with
the distance ε establishes a sequence’s rate of convergence.

Definition 2.2.13: Eventually, for large enough

A statement or property P (·) is said to hold eventually or for large enough n ∈ N if there
is a threshold n0 such that n ≥ n0 implies P (n) is true.

So when limn→∞ xn = y, we can say for any ε > 0 that for large enough n, the terms xn are
eventually within ε of y.

Remark 2.2.14: Rate of convergence

Instead of formally defining the phrase rate of convergence, think of it as the relationship
between the distance ε > 0 and the indices n ∈ N codified by the key implication

n ≥ nε =⇒ dm(xn,y) = ‖xn − y‖m < ε. (2.2.39)

See Definition 2.2.1 and Remark 2.2.4. Essentially, the rate of convergence tells us through
the threshold nε how large the indices n ∈ N should be to ensure a term xn is within ε of
the limit y. Typically, the smaller we take ε to be, the larger n needs to be.

Example 2.2.15: Converging to zero at different rates

Consider the sequences (an) and (bn) given by

an = 1√
n

and bn = 1
n2 . (2.2.40)

We have limn→∞ an = 0 = limn→∞ bn, but their rates of convergence are quite different.
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Following the guide in Remark 2.2.4 and given ε > 0, we have

|an − 0| = 1√
n
< ε ⇐⇒

√
n >

1
ε
⇐⇒ n >

1
ε2 (2.2.41)

while

|bn − 0| = 1
n2 < ε ⇐⇒ n2 >

1
ε
⇐⇒ n >

1√
ε
. (2.2.42)

So, when ε = 1/100 for example, we have

|an − 0| = 1√
n
<

1
100 ⇐⇒ n >

1
(1/100)2 = 10, 000 (2.2.43)

while

|bn − 0| = 1
n2 < ε ⇐⇒ n >

1√
1/100

= 10. (2.2.44)

That is, every index n ≥ 11 ensures bn is within 1/100 of 0, but an index needs to be at
least 10, 001 to ensure an is within ε of 0. Hence, the rates of convergence of (an) and (bn)
are significantly different with (bn) converging to 0 faster than (an).

The next section explores properties of convergent sequences and their limits, especially the
linearity of limits.

Exercises
2.2.1. Consider the sequence of real numbers (xn) defined for each index n ∈ N by

xn = 4(−1)n√
n+ 1

. (2.2.45)

Exercise 2.1.1 shows us 0 acl (xn) and more. Here, prove limn→∞ xn = 0.

2.2.2. Consider the sequence of real numbers (zn) defined for each index n ∈ N by

zn = 4(−1)n√
n+ 1

+ 2(−1)n. (2.2.46)

Exercise 2.1.2 shows us 2 acl (zn) and more. Here, prove limn→∞ zn 6= 2.

2.2.3. Use the definition of limit for sequences (Definition 2.2.1) to prove each of the following
sequences of real numbers converges to their given limit.
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(i) lim
n→∞

3n+ 4
4n+ 5 = 3

4.

(ii) lim
n→∞

n2 − 1
n4 + 2n2 = 0.

(iii) lim
n→∞

3
√
n− 1√
n+ 1

= 0.

2.2.4. Given a threshold for the convergence of a sequence, any larger positive integer is also a
threshold (see Definition 2.2.1). To prove this, suppose (xn) is a sequence of points in Rm that
converges y with threshold nε ∈ N responding to the distance ε > 0. Prove that if kε ∈ N satisfies
kε ≥ nε, then kε is also a threshold for the convergence of (xn) to y in response to ε.

2.2.5. Consider the sequences (xn), (yn), and (zn) defined for each n ∈ N by

xn = 50
n
, yn = 50

n2 , and zn = 50√
n
, respectively. (2.2.47)

(i) Use the definition of sequential limit (Definition 2.2.1) to prove

lim
n→∞

xn = lim
n→∞

yn = lim
n→∞

zn = 0, (2.2.48)

and keep track of the threshold you use for each sequence.

(ii) Compare the thresholds you found for part (i) to determine which sequence converges to 0
the fastest and which is slowest.

(iii) Use the definition of sequential limit (Definition 2.2.1) to prove

lim
n→∞

(xn + yn + zn) = 0. (2.2.49)

What did you use for a threshold?

2.2.6. Determine the closure of each of the following sets. Don’t prove anything, but draw stuff.

(a) A = N

(b) B = {8− (−1)n/n : n ∈ N}

(c) C = {3(−1)n + 1/n : n ∈ N}

(d) D = {.9, .99, .999, . . .}

(e) E = (−1, 1]

(f) F = [−1, 1]

(g) G = (−1, 1] ∪ {−3 + (1/n) : n ∈ N}

(h) H = {0, 1, 0, 1/2, 0, 1/3, . . .}

Next, consider only the above sets with closures that add at least one new point. For each
new point, find a sequence from the corresponding set that converges to the point. (See Theorem
2.3.1.)

2.2.7. A sequence of real numbers (xn) is a said to be strictly increasing if xn < xn+1 for each
n ∈ N.
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(i) Prove that if U ⊆ R, supU exists, and supU /∈ U , then there is a strictly increasing sequence
(xn) of points in U such that

lim
n→∞

xn = supU. (2.2.50)

(ii) Find an example of a set V ⊆ R where supV exists but there is no strictly increasing
sequence of points in V whose limit is supV .

2.2.8. Suppose (xn) ⊆ R is a sequence where limn→∞ xn = 0 and let

zn = xn + 3140 + (−1)n for each n ∈ N. (2.2.51)

(Compare with Example 2.2.12.)

(i) Prove 3139 acl (zn) and 3141 acl (zn).

(ii) Despite the results of part (i), prove

lim
n→∞

zn 6= 3139 and lim
n→∞

zn 6= 3141. (2.2.52)

(iii) Prove (zn) diverges by showing for every real number c we have

lim
n→∞

zn 6= c. (2.2.53)

The upcoming Divergence Criteria for Sequences 2.6.9 would make short work of this proof,
but the goal here is to get some practice working with the negation of Definition 2.2.1.

2.3 Properties of sequential limits
Now that we have a formal definition for the limit and convergence of a sequence provided by
Definition 2.2.1, we can prove a bunch of results from calculus and multivariable calculus. Lots
of scratch work and details are provided with the proofs. Much of the effort comes from trying to
determine appropriate thresholds.

First, the following theorem establishes a fundamental connection between the definitions of
limit and arbitrarily close. See Figure 2.3.1.

Theorem 2.3.1: Fundamental connection between arbitrarily close
and convergence

Let y ∈ Rm and S ⊆ Rm. Then y is arbitrarily close to S if and only if there is a sequence
(xn) of points in S whose limit is y.

The proof of Theorem 2.3.1 is an important exercise for mathematicians who are dealing with
the definition of convergence for the first time. I strongly encourage you to try it yourself before
reading the proof provided here. Your understanding of the definitions for arbitrarily close and
convergence (Definitions 1.5.1 and 2.2.1) will be strengthened by giving this proof a shot.
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S

•

• •

ε

•
x1

•
x2

•
xnε
• •
··· y

Figure 2.3.1: A set S and a point y in the plane R2 where y aclS. By the fun-
damental connection between arbitrarily close and convergence (Theorem 2.3.1),
there is a sequence (xn) of points in S where limn→∞ xn = y.

Scratch Work 2.3.2: A subtle use of definitions

The proof requires nothing more than the definitions for arbitrarily close and convergence
(Definitions 1.5.1 and 2.2.1), but there are some subtleties to deal with. When we assume
y aclS, we need to somehow build a sequence (xn) that converges to y with terms that
belong to S. However, y aclS only provides a single point in S for each distance ε > 0.

So, how can we find a whole sequence of points to work with? The idea is to consider
a sequence of distances provided by treating the reciprocal of 1/n as a distance for each
n ∈ N. Each positive distance 1/n provides a term xn from the set S thanks to the
assumption that y aclS. Essentially, I am treating the ε as 1/n, one index n at a time, in
the definition for arbitrarily close (Definition 1.5.1). Actually, any sequence of positive real
numbers that converges to 0 could be made to work, but (1/n) is good enough.

The converse is shorter. Convergence gives us a whole nε-tail of the given sequence within a
given ε of the limit, but we only need one term for each ε > 0 to show the limit is arbitrarily
close to the set.

Proof of Theorem 2.3.1. Assume y is arbitrarily close to S and note that 1/n > 0 for each n ∈ N.
So by the definition of arbitrarily close (Definition 1.5.1), for each n ∈ N there is some xn in S
where

dm(xn,y) = ‖xn − y‖m <
1
n
. (2.3.1)

Now, let ε > 0. (By not specifying a particular value of ε, we are accounting for all neighborhoods
of y at the same time.) By the Corollary of the Archimedean Property 1.4.8, there is an index
nε ∈ N large enough to give us 1/nε < ε. Then for n ∈ N we have

n ≥ nε =⇒ 1
n
≤ 1
nε

< ε. (2.3.2)
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Hence, nε is a threshold for the convergence of (xn) to its limit y since

n ≥ nε =⇒ dm(xn,y) = ‖xn − y‖m <
1
n
≤ 1
nε

< ε. (2.3.3)

Therefore, (xn) is a sequence of points in S where limn→∞ xn = y.
For the converse, assume there is a sequence (xn) of points in S whose limit is y and let ε > 0.

By the definition of sequential limit and convergence (Definition 2.2.1), there is a threshold nε
such that xnε is in S and

dm(xnε ,y) = ‖xnε − y‖m < ε. (2.3.4)

Therefore, y aclS.

With such a deep connection between arbitrarily close and limits in the context of sequences
established in Theorem 2.3.1, it should hopefully come as no surprise that many of the concepts
explored in calculus, analysis, and even topology can be discussed in terms of points arbitrarily
close to sets.

Remark 2.3.3: Arbitrarily close does not imply convergence

A word of caution: Theorem 2.3.1 does not say that if a sequence is arbitrarily close to a
given point, then the limit exists and is equal to the given point. For instance, the sequence
(bn) from Examples 2.1.4, 2.1.10, and 2.2.12 is arbitrarily close to 2 but does not converge
to 2.

Theorem 2.3.1 allows us to prove many facts about limits of sequences, including the following
corollary. More results follow later in this chapter and throughout the book.

Corollary 2.3.4: Suprema and infima are limits

Suppose S, T ⊆ R where u = supS and v = inf T . Then there is a sequence (xn) of real
numbers in S whose limit is u and there is a sequence (wn) of real numbers in T whose limit
is v.

Proof of Corollary 2.3.4. The statement follows from the definitions of supremum and infimum
(Definition 1.1.14) and the fundamental connection between arbitrarily close and convergence
connection (Theorem 2.3.1). Since a supremum and an infimum are arbitrarily close to their
respective sets, each is the limit of a sequence of points in their respective sets.

Next, the limit of a convergent sequence in a Euclidean space is unique.

Theorem 2.3.5: Sequential limits in Euclidean spaces are unique

Every convergent sequence in Rm has a unique limit.
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Scratch Work 2.3.6: Thresholds without explicit formulas

My idea is to show any two points y and z satisfying the definition of sequential limit for
the same sequence are arbitrarily close to each other, so they must be the same point (see
Lemma 1.5.5). The definition of limit and convergence for sequences (Definition 2.2.1)
ensures that we can respond to any positive distance we like.

However, unlike the examples explored in Section 2.2, we do not have explicit formulas for
the thresholds to work with. Instead, we are in a more abstract setting where we will both
use assumptions that certain limits exist and show other related limits exist. Also, whenever
ε > 0, we have ε/2 > 0 as well. So given any ε > 0, we can use the definition of sequential
limit to take both y and z to be within ε/2 of the sequence, each coming with their own
threshold. The larger of these two thresholds (corresponding to what would be the slower
rate of convergence) is a threshold for the convergence of the sequence to both y and z. The
points y and z would then be within any ε of each other thanks to the triangle inequality
(1.2.32) combined with one particular term in the sequence.

Proof of Theorem 2.3.5. Suppose (xn) is a convergent sequence in Rm where

y = lim
n→∞

xn and z = lim
n→∞

xn. (2.3.5)

Let ε > 0. Then ε/2 > 0 and by the definition of sequential limit (Definition 2.2.1), there are two
positive integer thresholds jε/2 and kε/2 where

n ≥ jε/2 =⇒ ‖xn − y‖m < ε/2 and (2.3.6)
n ≥ kε/2 =⇒ ‖xn − z‖m < ε/2. (2.3.7)

Now consider the index nε = max{jε/2, kε/2} (so nε is the larger of the two). We have both
nε ≥ jε/2 and nε ≥ kε/2, therefore

‖y− z‖m ≤ ‖y− xnε‖m + ‖xnε − z‖m (tri. ineq. (1.2.32)) (2.3.8)

<
ε

2 + ε

2 ((2.3.6) and (2.3.7)) (2.3.9)

= ε. (2.3.10)

Hence, y acl{z} and by Lemma 1.5.5, y = z.

Remark 2.3.7: Subscripts can help us track details

Does the above proof make sense? Without more detailed scratch work, it may be hard to
tell why each step is there. However, you should be able to tell how each line of the proof
follows from assertions and conclusions that come before. This is easier said than done and
takes some time. So, please take your time. If you don’t feel comfortable with this proof,
try writing up a walkthrough. How would you write the proof?

Can you see a reason to use the subscripts for nε, jε/2, and kε/2 as they are? Each of these
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positive integers is an index for the sequence (xn) given in response to the distance ε or
ε/2, accordingly. These distances help us make careful use of the definition of arbitrarily
close (Definition 1.5.1) and the definition of limit and convergence for sequences (Definition
2.2.1).

Remark 2.3.8: Linearity of convergent sequences

As mentioned in Section 1.6 and Remark 1.6.18, linearity pervades analysis in a number of
interesting ways. In the context of convergent sequences from calculus, linearity manifests
as “the limit of a sum is the sum of the limits” (additivity) and “constants factor out”
(homogeneity). We now have the mathematical tools to formally prove the linearity of
sequential limits.

Theorem 2.3.9: Linearity of sequential limits

Suppose c ∈ R and suppose (an) and (bn) are convergent sequences in Rm where
limn→∞ an = a and limn→∞ bn = b. Then

(i) lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn = a + b (additivity); and

(ii) lim
n→∞

(c an) = c lim
n→∞

an = c a (homogeneity).

Remark 2.3.10: No explicit formula for thresholds

To prove each statement in Theorem 2.3.9, we can verify the definition of sequential limit
(Definition 2.2.1) holds by considering an arbitrary ε > 0 and finding a suitable threshold
nε. This threshold can be shown to ensure the terms with indices n ≥ nε are within ε of
the proposed limit.

As in the proof of Theorem 2.3.5 but unlike the examples explored in Section 2.2, we do
not have explicit formulas to work with. We are in a more general setting where we will
both use assumptions that certain limits exist along with their corresponding thresholds,
and show other related limits exist by defining new thresholds as needed.

Scratch Work 2.3.11: Additivity of sequential limits

To derive some scratch work for directly proving

lim
n→∞

(an + bn) = a + b, (2.3.11)

let’s start at the end. Given ε > 0, we want to end up with

‖(an + bn)− (a + b)‖m < ε. (2.3.12)



114 CHAPTER 2. SEQUENCES, TAILS, AND LIMITS

We can assume

lim
n→∞

an = a and lim
n→∞

bn = b, (2.3.13)

so by Definition 2.2.1, given any ε > 0 there are thresholds jε and kε where n ≥ jε implies

‖an − a‖m < ε (2.3.14)

and n ≥ kε implies

‖bn − b‖m < ε. (2.3.15)

Combining (2.3.14) and (2.3.15) by taking n large enough so that both n ≥ jε and n ≥ kε,
and applying triangle inequality (1.2.35), gives us

‖(an + bn)− (a + b)‖m = ‖(an − a) + (bn − b)‖m (2.3.16)
≤ ‖an − a‖m + ‖bn − b‖m (2.3.17)
< ε+ ε (2.3.18)
= 2ε. (2.3.19)

This isn’t quite our goal (2.3.12), but we can adapt: The definition of limit and convergence
for sequences (Definition 2.2.1) ensures that we can respond to any positive distance we like
with suitable thresholds. So, as in the proof of Theorem 2.3.5, ε/2 > 0 whenever ε > 0. We
can take advantage of the assumptions

lim
n→∞

an = a and lim
n→∞

bn = b (2.3.20)

by considering indices n and thresholds jε/2 and kε/2 where both

n ≥ jε/2 =⇒ ‖an − a‖m <
ε

2 and (2.3.21)

n ≥ kε/2 =⇒ ‖bn − b‖m <
ε

2 . (2.3.22)

See Figure 2.3.2. Choosing nε = max{jε/2, kε/2} (so nε is the larger of the two) yields a
sufficient threshold for the sums.

Proof of additivity in Theorem 2.3.9. Assume

lim
n→∞

an = a and lim
n→∞

bn = b, (2.3.23)

and let ε > 0. Then ε/2 > 0 and there are thresholds jε/2 and kε/2 where

n ≥ jε/2 =⇒ ‖an − a‖m <
ε

2 and (2.3.24)

n ≥ kε/2 =⇒ ‖bn − b‖m <
ε

2 . (2.3.25)
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(an) ◦a
...• • •

a1 a2 anε

ε/2

(bn) ◦
b

...• • •
b2 b1 bnε

ε/2

(an + bn) ◦ a + b...• • •
a2 + b2 a1 + b1 anε + bnε

ε

Figure 2.3.2: A figure to accompany the proof of Theorem 2.3.9 showing
limn→∞ an = a and limn→∞ bn = b implies limn→∞(an + bn) = a + b.

Define nε = max{jε/2, kε/2} (so nε is the larger of the two). Then every index n where n ≥ nε
is large enough to give us both n ≥ jε/2 and n ≥ kε/2. So by the triangle inequality (1.2.35),
(2.3.24), and (2.3.25), we have n ≥ nε implies

‖(an + bn)− (a + b)‖m = ‖(an − a) + (bn − b)‖m (2.3.26)
≤ ‖an − a‖m + ‖bn − b‖m (2.3.27)

<
ε

2 + ε

2 (2.3.28)

= ε. (2.3.29)

Therefore, limn→∞(an + bn) = a + b.

Next, let’s prove limn→∞ c an = c a, the homogeneity half of Theorem 2.3.9.

Scratch Work 2.3.12: Homogeneity of sequential limits

Once again, let’s start at the end. Given ε > 0, we want to end up with

‖c an − c a‖m < ε. (2.3.30)

By (1.2.33) we can consider

‖c an − c a‖m = |c|‖an − a‖m < ε. (2.3.31)

So if c 6= 0, then |c| 6= 0 and we can divide both sides of the rightmost inequality in (2.3.31)
to get

‖an − a‖m <
ε

|c|
. (2.3.32)
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So, by assuming limn→∞ an = a, Definition 2.2.1 ensures a threshold nε/|c| can be found in
response to the positive distance ε/|c| that will suffice, as long as c 6= 0.

Proof of homogeneity in Theorem 2.3.9. This proof has two cases: (i) c = 0 and (ii) c 6= 0.
Case (i): Suppose c = 0 and ε > 0. Define nε = 7. Then for every index n ≥ nε = 7 we have

‖c an − c a‖m = ‖0− 0‖m = 0 < ε. (2.3.33)

Therefore, limn→∞ c an = c a = 0.
Case (ii): Suppose c 6= 0, limn→∞ an = a, and ε > 0. Then ε/|c| > 0 and by the definition of

sequential limit (Definition 2.2.1), there is a threshold nε such that

n ≥ nε =⇒ ‖an − a‖m <
ε

|c|
. (2.3.34)

By (1.2.33) and (2.3.34), for all indices n ≥ nε we have

‖c an − c a‖m = |c|‖an − a‖m (2.3.35)

< |c| ε
|c|

(2.3.36)

= ε. (2.3.37)

Therefore, limn→∞ c an = c a.

As mentioned in Remark 1.6.18, a corollary of the linearity of sequential limits holds for linear
combinations. As with the proof Corollary 1.6.16 on arbitrarily close and linear combinations of
sets, the proof of Corollary 2.3.13 follows from induction. So, it is left as an exercise. Here, the
notation aj,n indicates the nth term of the jth sequence.

Corollary 2.3.13: Linear combinations of sequential limits

Suppose k ∈ N and for each j = 1, . . . , k we have cj ∈ R and the sequence (aj,n) ⊆ Rm

converges. Then

lim
n→∞

 k∑
j=1

cjaj,n

 =
k∑
j=1

(
cj lim

n→∞
aj,n

)
. (2.3.38)

The definition of bounded sets (Definition 1.5.20) adapts to sequences.

Definition 2.3.14: Bounded sequence in a Euclidean space

A sequence (xn) of points in Rm is bounded if its range is a bounded set. That is, (xn) is
bounded if there is a real number b ≥ 0 such that for every index n ∈ N we have

‖xn‖m ≤ b. (2.3.39)

In this case, we say b is a bound for the sequence (xn). If a sequence is not bounded, we say
it is unbounded.
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b
◦
0

◦ y
ε0

• x1

•
x2

•···•xn0−1

•xn0
···

Figure 2.3.3: A convergent sequence (xn) with limit y in Rm where the first
term x1 has the largest norm. See Scratch Work 2.3.16 and the proof of Theorem
2.3.15.

Convergent sequences must be bounded. Since every neighborhood of the limit contains a tail,
we can pick any neighborhood to work with and show that the tail is bounded near the limit while
only a finite number of the terms are potentially larger than the limit.

Theorem 2.3.15: Convergent sequences are bounded

Every convergent sequence in Rm is bounded.

Scratch Work 2.3.16: Find a bound by choosing a distance

Consider the following pair of figures of convergent sequences. In Figure 2.3.3, the term
x1 happens to have the largest norm out of all of the terms in the sequence. In Figure
2.3.4, no particular term in the sequence has the largest norm, but for some ε0 > 0 the real
number ε0 + ‖y‖ is a bound for the sequence.

In any case, when a sequence (xn) converges to y in Rm, we can choose any ε0 > 0 and get
a threshold n0 to ensure all of the terms xn where n ≥ n0 are within ε0 of y. From there,
the real number b defined by

b = max{‖x1‖m, ‖x2‖m, . . . , ‖xn0−1‖m, ε0 + ‖y‖m} (2.3.40)

is a bound for the sequence.

Proof of Theorem 2.3.15. Suppose (xn) is a sequence in Rm whose limit is y. Consider the dis-
tance ε0 = 7. (There’s nothing special about 7, except that it’s positive and defines a suitable
neighborhood around the limit.) Since y = limn→∞ xn, there is a threshold n0 where n ≥ n0
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b
◦
0

◦ y
ε0

•
x1
•
x2

•···•xn0−1

•xn0
···

Figure 2.3.4: A convergent sequence (xn) with limit y in Rm where no particular
term has the largest norm but ‖y‖ + ε0 for some positive ε0 serves as a bound
for (xn). See Scratch Work 2.3.16 and the proof of Theorem 2.3.15.

implies

dm(xn,y) = ‖xn − y‖m < ε0 = 7. (2.3.41)

Therefore, for n ≥ n0,

‖xn‖m = ‖xn−y + y︸ ︷︷ ︸
add 0

‖m (2.3.42)

≤ ‖xn − y‖m + ‖y‖m (tri. ineq. (1.2.34)) (2.3.43)
< 7 + ‖y‖m. ((2.3.41)) (2.3.44)

Now define b by

b = max{‖x1‖m, ‖x2‖m, . . . , ‖xn0−1‖m, 7 + ‖y‖m}. (2.3.45)

Then b ≥ 0 and for every index n ∈ N we have

‖xn‖m ≤ b. (2.3.46)

Therefore, (xn) is bounded.

There are more algebraic properties for limits beyond linearity when we restrict our attention
to the real line R. In this context, we can play with multiplication and division. Do you remember
hearing a statement like “the limit of a product is the product of the limits”?

Theorem 2.3.17: Products of sequential limits in R

Suppose (an) and (bn) are convergent sequences of real numbers where limn→∞ an = a and
limn→∞ bn = b. Then

lim
n→∞

(anbn) =
(

lim
n→∞

an

)(
lim
n→∞

bn

)
= ab. (2.3.47)
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Scratch Work 2.3.18: Add zero, bound a factor

To derive some scratch work for showing limn→∞ anbn = ab in Theorem 2.3.17, let’s start
at the end. Given ε > 0, we want to end up with

|anbn − ab| < ε. (2.3.48)

In order to get (2.3.48), we can try to play around with expressions involving both |an − a|
and |bn − b| since they appear when we assume limn→∞ an = a and limn→∞ bn = b.

There are plenty of tools at our disposal to help us here, including the addition of the
particular version of zero given by

0 = −abn + abn. (2.3.49)

Pairing this especially nice version of zero with the triangle inequality (1.2.34) yields the
following string of inequalities:

|anbn − ab| = |anbn−abn + abn︸ ︷︷ ︸
add 0

−ab| (2.3.50)

≤ |anbn − abn|+ |abn − ab| (tri. ineq. (1.2.34)) (2.3.51)
= |bn||an − a|+ |a||bn − b|. (2.3.52)

From there, assuming limn→∞ an = a and limn→∞ bn = b allows us to respond to a given
ε > 0 with thresholds jε and kε where

n ≥ jε =⇒ |an − a| < ε and (2.3.53)
n ≥ kε =⇒ |bn − b| < ε. (2.3.54)

Combining (2.3.50) through (2.3.54) yields

|anbn − ab| ≤ |bn||an − a|+ |a||bn − b| (2.3.55)
< |bn|ε+ |a|ε (2.3.56)
= ε(|bn|+ |a|). (2.3.57)

From here, we can use a common bound on a and the sequence (bn) to help find a suitable
threshold for (anbn). By Theorem 2.3.15, the convergence of (an) and (bn) ensures they
are bounded by some real numbers u ≥ 0 and v ≥ 0, respectively. We can consider the
sum q = u + v, which is a bound for both (an) and (bn). The limit a is arbitrarily close to
the sequence (an) by Theorem 2.3.1, so by Lemma 1.5.24 a respects that same bound and
we have |a| ≤ u ≤ q. (A similar statement holds for b, but we won’t need it.) Next, by
choosing u > 0 or v > 0 to ensure q > 0, we can then consider the positive distance ε/2q.
The thresholds jε/2q for (an) and kε/2q for (bn) combine to create a threshold for (anbn), for
instance we can use nε = jε/2q + kε/2q.

We have the pieces. Time for a proof.
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Proof of Theorem 2.3.17. Assume (an) and (bn) are convergent sequences of real numbers with
limn→∞ an = a and limn→∞ bn = b. By Theorem 2.3.15, (an) and (bn) are both bounded by a
some positive real number q. The limit a is arbitrarily close to the sequence (an) by Theorem
2.3.1, so we have |a| ≤ q by Lemma 1.5.24. Thus,

|a| ≤ q and |bn| ≤ q for every index n ∈ N. (2.3.58)

Now, let ε > 0. Since 2q > 0, we also have ε/2q > 0. By the definition of limit and convergence
for sequences (Definition 2.2.1), there are thresholds jε/2q and kε/2q where

n ≥ jε/2q =⇒ |an − a| <
ε

2q and (2.3.59)

n ≥ kε/2q =⇒ |bn − b| <
ε

2q . (2.3.60)

Define nε = jε/2q +kε/2q. Then for any index n ≥ nε we have both n ≥ jε/2q and n ≥ kε/2q. Hence,

|anbn − ab| = |anbn−abn + abn︸ ︷︷ ︸
add 0

−ab| (2.3.61)

≤ |anbn − abn|+ |abn − ab| (tri. ineq. (1.2.34)) (2.3.62)
= |bn||an − a|+ |a||bn − b| (2.3.63)
≤ q|an − a|+ q|bn − b| (by (2.3.58)) (2.3.64)

< q

(
ε

2q

)
+ q

(
ε

2q

)
(by (2.3.59) and (2.3.60)) (2.3.65)

= ε. (2.3.66)

Therefore, limn→∞ anbn = ab.

Next up, “the limit of a reciprocal is the reciprocal of the limit”.

Lemma 2.3.19: Reciprocals of sequential limits in R

Suppose (bn) is a convergent sequence of real numbers where limn→∞ bn = b, b 6= 0, and
bn 6= 0 for every index n, then

lim
n→∞

1
bn

= 1
lim
n→∞

bn
= 1
b
. (2.3.67)

Scratch Work 2.3.20: Common denominator, bound a reciprocal

Given ε > 0, we want to end up with ∣∣∣∣ 1
bn
− 1
b

∣∣∣∣ < ε (2.3.68)

for large enough n ∈ N. Finding the common denominator of left-hand side yields∣∣∣∣ 1
bn
− 1
b

∣∣∣∣ = 1
|bnb|
|b− bn| < ε. (2.3.69)
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Note that since bn 6= 0 and b 6= 0, the reciprocal 1/|bnb| is defined. The convergence of (bn)
to b helps out twice here: We can get a bound for 1/|bnb| then make |b− bn| as small as we
like to compensate.

Proof of Lemma 2.3.19. Suppose (bn) is a convergent sequence of real numbers where we have
limn→∞ bn = b, b 6= 0, and bn 6= 0 for every index n ∈ N. Since b 6= 0, we have |b|/2 > 0 and can
treat this as a value of ε in the definition of sequential limits (Definition 2.2.1). Pairing this with
the reverse triangle inequality (1.2.37) produces an index n0 ∈ N where n ≥ n0 implies

|b| − |bn| ≤ |bn − b| <
|b|
2 . (2.3.70)

Solving for the reciprocal and multiplying by 1/|b| > 0 gives us the useful bound
1
|bnb|

<
2
|b|2

. (2.3.71)

Now let ε > 0. Since |b|2ε/2 > 0, the definition of sequential limit (Definition 2.2.1) applied
to the convergence of (bn) to b gives a threshold n1 ∈ N such that n ≥ n1 implies

|b− bn| <
|b|2ε

2 . (2.3.72)

Define nε = max{n0, n1}. Then for every index n ∈ N where n ≥ nε, both (2.3.71) and (2.3.72)
hold. Hence, we also have∣∣∣∣ 1

bn
− 1
b

∣∣∣∣ = 1
|bnb|
|b− bn| <

2
|b|2
|b− bn| <

2
|b|2
· |b|

2ε

2 = ε (2.3.73)

for all n ≥ nε. Therefore, (1/bn) converges to 1/b.

The idea that “the limit of a quotient is the quotient of the limits” follows from combining
Theorem 2.3.17 and Lemma 2.3.19.

Theorem 2.3.21: Quotients of sequential limits in R

Suppose (an) and (bn) are convergent sequences of real numbers where limn→∞ an = a,
limn→∞ bn = b, b 6= 0, and bn 6= 0 for every index n ∈ N. Then

lim
n→∞

an
bn

=
lim
n→∞

an

lim
n→∞

bn
= a

b
. (2.3.74)

Proof of Theorem 2.3.21. Suppose the hypotheses hold. By Theorem 2.3.17 and Lemma 2.3.19
we have

lim
n→∞

an
bn

= lim
n→∞

(
an ·

1
bn

)
=
(

lim
n→∞

an

)(
lim
n→∞

1
bn

)
= a · 1

b
= a

b
. (2.3.75)

The final result of the section takes advantage of the deep connection between sequential limits
and arbitrarily close in Theorem 2.3.1 and what we have proven regarding upper and lower bounds
in the real line in Lemma 1.5.23.
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(xn) ◦ ◦ ◦...
a x1 x2 ` b

• • •

Figure 2.3.5: A plot of a convergent sequence (xn) with limit `, lower bound a,
and upper bound b as in Corollary 2.3.22.

Corollary 2.3.22: Order properties for sequential limits in R

Suppose a and b are real numbers and (xn) is a convergent sequence of real numbers.

(i) If xn ≤ b for every index n ∈ N, then limn→∞ xn = ` ≤ b.

(ii) If xn ≥ a for every index n ∈ N, then limn→∞ xn = ` ≥ a.

Proof of Corollary 2.3.22. Suppose limn→∞ xn = `. Then by Theorem 2.3.1, ` acl (xn).
Suppose xn ≤ b for every index n ∈ N. Then b is an upper bound for (xn) and by part (i) of

Lemma 1.5.23, we have ` ≤ b.
Now suppose xn ≥ a for every index n ∈ N. Then a is a lower bound for (xn) and by part (ii)

of Lemma 1.5.23, we have ` ≥ a.

The next section explores properties of sequences that guarantee convergence.

Exercises
2.3.1. Write up a walkthrough for the proof of Theorem 2.3.1. (This fundamental exercise con-
nects the definition of arbitrarily close to the definition of sequential limits and convergence.)

2.3.2. Prove that if (xn) ⊆ Rm converges, then the sequence of norms (‖xn‖m) ⊆ R converges as
well.

2.3.3. Find an example of a sequence of real numbers (zn) where (|zn|) converges but (zn) diverges.
(Hence, the converse of the previous exercise is false.)

2.3.4. Prove

lim
n→∞

√
1 + 1

n
= 1. (2.3.76)

2.3.5. Let (sn) be the sequence of real numbers defined by

sn =
√
n2 + n− n for each n ∈ N. (2.3.77)

Prove limn→∞ sn = 1/2. Hint: Use the previous exercise.

2.3.6. Suppose (xn) is a sequence of real numbers where xn ≥ 0 for every n ∈ N.
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(i) Prove limn→∞ xn = 0 implies limn→∞
√
xn = 0.

(ii) Prove limn→∞ xn = ` implies limn→∞
√
xn =

√
`.

2.3.7. Suppose (yn) is a sequence of real numbers where yn ≥ 0 for every n ∈ N and limn→∞ yn = `.
Prove that for each fixed k ∈ N we have

lim
n→∞

k
√
yn = k

√
`. (2.3.78)

2.3.8. Suppose p : R→ R is a polynomial (Definition 1.6.8) and (xn) is a sequence of real numbers
where limn→∞ xn = `. Prove

lim
n→∞

p(xn) = p(`). (2.3.79)

(This shows polynomials are sequentially continuous as in Definition 4.4.5.)

2.3.9. Let S denote the set of convergent sequences in Rm. Use Lemma 1.6.7 to prove S is a
vector space.

2.3.10. Suppose y ∈ Rm and let Sy denote the set of sequences in Rm that converge to y. Use
Lemma 1.6.7 to prove Sy is a vector space if and only if y = 0.

2.4 Ensuring convergence
Section 2.3 features results where the convergence of some given sequences is assumed and leads
to the convergence of other related sequences. This section explores other ways to ensure the
convergence of a sequence by considering various properties the sequence or a related set might
have.

To motivate a guarantee property of convergence from calculus, consider the following example
along with Figures 2.4.1 and 2.4.2.

Example 2.4.1: A squeezed sequence

Consider the sequence of real numbers (yn) defined for each n ∈ N by

yn = sin
√
n2 + 1
n

. (2.4.1)

Then limn→∞ yn = 0. See Figures 2.4.1 and 2.4.2.

Remark 2.4.2: Motivating the Squeeze Theorem

A direct proof for Example 2.4.1 using the definition of sequential limit (Definition 2.2.1)
would follow from the fact from trigonometry that for every real number x we have

−1 ≤ sin x ≤ 1 (2.4.2)
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graphs of

(zn)

(yn)

(xn) −

−

−

−1

0

1

terms

| | | |
4 8 12 16 indices

Figure 2.4.1: Graphs of the sequences (xn), (yn), and (zn) where xn = −1/n,
yn = sin (

√
n2 + 1)/n, and zn = 1/n for each n ∈ N. Note the term (i.e., height)

yn is between xn and zn for each index n. See the Squeeze Theorem 2.4.3, Example
2.4.1, and Figure 2.4.2.

(xn) ◦
0

...• • ••
x1 x2 x3 x4

(yn) ◦
0

... ••••
y1y2y3y4

(zn) ◦
0
... ••••

z1z2z3z4

all ◦
0

... ...• • ••
x1 x2 x3 x4

••••
y1y2y3y4

••••
z1z2z3z4

Figure 2.4.2: Ranges of the sequences (xn), (yn), and (zn) where xn = −1/n,
yn = sin (

√
n2 + 1)/n, and zn = 1/n for each n ∈ N. See the Squeeze Theorem

2.4.3 and Example 2.4.1. Between Figures 2.4.1 and 2.4.2, which best showcases
the “squeezing” that gives the Squeeze Theorem 2.4.3 its name?

combined with choosing a positive integer nε > 1/ε as a threshold in response to the distance
ε > 0. However, a proof using the Squeeze Theorem 2.4.3 is in order so we can see how to
put it to use.

Theorem 2.4.3: Squeeze Theorem for sequences

Suppose (xn), (yn), and (zn) are sequences of real numbers where

(i) for each n ∈ N we have xn ≤ yn ≤ zn, and

(ii) lim
n→∞

xn = lim
n→∞

zn = `.

Then (yn) converges with lim
n→∞

yn = `.
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Scratch Work 2.4.4: Splitting an absolute value

Let’s try to prove Theorem 2.4.3 directly from the assumptions and the definition of limit
and convergence for sequences (Definition 2.2.1). Also, see Figures 2.4.1 and 2.4.2. The
goal is to find a threshold nε ∈ N where n ≥ nε implies

|yn − `| < ε. (2.4.3)

How does (2.4.3) relate to the assumption xn ≤ yn ≤ zn? We can subtract ` and get

xn − ` ≤ yn − ` ≤ zn − `, (2.4.4)

but this expression does not involve absolute values like the definition of limit and conver-
gence for sequences in the real line (Definition 2.2.1). To connect with the assumption that
(xn) and (zn) converge, note we also have

−|xn − `| ≤ xn − ` ≤ yn − ` ≤ zn − ` ≤ |zn − `|. (2.4.5)

From here, each convergent sequence (xn) and (zn) has a corresponding threshold we can
use. These two thresholds allow us to define a threshold for (yn) and squeeze the terms
from both sides via properties of inequalities. Also, Lemma 1.5.10 tells us how inequalities
with and without absolute values are related to one another.

Proof of the Squeeze Theorem for sequences 2.4.3. Assume xn ≤ yn ≤ zn for each n ∈ N and

lim
n→∞

xn = lim
n→∞

zn = `. (2.4.6)

Let ε > 0. Since (xn) and (zn) converge to `, there are thresholds jε and kε where n ≥ jε and
n ≥ kε imply

|xn − `| < ε and |zn − `| < ε, (2.4.7)

respectively. Now define nε = max{jε, kε}. Then for every n ≥ nε we have both n ≥ jε and
n ≥ kε. Therefore, by Lemma 1.5.10 and other properties of inequalities we have

−ε < −|xn − `| ≤ xn − ` ≤ yn − ` ≤ zn − ` ≤ |zn − `| < ε. (2.4.8)

In particular, we have

−ε < yn − ` < ε. (2.4.9)

So, nε is a threshold for (yn) since by Lemma 1.5.10 we have

|yn − `| < ε. (2.4.10)

Therefore, (yn) converges and limn→∞ yn = `.

We’re now prepared to prove the result claimed in Example 2.4.1.
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Figure 2.4.3: Graphs of the sequences (an), (bn), and (cn) from Example 2.4.6.
All three sequences are monotone and converge to 10.

Proof for Example 2.4.1. A classic result from trigonometry helps us here. For every real number
θ we have

−1 ≤ sin θ ≤ 1. (2.4.11)

Therefore, for each n ∈ N we have

xn = − 1
n
≤ yn = sin

√
n2 + 1
n

≤ 1
n

= yn. (2.4.12)

We also have

lim
n→∞

(
− 1
n

)
= lim

n→∞

( 1
n

)
= 0. (2.4.13)

So by the Squeeze Theorem 2.4.3, we have limn→∞ yn = 0.

Monotone sequences play a special role in the development of our results.

Definition 2.4.5: Increasing, decreasing, and monotone sequences

A sequence of real numbers (xn) is increasing if xn ≤ xn+1 for every n ∈ N. Similarly, (xn)
is strictly increasing if xn < xn+1 for every n ∈ N.

A sequence of real numbers (yn) is decreasing if yn ≥ yn+1 for every n ∈ N. Similarly, (yn)
is strictly decreasing if yn > yn+1 for every n ∈ N.

A sequence of real numbers is monotone if it is increasing or decreasing.

Example 2.4.6: Some monotone sequences

Consider the sequences of real numbers (an), (bn), and (cn) defined for each n ∈ N by

an = 10− 1√
n
, bn = 10 + 1√

n
, and cn = 10. (2.4.14)
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(an) ◦
10
...

a1 a2

••••

(bn) ◦
10
...

b1b2

••••

(cn) •
10 = cn

Figure 2.4.4: Ranges of the sequences (an), (bn), and (cn) from Example 2.4.6.
All three sequences are monotone and converge to 10.

See Figures 2.4.3 and 2.4.4. For every n ∈ N we have

− 1√
n
≤ − 1√

n+ 1
and 1√

n
≥ 1√

n+ 1
. (2.4.15)

Hence, (an) is increasing while (bn) is decreasing.

For every n ∈ N we have both

cn = 10 ≤ 10 = cn+1 and cn = 10 ≥ 10 = cn+1. (2.4.16)

So, despite how strange it may sound, (cn) is both increasing and decreasing. The same is
true for all constant sequences of real numbers.

The following lemma gives us an alternative way to think about monotonicity: Instead of
considering consecutive terms like xn and xn+1, we can compare two terms based on the order of
their indices.

Lemma 2.4.7: An equivalent form of monotonicity

A sequence of real numbers (xn) is increasing if and only if for every pair of positive integers
j and k we have

j < k =⇒ xj ≤ xk. (2.4.17)

Likewise, a sequence of real numbers (yn) is decreasing if and only if for every pair of positive
integers j and k we have

j < k =⇒ yj ≥ yk. (2.4.18)
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Remark 2.4.8: One proof is provided, the other is similar

Proofs for the two cases in Lemma 2.4.7 can be very similar, so the case for increasing
sequences is proven here but the case for decreasing sequences is left as an exercise. An
induction argument helps with one of the implications.

Proof for the increasing case in Lemma 2.4.7. Suppose for every pair of positive integers j and k
we have

j < k =⇒ xj ≤ xk. (2.4.19)

Since n < n+ 1 for every positive integer n, we have

xn ≤ xn+1. (2.4.20)

Hence, (xn) is increasing.
Now suppose (xn) is increasing and fix a positive integer j. To establish a base case for an

induction argument, we have

xj ≤ xj+1 (2.4.21)

by the definition of an increasing sequence (Definition 2.4.5).
To establish an inductive case for the same fixed j, suppose k is a positive integer where j < k

and we have

xj ≤ xk. (2.4.22)

By the definition of an increasing sequence (Definition 2.4.5), we have

xk ≤ xk+1 (2.4.23)

and since j < k < k + 1, we also have

xj ≤ xk ≤ xk+1. (2.4.24)

Furthermore, since j represents an arbitrary positive integer, for every pair of positive integers j
and k we have

j < k =⇒ xj ≤ xk. (2.4.25)

Monotonicity and boundedness combine to ensure convergence. See Figure 2.4.5.

Theorem 2.4.9: Monotone and Bounded Convergence Theorem

If (xn) is a monotone and bounded sequence of real numbers, then (xn) converges. Further-
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more, if (xn) is increasing and bounded, then

lim
n→∞

xn = sup{xn : n ∈ N}. (2.4.26)

If (xn) is decreasing and bounded, then

lim
n→∞

xn = inf{xn : n ∈ N}. (2.4.27)

Scratch Work 2.4.10: First, establish the existence of the limit

Proofs for the two cases in Theorem 2.4.9 can be very similar, so the case for increasing
sequences is explored here while the case for decreasing sequences is left as an exercise.

A subtlety worth noting is that the candidate for the limit of an increasing sequence—the
supremum—does not exist unless the sequence is bounded above. This concern deserves
attention. In general, we need to be careful and ensure the tools and concepts we use are
justified.

By assuming the sequence (xn) is bounded and is therefore bounded above, its supremum
u is assured to exist by the Axiom of Completeness 1.3.8. So, we can use u as a candidate
for the limit, as follows. Our goal is now to find a threshold nε where

n ≥ nε =⇒ |xn − u| < ε. (2.4.28)

Since the supremum of a sequence is arbitrarily close to the sequence, for every ε > 0 there
is an index nε where

|xnε − u| < ε. (2.4.29)

From there, the assumption that (xn) is increasing and bounded above by u combines with
properties of absolute value and inequalities to give us our goal (2.4.28).

Proof for the increasing case in Theorem 2.4.9. Suppose (xn) is an increasing and bounded se-
quence of real numbers. (See Figure 2.4.5.) Then the Axiom of Completeness 1.3.8 ensures the
existence of the supremum

u = sup{xn : n ∈ N}. (2.4.30)

By the definition of supremum (Definition 1.1.14), u is an upper bound for the range of (xn).
Hence, for every k ∈ N we have

xk ≤ u. (2.4.31)

Also by the definition of supremum (Definition 1.1.14) we have u acl(xn). So by the definition of
arbitrarily close (Definition 1.5.1), for every ε > 0 there is an index nε where the term xnε satisfies

|xnε − u| < ε. (2.4.32)
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◦
u

.....• • • •••
x1 x2 xnε

ε

Figure 2.4.5: An increasing sequence of real numbers (xn) bounded above by
its supremum u where the index nε is a threshold responding to some distance
ε > 0. See Scratch Work 2.4.10 for the proof of the increasing (and bounded)
case of the Monotone and Bounded Convergence Theorem 2.4.9.

Inequality (2.4.31) ensures 0 ≤ u − xk for every k ∈ N, so by the definition of absolute value
(Definition 1.1.6) we have

|xk − u| = u− xk. (2.4.33)

Since (xn) is increasing, by Lemma 2.4.7 for every positive integer n where n ≥ nε we have

xnε ≤ xn. (2.4.34)

So, by (2.4.31), (2.4.32), (2.4.33), (2.4.34), and properties of inequalities, for every index n ∈ N
where n ≥ nε we have

|xn − u| = u− xn ≤ u− xnε = |xnε − u| < ε. (2.4.35)

Therefore, nε is a threshold for the convergence (xn) and

lim
n→∞

xn = u = sup{xn : n ∈ N}. (2.4.36)

Out of necessity, the context of Theorem 2.4.9 is limited to sequences in the real line R due
to the inequalities (i.e., the order of the real line). The following theorem shows the convergence
of a sequence in a Euclidean space Rm ensures the convergence of its components in R, and vice
versa. See Figure 2.4.6.
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(xn)
•

••• ◦ x

x1

x2 ...

(x1,n) ◦
x1

...
x1,1

••••

(x2,n) ◦
x2

.
x2,1

••

Figure 2.4.6: A plot of the sequence (xn) and point x in the plane R2 from
Theorem 2.4.11 and 2.2.9 where limn→∞ xn = x along with their components in
their own horizontal copies of the real line R. The horizontal components (x1,n)
increase towards x1 while the vertical components (x2,n) decrease towards x2.

Theorem 2.4.11: Equivalence of convergence and componentwise convergence in
Euclidean spaces

Suppose x is a point and (xn) is a sequence of points in Rm where for each index n we have

x =


x1
x2
...
xm

 and xn =


x1,n
x2,n
...

xm,n

 . (2.4.37)

Then

lim
n→∞

xn = x (2.4.38)

if and only if for every k = 1, 2, . . . ,m we have

lim
n→∞

xk,n = xk. (2.4.39)

Remark 2.4.12: Limits and componentwise convergence

When we have the convergence

lim
n→∞

xk,n = xk (2.4.40)

for each k = 1, 2, . . . ,m, we say (xn) converges componentwise. Theorem 2.4.11 yields the
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•
x

xn

xn − x

u1

u2

ε

Figure 2.4.7: In the plane R2, any point xn within a positive distance ε of the
point x creates a vector xn−x whose components u1 = x1,n−x1 and u2 = x2,n−x2
have lengths (absolute values) strictly less than ε. See the proof of Theorem
2.4.11.

following equations when either of its hypotheses are satisfied:

lim
n→∞

xn = lim
n→∞


x1,n
x2,n
...

xm,n

 =


lim
n→∞

x1,n

lim
n→∞

x2,n
...

lim
n→∞

xm,n

 =


x1
x2
...
xm

 = x. (2.4.41)

In (2.4.41), the limit symbol can be thought of as moving in and out of the brackets.

Scratch Work 2.4.13: Adapting thresholds componentwise

When limn→∞ xn = x, there is a threshold nε that ensures xn is within ε of x in all
directions at the same time, including each component’s direction. So, the same threshold
nε suffices for the convergence in each component. See Figure 2.4.7.

On the other hand, when limn→∞ xk,n = xk for each k = 1, . . . ,m, then given any positive
distance there are m thresholds, one for each component. So given ε > 0, each of the
m thresholds can be adapted to respond to a suitable proportion of ε. From there, the
maximum of the set of m adapted thresholds serves as a threshold to ensure limn→∞ xn = x.

Proof of Theorem 2.4.11. Suppose limn→∞ xn = x where the convergence is in Rm. Let ε > 0.
By the definition of limit and convergence (Definition 2.2.1), there is a threshold nε where n ≥ nε
ensures

dm(xn,x) = ‖xn − x‖m < ε. (2.4.42)

The threshold nε for the sequence (xn) also serves as a suitable threshold for each component
sequence (xk,n). Indeed, since 0 ≤ x ≤ y implies

√
x ≤ √y, we have for each k = 1, . . . ,m and
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every n ≥ nε that

dR(xk,n, xk) = |xk,n − xk| (2.4.43)

=
√

(xk,n − xk)2 (2.4.44)

≤
√√√√ m∑
j=1

(xj,n − xj)2 (2.4.45)

= ‖xn − x‖m (2.4.46)
< ε. (2.4.47)

See Figure 2.4.7. Hence, for every k = 1, 2, . . . ,m we have

lim
n→∞

xk,n = xk. (2.4.48)

Now suppose for every k = 1, 2, . . . ,m we have

lim
n→∞

xk,n = xk. (2.4.49)

Let ε > 0 and note ε/
√
m > 0. In response, there is a threshold nk for each k = 1, 2, . . . ,m where

for every n ≥ nk we have

dR(xk,n, xk) = |xk,n − xk| <
ε√
m
. (2.4.50)

Define nε = max{n1, n2, . . . , nm}. Then for every n ≥ nε we have n ≥ nk for each k = 1, 2, . . . ,m,
thus inequality (2.4.50) holds for each k. Therefore, since 0 ≤ x < y implies

√
x <
√
y, we also

have

dm(xn,x) = ‖xn − x‖m (2.4.51)

=
√√√√ m∑
j=1

(xk,n − xk)2 (2.4.52)

<

√√√√√ m∑
j=1

(
ε√
m

)2

(2.4.53)

=

√√√√m(
ε2

m

)
(2.4.54)

= ε. (2.4.55)

Hence, limn→∞ xn = x.

Subsequences have already made an appearance, but a formal definition is in order so we can
start proving results about their convergence.
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Definition 2.4.14: Subsequence

Let (xn) be a sequence of points in Rm and let (nk) be a strictly increasing sequence of
positive integers. That is,

n1 < n2 < n3 < · · · (2.4.56)

The sequence (xnk) is called a subsequence of (xn).

Remark 2.4.15: Subsequence notation

The notation used to define subsequences in Definition 2.4.14 can be confusing, especially
with the double subscripts. However, it ensures subsequences comprise only terms from the
original sequence and the terms stay in order.

Definition 2.4.16: Subsequential limits

A point y is a subsequential limit of a sequence (xn) if (xn) has a subsequence whose limit
is y. The set of subsequential limits of (xn) is denoted by Slim(xn).

Example 2.4.17: A divergent sequence in the plane

Consider the sequence (zn) from Example 2.1.14 in R2 given by

zn =



 2 + (2/n)
1

 , if n is odd,

 −1
3− (2/n)

 , if n is even.

(2.4.57)

See Figure 2.4.8. Also, consider the points u and v given by

u =
[

2
1

]
and v =

[
−1
3

]
, (2.4.58)

as well as the subsequences (z2k−1), (z2k), and (z3k). We have

z2k−1 =
[

2 + (2/(2k − 1))
1

]
, z2k =

[
−1

3− (1/k)

]
and, (2.4.59)

z3k =



 2 + (2/3k)
1

 , if k is odd,

 −1
3− (2/3k)

 , if k is even.

(2.4.60)
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(zn)

•

•

•

•

◦
u
...

z1z3

...
◦ v

z2

z4

Figure 2.4.8: A plot of the sequence (zn) along with u and v from Example
2.4.17.

◦
u

◦ v

••...

z1z3

(z2k−1)

...

•
•

z2

z4(z2k)

Figure 2.4.9: A plot of the subsequences (z2k−1) in red and (z2k) in blue, along
with u and v from Example 2.4.17.

See Figure 2.4.9. The subsequence of odd indices (z2k−1) converges to u with a threshold
sε satisfying

sε >
1
ε

+ 1
2 . (2.4.61)

The subsequence of even indices (z2k) converges to v with a threshold tε satisfying

tε >
1
ε
. (2.4.62)

The subsequence (z3k) diverges, as will be proven later.

Ultimately, we have Slim (zn) = {u,v}. The thresholds sε and tε can be used to show u and
v belong to Slim (zn) by proving

lim
k→∞

z2k−1 = u and lim
k→∞

z2k = v, respectively. (2.4.63)

But why are no other points in Slim (zn)? Every point in R2 aside from u and v is either away
from (zn) or is a term of (zn) away from all the others. This takes some effort to prove and is left
as an exercise.

The following theorem solidifies what I believe to be an intuitive idea.

Theorem 2.4.18: Convergence implies subsequential convergence

Every subsequence of a convergent sequence in Rm converges to the same limit.
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Proof of Theorem 2.4.18. Suppose (xn) is a convergent sequence of points in Rm whose limit is
y, and suppose (xnk) is a subsequence of (xn). Let ε > 0. By the definition of sequential limit
(Definition 2.2.1), there is a threshold jε where n ≥ jε implies

dm(xn,y) = ‖xn − y‖m < ε. (2.4.64)

Then jε is also a suitable threshold for the subsequence (xnk), as follows. Since the indices of
(xnk) form a strictly increasing sequence by definition of subsequence (Definition 2.4.14), we have
nk ≥ k for every positive integer k. Hence, we have nk ≥ k ≥ jε implies

dm(xnk ,y) = ‖xnk − y‖m < ε. (2.4.65)

Therefore, (xnk) converges to y.

The following corollary of Theorem 2.4.18 formalizes an idea from calculus.

Corollary 2.4.19: Powers of a small constant

Suppose |c| < 1. Then limn→∞ c
n = 0.

Scratch Work 2.4.20: Invoking the Squeeze Theorem

Corollary 2.4.19 does not follow from Corollary 2.3.22 which provides bounds on where limits
could be (between −1 and 1) but not enough information to determine the limit precisely.
Theorem 2.4.18 provides a way to do so by taking advantage of a particular subsequence
as well as properties unique to zero, at least when c ≥ 0. From there, the result for |c| < 1
follows from an application of the Squeeze Theorem 2.4.3. As a result, the proof does not
address the rates of convergence of sequences of the form (cn) since we avoid arguments
involving thresholds. Still, the thresholds for such sequences are interesting.

Proof of Corollary 2.4.19. Suppose 0 ≤ c < 1. Then for every positive integer n we have

cn ≥ cn · c = cn+1. (2.4.66)

So by Corollary 2.3.22, (cn) is a decreasing sequence bounded below by 0. By the Monotone and
Bounded Convergence Theorem 2.4.9, (cn) converges to some real number `. Then the subsequence
(c2n) also converges to ` by Theorem 2.4.18. By Theorem 2.3.17 we have

` = lim
n→∞

c2n = lim
n→∞

(cn · cn) =
(

lim
n→∞

cn
)(

lim
n→∞

cn
)

= `2. (2.4.67)

Hence, either ` = 0 or ` = 1. However, by Lemma 2.4.7 and Corollary 2.3.22 we have

0 ≤ ` = lim
n→∞

cn ≤ c < 1. (2.4.68)

So, 0 ≤ ` < 1 and we must have limn→∞ c
n = ` = 0.

Now suppose 0 ≤ |c| < 1. Then for every index n ∈ N we have

−|c|n ≤ cn ≤ |c|n. (2.4.69)
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Since 0 ≤ |c| < 1 and by the linearity of sequential limits (Theorem 2.3.9) we have

lim
n→∞

−|c|n = 0 = lim
n→∞

|c|n. (2.4.70)

Therefore, by the Squeeze Theorem 2.4.3 we have

lim
n→∞

cn = 0. (2.4.71)

The following section further develops and proves some significant results about ensuring
convergence of sequences.

Exercises
2.4.1. Prove the following statement is false: There is a convergent sequence of real numbers with
an infinite number of zeroes whose limit is not zero.

2.4.2. Suppose |c| ≥ 1. Prove (cn) diverges.

2.4.3. Suppose c > 0. Prove limn→∞
n
√
c = 1. Hint: First consider c > 1 and let an = n

√
c − 1.

Use the Binomial Theorem 1.2.24 to show that for each n ∈ N we have

c = (1 + an)n ≥ 1 + nan. (2.4.72)

From here, use the Squeeze Theorem for sequences 2.4.3.

2.4.4. Prove limn→∞
n
√
n = 1 by completing the following steps.

(i) For each n ∈ N, set n
√
n = 1 + δn (note δn > 0) and use the Binomial Theorem 1.2.24 to

prove

0 < δn <

√
2

n− 1 (2.4.73)

for all n ∈ N where n > 1.

(ii) Use (i) to prove

lim
n→∞

n
√
n = lim

n→∞
(1 + δn) = 1. (2.4.74)

2.4.5. Suppose c > 1 and p ∈ R. Prove

lim
n→∞

np

cn
= 0. (2.4.75)

Hint: Let k ∈ N such that k > c and k > 0. First use the equation c = 1 + (c − 1) with the
Binomial Theorem 1.2.24 to show that for n > 2k we have

cn >

(
n

k

)
(c− 1)k = n(n− 1) · · · (n− k + 1)

k! (c− 1)k > nk(c− 1)k
2kk! . (2.4.76)
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2.4.6. For each n ∈ N, recall n! = 1(2)(3) · · · (n). Prove that for every c ∈ R we have

lim
n→∞

cn

n! = 0. (2.4.77)

2.4.7. Let (xn) be the sequence of real numbers defined recursively by

x1 =
√

2 and xn+1 =
√

2 + xn for each n ∈ N with n ≥ 2. (2.4.78)

(i) Prove xn ≤ 2 for all n ∈ N.

(ii) Prove (xn) is increasing.

(iii) Prove (xn) converges and lim
n→∞

xn = 2.

2.4.8. Prove the following statement is false by finding a counterexample: For any two sequences
(an) and (bn) in Rm we have

lim
n→∞

(an − bn) = 0 ⇐⇒ lim
n→∞

an = lim
n→∞

bn. (2.4.79)

2.4.9. Prove the following statements are false by finding a counterexample for each one.

(i) If (an) and (bn) diverge, then the sequence of sums (an + bn) diverges as well.

(ii) If (an) and (bn) diverge, then the sequence of products (anbn) diverges as well.

(iii) If (an) and (bn) diverge, then the sequence of quotients (an/bn) diverges as well.

(iv) If (an) and (bn) diverge, then at least one of (an + bn) or (anbn) diverges.

2.4.10. Suppose (xn) ⊆ Rm is bounded and (cn) ⊆ R where limn→∞ cn = 0. Prove

lim
n→∞

cnxn = 0. (2.4.80)

2.4.11. Suppose (bn) ⊆ R, (xn) ⊆ Rm, and y ∈ Rm satisfy

bn ≥ 0 and ‖xn − y‖m ≤ bn for each n ∈ N. (2.4.81)

Prove that if limn→∞ bn = 0, then limn→∞ xn = y.

2.4.12. Given a sequence (xn) ⊆ Rm, for each n ∈ N the average yn given by

yn =
∑n
k=1 xk
n

= x1 + x2 + · · ·+ xn
n

(2.4.82)

is called the nth Cesaro mean.

(i) Prove that if limn→∞ xn = x, then limn→∞ yn = x as well.

(ii) Find an example of a divergent sequence of real numbers (xn) whose sequence of Cesaro
means (yn) converges.

2.4.13. Prove that if all subsequences of (xn) ⊆ Rm converge, then (xn) converges, too.



2.5. THE BOLZANO-WEIERSTRASS THEOREM 139

2.5 The Bolzano-Weierstrass Theorem
A fundamental consequence of the completeness of the real line and Euclidean spaces is the
existence of suitable candidates for limits of sequences. In particular, we have the Bolzano-
Weierstrass Theorem:

Every bounded sequence has a convergent subsequence.

The aim of this section is to prove two versions of the Bolzano-Weierstrass Theorem. The
first (Theorem 2.5.6) establishes the result in the real line, while the second (Theorem 2.5.13)
establishes a generalized result for Euclidean spaces.

Both proofs are included based on feedback from my students. They are quite involved and
make use of other theorems which are interesting in their own right. There are certainly similarities
between the two cases, but the proof for Euclidean spaces has a lot more notation and nuance to
deal with.

Ideas common to both proofs stem from nested closed and bounded sets with nonempty inter-
sections which generate candidates for limits, and the use of repeated bisection to create suitable
collections of sets.

There’s a lot to do, so let’s start with Example 2.5.1 which shows us that intersections of
nonempty and overlapping (nested) sets can be empty.

Example 2.5.1: Nested intervals with empty intersection

Consider the intervals defined for each n ∈ N by

(0, 1/n] = {x ∈ R : 0 < x ≤ 1/n}. (2.5.1)

We have ⋂∞n=1(0, 1/n] = ∅ (the intersection of all these intervals is empty).

Scratch Work 2.5.2: No real number is in every interval

To prove the intersection in Example 2.5.1 is empty, we should show that no real number
is in the intersection. Since a given point needs to be in every set in order to be in the
intersection, we only need to find one set where a given point doesn’t belong.

If x ≤ 0, then x is not in any of the intervals, so it’s not in the intersection. But what if
x > 0? Things are trickier, but we can handle it. For instance, x = 1/100 is in the first 100
intervals, but not the 101st since 1/101 < 1/100 and we have 1/100 /∈ (0, 1/101]. It might
help to note

(0, 1/101] = {y ∈ R : 0 < y ≤ 1/101}. (2.5.2)

The Corollary of the Archimedean Property 1.4.8 allows us to apply this type of argument
for any positive number.

Time for a proof, which can be done in two cases.
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Proof for Example 2.5.1. Case (i): Suppose x ≤ 0. Then x /∈ (0, 1]. So,

x /∈
∞⋂
n=1

(0, 1/n]. (2.5.3)

Case (ii): Suppose x > 0. By Corollary 1.4.8, there is an index nx ∈ N where

0 < 1/nx < x. (2.5.4)

So, x is too large to be in the interval (0, 1/nx]. Hence,

x /∈
∞⋂
n=1

(0, 1/n]. (2.5.5)

Whether x ≤ 0 or x > 0, we have x is not in the intersection. Therefore,
∞⋂
n=1

(0, 1/n] = ∅. (2.5.6)

Example 2.5.1 holds despite the fact that the intervals are nested: Each interval contains the
next.

Definition 2.5.3: Nested sets

A sequence (Sn) of sets is nested if for every index n ∈ N we have Sn ⊇ Sn+1.

If we add a couple of conditions to the nested property, namely closed and bounded, we can
ensure the intersection of intervals is nonempty.

Theorem 2.5.4: NCBI Property

Every nested sequence of closed and bounded intervals has a nonempty intersection.a

aNCBI stands for “nested, closed, bounded intervals”.

Scratch Work 2.5.5: Finding a point in the intersection

To show the intersection is nonempty, we need to find just one point which is in all of the
intervals. See Figure 2.5.1. By using nested intervals that are both closed and bounded, the
intersection of any finite number of them is always nonempty. The Axiom of Completeness
1.3.8 ensures of the existence of a point in the intersection of all of the intervals, namely
the supremum of the set of left endpoints.

Proof of Theorem 2.5.4. Suppose for each index n ∈ N we have

[an, bn] = {x ∈ R : an ≤ x ≤ bn} and (2.5.7)
[a1, b1] ⊇ [a2, b2] ⊇ [a3, b3] ⊇ · · · . (2.5.8)
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[a1, b1] [ ]
a1 b1

[a2, b2] [ ]
a2 b2

[a3, b3] [ ]
a3 b3

[a4, b4] [ ]
a4 b4

... ...

L ◦
u

...

a1 a2 a3 a4

• • • •

Figure 2.5.1: A sequence of nested, closed, bounded intervals to accompany
the NCBI Property (Theorem 2.5.4) along with the set L comprising the left
endpoints of the intervals and its supremum u. This supremum u is in the
intersection of the intervals but not necessarily in L.

Line (2.5.7) ensures the intervals are closed and bounded while line (2.5.8) ensures they form a
nested sequence.

Let L denote the set of left-endpoints of intervals [an, bn]. So,

L = {an : n ∈ N}. (2.5.9)

Since the first interval [a1, b1] contains all the others, we have an ≤ b1 for every n ∈ N. Thus,
L is bounded above by b1. Since a1 ∈ L, L is nonempty. By the Axiom of Completeness 1.3.8,
u = supL exists. See Figure 2.5.1.

It turns out every bn is an upper bound for L. If not, there would be some ak ∈ L where
bn < ak, but this would contradict the nested property in line (2.5.8). Now, since u = supL is
the least upper bound of L by Theorem 1.3.10, we have u ≤ bn for every n ∈ N. Since u = supL
is an upper bound for L by Definition 1.1.14, we also have an ≤ u for every n ∈ N. Hence, for
every n ∈ N we have

an ≤ u ≤ bn. (2.5.10)

Therefore, u ∈ [an, bn] for every n ∈ N and so
∞⋂
n=1

[an, bn] 6= ∅. (2.5.11)

The following theorem is a significant result in the analysis of the real line. The proof below
relies a careful application of the NCBI Property (Theorem 2.5.4).
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Theorem 2.5.6: Bolzano-Weierstrass Theorem in R

Every bounded sequence in the real line R has a convergent subsequence.

Scratch Work 2.5.7: Finding a suitable candidate for the limit

The Bolzano-Weierstrass Theorem in the real line requires a bit of work to prove. All we
have to start with is a bounded sequence in R, so we need to ensure the existence of a
suitable subsequence as well as a suitable candidate for the limit. From there, we need
to prove the candidate really is the limit. The proof below takes advantage of the NCBI
Property (Theorem 2.5.4) to ensure the existence of a point which serves as a suitable
candidate for the limit. But this follows from a carefully chosen sequence of intervals
constructed in a recursive manner: After an initial set of steps, the process is repeated ad
infinitum.

The idea is to first take a closed interval that’s big enough to contain the bounded sequence,
then recursively bisect to produce smaller and smaller subintervals as in Figure 2.5.2. Each
bisection produces two intervals with half the original length, allowing us to identify a
convergent subsequence thanks to a key fact: With each bisection, at least one of the
subintervals must contain an infinite number of terms. From there, we can choose one such
smaller subinterval and one term to add to a subsequence, then repeat. By bisecting with
each new step, the terms we select are forced closer and closer together, ensuring our chosen
subsequence converges. See Figure 2.5.3.

Proof of the Bolzano-Weierstrass Theorem in the real line 2.5.6. Suppose (xn) is a bounded se-
quence in the real line R. Consider a bound b > 0 that defines a closed interval I1 = [−b, b] large
enough to contain the range of the sequence (xn). See Figure 2.5.2.

Choose a term xn1 to serve as the first term of our desired subsequence. Next, bisect I1 by
considering the two closed intervals of the form [−b, 0] and [0, b] whose union is I1. At least one
of these subintervals contains an infinite number of the terms of (xn), so choose one such interval
and name it I2. Note that the length of I2 is b, half the length of each side of I1. From there,
choose a second term xn2 from the sequence where n1 < n2 and xn2 is in I2. See Figure 2.5.3.

To proceed recursively, suppose k > 2 is a positive integer for which a closed and bounded
interval Ik−1 and term xnk−1 have been chosen where nk−2 < nk−1, xnk−1 is in Ik−1, Ik−2 ⊇ Ik−1,
and the length of Ik−1 is half the length of Ik−2. Note that for each k > 2, the length of Ik−1 is
b/2k−3, corresponding to having bisected the original I1 interval—whose length is 2b—a total of
k − 2 times.

Now, bisect Ik−1 to produce two closed subintervals whose union is Ik−1. At least one of these
closed subintervals contains an infinite number of the terms of the sequence (xn), so choose one
such interval and rename it Ik. Note that the length of Ik is b/2k−2, half the length of Ik−1. From
there, choose a kth term xnk from the given sequence where nk−1 < nk and xnk is in Ik.

Our recursive process yields a subsequence (xnk) and a sequence of closed and bounded intervals
(Ik) where, for each positive integer k, we have

Ik−1 ⊇ Ik (2.5.12)
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(xn) • •• •
x1 x2x3 x4

◦ ◦......
w z

I1 [ ]
−b b

I2 [ ]
0 b

I3 [ ]
0 b/2

I4 [ ]
b/4 b/2

... ...

Figure 2.5.2: According to the Bolzano-Weierstrass Theorem in the real line
(Theorem 2.5.6), a bounded sequence of real numbers (xn) must have a convergent
subsequence. Here, the closed and bounded interval I1 = [−b, b] contains all of
the terms of (xn) while the subintervals I2, I3, I4, etc.—obtained via repeated
bisection—are chosen to ensure each contains an infinite number of the terms.

(xn) • •• •
x1 x2x3 x4

◦ ◦......
w z

I1 [ ]
−b b

•
xn1

I2 [ ]
0 b

•
xn2

I3 [ ]
0 b/2

•
xn3... ...

(xnk) • ••
xn1 xn2 xn3

◦...
z

Figure 2.5.3: A bounded sequence (xn) in the real line R along with a nested
sequence of closed and bounded intervals (Ik) constructed via bisection. For each
k ∈ N, the subinterval Ik contains a term xnk . The terms are recursively chosen
to ensure n1 < n2 < n3 < . . . and to produce a convergent subsequence (xnk).
Here, the subsequence converges to the real number z.
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and the length of Ik is b/2k−2. Thus, (Ik) is a nested sequence of closed and bounded intervals.
By the NCBI Property (Theorem 2.5.4), there is point z in ∩∞k=1Ik.

It remains to show z is the limit of the subsequence (xnk). By construction, for each positive
integer k we have both z and xnk are in Ik whose length is b/2k−2. Hence, for every positive
integer k we have

|xnk − z| ≤
b

2k−2 . (2.5.13)

By Corollary 2.4.19 and the homogeneity of sequential limits (part (ii) of Theorem 2.3.9), we have

lim
k→∞

b

2k−2 = 0. (2.5.14)

Now let ε > 0. By the definition of limit and convergence for sequences (Definition 2.2.1),
there is a threshold kε where k ≥ kε implies

|xnk − z| ≤
b

2k−2 ≤
b

2kε−2 < ε. (2.5.15)

Therefore, limk→∞ xnk = z.

Both the NCBI Property (Theorem 2.5.4) and the Bolzano-Weierstrass Theorem in the real
line (Theorem 2.5.6) generalize to higher dimensions by considering boxes in place of intervals:
In the real line R, a box is an interval; in the plane R2, a box is a rectangle; in R3, a box is a
rectangular parallelepiped. The remainder of this sections is dedicated to proving these generalized
results which appear below as the NCBB2 Property (Theorem 2.5.10) and the Bolzano-Weierstrass
Theorem in Euclidean spaces (Theorem 2.5.13).

First, a formal definition for boxes.

Definition 2.5.8: Boxes

A set B ⊆ Rm is a box if for each j = 1, . . . ,m there is an interval Ij where

B = I1 × I2 × · · · × Im (2.5.16)

=

x =


x1
x2
...
xm

 : xj ∈ Ij for each j = 1, . . . ,m

 . (2.5.17)

Furthermore, B is a closed box if each Ij is a closed interval. Similarly, B is an open box if
each Ij is an open interval.

2NCBB stands for “nested, closed, bounded boxes”.
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Notation 2.5.9: Sequences of boxes

Since the NCBB Property (Theorem 2.5.10) deals with a sequence of boxes, some carefully
chosen notation will help us be precise. Given a sequence of boxes (Bn), for each positive
integer n and each j = 1, . . . ,m, let Ij,n be an interval where

Bn = I1,n × I2,n × · · · × Im,n (2.5.18)

=

x =


x1
x2
...
xm

 : xj ∈ Ij,n for each j = 1, . . . ,m

 . (2.5.19)

The intersection of the boxes amounts to the cross product of the intersections of their
component intervals:

∞⋂
n=1

Bn =
∞⋂
n=1

I1,n ×
∞⋂
n=1

I2,n × · · · ×
∞⋂
n=1

Im,n (2.5.20)

=

x =


x1
x2
...
xm

 : xj ∈
∞⋂
n=1

Ij,n for each j = 1, . . . ,m

 . (2.5.21)

Similarly, containment in Rm amounts to containment in R of each component. That is,

Bn ⊇ Bn+1 ⇐⇒ Ij,n ⊇ Ij,n+1 for each j = 1, . . . ,m, (2.5.22)

so (Bn) is nested if and only if (Ij,n) is nested for each j = 1, . . . ,m.

Theorem 2.5.10: NCBB Property

Every nested sequence of closed and bounded boxes in Rm has a nonempty intersection.

Scratch Work 2.5.11: Nested boxes and componentwise convergence

My approach is motivated by Theorem 2.4.11 where convergence of a sequence in a Euclidean
space Rm is ensured by the convergence in the real line R of each of its components (and
vice versa). Here, the NCBI Property (Theorem 2.5.4) applies to the closed intervals that
define the closed boxes in question, allowing us to find a point in the intersection of these
boxes by controlling their component intervals.

Proof of Theorem 2.5.10. Suppose (Bn) is a nested sequence of closed and bounded boxes in Rm

whose component intervals are given by Ij,n for each positive integer n and each j = 1, . . . ,m.
Then for each j = 1, . . . ,m, the sequence (Ij,n) is a nested sequence of closed and bounded
intervals. So by the NCBI Property (Theorem 2.5.4), we have ∩∞n=1Ij,n is nonempty for each
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j = 1, . . . ,m. Thus, for each j = 1, . . . ,m there is a real number uj in ∩∞n=1Ij,n. Now define

u =


u1
u2
...
um

 . (2.5.23)

Then u ∈ ∩∞n=1Bn, so ∩∞n=1Bn is nonempty.

Problem 2.5.12: Disks in squares

Draw a big disk along with a smaller square contained completely inside the big disk.
Then, draw a disk small enough to be contained completely within the square. Can you see
how this process can be repeated indefinitely, no matter how small the disks and squares are?

This problem is designed to help you connect the definition of limit and convergence of se-
quences (Definition 2.2.1), which involves spheres and disks in the form of ε-neighborhoods,
to boxes in various Euclidean spaces. Boxes and convergence combine in the proof of the
Bolzano-Weierstrass Theorem 2.5.13. Compare and contrast Figures 1.5.2, 2.5.4, and 2.5.5.

The following theorem is a major result in analysis which guarantees the existence of a con-
vergent subsequence for a given bounded sequence in a Euclidean space. The proof is very similar
to that of the corresponding result in the real line (Theorem 2.5.6), but here we consider boxes
instead of intervals as well as componentwise convergence of the sequences.

Theorem 2.5.13: Bolzano-Weierstrass Theorem in Rm

Every bounded sequence in a Euclidean space Rm has a convergent subsequence.

Scratch Work 2.5.14: Leveraging Bolzano-Weierstrass in R

The Bolzano-Weierstrass Theorem for Euclidean spaces considers a bounded sequence in
Rm, and as with its counterpart for the real line (Theorem 2.5.6), we need to ensure the
existence of a suitable subsequence as well as a suitable candidate for the limit. From
there, we need to prove the candidate really is the limit of the subsequence. The proof
below takes advantage of the NCBB Property (Theorem 2.5.10) to ensure the existence of
a suitable candidate for the limit, following the recursive construction via bisection of a
nested sequence of boxes.

The idea is to start by considering a box that’s big enough to contain the given bounded
sequence, then recursively bisect boxes along each of their sides to produce smaller and
smaller boxes. In the real line R, bisecting an interval produces two intervals with half the
original length. In the plane R2, bisecting a square along each of its sides produces 22 = 4
squares with half the original side length. (See Figures 2.5.4 and 2.5.5.) In a Euclidean
space Rm, bisecting a box along each of its sides produces 2m boxes whose side lengths are
half the original side lengths, respectively.
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0

•
x1

•
x3

•
x5

• •
··· u

•
x2

•
x4

•
x6

• •··· v

Figure 2.5.4: A bounded sequence (xn) in the plane R2 contained in a closed
square with the origin 0 in the center. The points u and v are arbitrarily close
to the sequence (xn).

At each step, at least one of the smaller boxes must contain an infinite number of the terms
of the sequence. From there, we can choose one such smaller box and one term in the box to
add to a subsequence, then repeat. By bisecting with each new step, we ensure our chosen
subsequence converges.

Proof of the Bolzano-Weierstrass Theorem in Euclidean spaces 2.5.13. Suppose (xn) is a bounded
sequence of points in Rm. Let B1 be a closed box in Rm defined by

B1 = [−b, b]× · · · × [−b, b]︸ ︷︷ ︸
m copies of [−b,b]

= [−b, b]m (2.5.24)

where b > 0 is large enough to contain the range of the sequence (xn), similar to Figure 2.5.4.
Choose a term xn1 to serve as the first term of our desired subsequence. Next, consider the 2m

distinct closed boxes whose component intervals are of the form [0, b] or [−b, 0] and whose union
is B1. At least one of these smaller boxes contains an infinite number of the terms of (xn), so
choose one such box and name it B2. Note that the length of each side of B2 is b, half the length
of each side of B1. From there, choose a second term xn2 from the sequence where n1 < n2 and
xn2 is in B2. See Figure 2.5.5.

Proceeding recursively, suppose k > 2 is a positive integer for which a closed box Bk−1 and
term xnk−1 have been chosen where nk−2 < nk−1, xnk−1 is in Bk−1, Bk−2 ⊆ Bk−1, and the length
of each side of Bk−1 is b/2k (half the length of each side of Bk−2). Bisect each side of Bk−1 to
produce 2m distinct closed boxes whose union is Bk−1. At least one of these closed boxes contains
an infinite number of the terms of the sequence (xn), so choose one such box and rename it Bk.
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0

B1

B2

• • • •
xn2

•···
u

•
xn1

• • • •··· v

Figure 2.5.5: A bounded sequence (xn) in the plane R2 contained in a closed
square B1 with the origin 0 in the center. The terms xn1 and xn2 are chosen so
that n1 < n2, xn1 is in B1, and xn2 is in B2. The points u and v are arbitrarily
close to the sequence (xn).

Note that the length of each side of Bk is b/2k−2, half the length of each side of Bk−1. From there,
choose a kth term xnk from the sequence where nk−1 < nk and xnk is in Bk.

Our recursive process yields a subsequence (xnk) and a sequence of closed boxes (Bk) where

Bk−1 ⊇ Bk (2.5.25)

and the length of the sides of Bk is b/2k−2 for each positive integer k. Thus, (Bk) is a nested
sequence of closed and bounded boxes. By the NCBB Property (Theorem 2.5.10), there is point
u in ∩∞k=1Bk.

It remains to show u is the limit of the subsequence (xnk). Since our construction makes use
of boxes instead of the disks or spheres defined by neighborhoods, consider the componentwise
breakdown of u and (xnk) given for each positive integer k by

u =


u1
u2
...
um

 and xnk =


x1,nk
x2,nk...
xm,nk

 . (2.5.26)

Both u and xnk are in Bk and the lengths of the sides of Bk are b/2k−2 for each positive integer
k, so we have

|xj,nk − uj| ≤
b

2k−2 (2.5.27)
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for each j = 1, . . . ,m and every positive integer k. By Corollary 2.4.19 and part (ii) of Theorem
2.3.9 we have

lim
k→∞

b

2k−2 = 0. (2.5.28)

Let ε > 0. By the definition of limit and convergence for sequences (Definition 2.2.1), there is
a threshold kε where k ≥ kε implies

|xj,nk − uj| ≤
b

2k−2 ≤
b

2kε−2 < ε (2.5.29)

for each j = 1, . . . ,m. Therefore, the index kε is a threshold for every component sequence (xj,nk)
at the same time and we have

lim
k→∞

xj,nk = uj (2.5.30)

for each j = 1, . . . ,m. Since the components of the subsequence (xnk) converge, by Theorem
2.4.11 we finally have

lim
k→∞

xnk = u. (2.5.31)

The next section looks into an equivalent form of convergence and criteria for divergence.

Exercises
2.5.1. Give an example of a sequence in Rm with no convergent subsequences.

2.5.2. Give an example of a sequence of real numbers which contains neither 1 nor −1 yet has
subsequences converging to each of these numbers.

2.5.3. Give an example of a divergent sequence of real numbers with a strictly decreasing subse-
quence and a strictly increasing subsequence.

2.5.4. Prove there is no bounded sequence with an unbounded subsequence. On the other hand,
find an example of an unbounded sequence with a bounded subsequence.

2.5.5. Consider a finite set of points F ⊆ Rm given by

F = {a1, a2, · · · , ak} (2.5.32)

for some k ∈ N.

(i) Describe a sequence (xn) ⊆ Rm where Slim (xn) = F . (See Definition 2.4.16.)
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(ii) Describe a sequence (yn) ⊆ Rm where yn 6= aj for all n ∈ N and j = 1, . . . , k and yet
Slim (yn) = F .

2.5.6. Consider the set of reciprocals 1/N given by
1
N

=
{ 1
n

: n ∈ N
}

=
{

1, 1
2 ,

1
3 , . . .

}
. (2.5.33)

(i) Describe a sequence (xk) ⊆ R where 1/N ⊆ Slim (xk). (See Definition 2.4.16.)

(ii) Prove that your example for part (i) satisfies 0 acl(xk) and 0 ∈ Slim(xk).

(iii) Is there a sequence (yk) ⊆ R where 1/N = Slim (yk)? Why or why not?

2.6 Cauchy and Divergence Criteria
The Bolzano-Weierstrass Theorem 2.5.13 ensures the existence of a limit even without a particular
candidate in mind or readily available. This is quite different from many of the results pertaining
to limits and convergence discussed earlier in this chapter. In fact, the definition of limit and
convergence for sequences (Definition 2.2.1) explicitly relies on a candidate for the limit. The
Cauchy criterion for sequences (Theorem 2.6.5) is a powerful result which ensures the existence
of a limit even when we do not have a candidate.

Definition 2.6.1: Cauchy sequence

A sequence (xn) of points in Rm is Cauchy if for every ε > 0 there is a positive integer nε
such that for positive integers n and k we have

n, k ≥ nε =⇒ dm(xn,xk) = ‖xn − xk‖m < ε. (2.6.1)

In this case, nε is called a threshold and its value depends on ε.

Remark 2.6.2: Convergence versus Cauchy

In Euclidean spaces, the concepts of convergence and Cauchy are equivalent. Consider
quantified versions of the statements where “∀” means “for all” and “∃” means “there
exists”:

(xn) is Cauchy y = limn→∞(xn)

∀ ε > 0, ∀ ε > 0,
∃nε ∈ N such that ∃nε ∈ N such that
n, k ≥ nε =⇒ ‖xn − xk‖m < ε. n ≥ nε =⇒ ‖xn − y‖m < ε.

In both settings, ε > 0 tells us how close we would like pairs of objects to be while the
positive integer nε is a threshold that ensures the objects are within ε of each other. The



2.6. CAUCHY AND DIVERGENCE CRITERIA 151

b
◦
0

◦ε0

•
x1

•
x2
•
x3
···•xn0−1

•xn0

···

Figure 2.6.1: A Cauchy sequence (xn) in the plane R2. By Lemma 2.6.3, (xn)
must be bounded by some nonnegative real number b. Note how the ◦ near
the term xn0 looks like it could represent the limit of the sequence (xn), but the
definition of a Cauchy sequence makes no mention of a limit at all. See Definition
2.6.1, Scratch Work 2.6.4, and the proof of Theorem 2.3.15.

key difference is the objects taken into consideration: Convergence compares terms of a
sequence with the limit or a candidate for the limit; Cauchy compares pairs of terms of a
sequence and does not consider a candidate for the limit at all.

To me, when a sequence is both convergent and Cauchy, the terms of the sequence get close
and stay close to the limit and to each other. To prove they are equivalent, an additonal property
of Cauchy sequences will help.

Lemma 2.6.3: Cauchy sequences are bounded

Every Cauchy sequence in Rm is bounded.

Scratch Work 2.6.4: All but a finite number of terms are close

The proof of Lemma 2.6.3 is very similar to the proof of Theorem 2.3.15 which says con-
vergent sequences are bounded. Both amount to solidifying the idea that, eventually, the
terms of the sequence are as close together as we like. In Figure 2.6.1, no particular term in
the sequence has the largest norm, but for some ε0 > 0 there is a threshold n0 that produces
the real number ε0 + ‖xn0‖m which is a bound for the sequence. However, this may not be
true in general since a term whose index is less than n0 may have a larger norm.

Proof of Lemma 2.6.3. Suppose (xn) is a Cauchy sequence in Rm. Let ε0 = 11. By the definition
of a Cauchy sequence 2.6.1, there is a threshold n0 where n ≥ n0 implies

dm(xn,xn0) = ‖xn − xn0‖m < ε0 = 11. (2.6.2)
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Hence, for n ≥ n0,

‖xn‖m = ‖xn−xn0 + xn0︸ ︷︷ ︸
add zero

‖m (2.6.3)

≤ ‖xn − xn0‖m + ‖xn0‖m (tri. ineq. (1.2.34)) (2.6.4)
< 11 + ‖xn0‖m. ((2.6.2)) (2.6.5)

Now define b by

b = max{‖x1‖m, ‖x2‖m, . . . , ‖xn0−1‖m, 11 + ‖xn0‖m}. (2.6.6)

Then b ≥ 0 and for every index n ∈ N we have

‖xn‖m < b. (2.6.7)

Therefore, (xn) is bounded.

The following Cauchy criterion for sequences (Theorem 2.6.5) is another major result in anal-
ysis that depends heavily on the completeness of the real line and Euclidean spaces. It provides
a characterization of the existence of limits and the convergence of sequences, all without having
an explicit candidates for the limits in mind.

Theorem 2.6.5: Cauchy criterion for sequences

Suppose (xn) is a sequence of points in Rm. Then (xn) converges if and only if (xn) is
Cauchy.

Scratch Work 2.6.6: Find a candidate for the limit

The proof is lopsided: One direction follows from the definitions plus the triangle inequality
(1.2.34), the other sets up and takes advantage of the Bolzano-Weierstrass Theorem 2.5.13
to ensure the existence of a candidate for the limit before the definitions and the triangle
inequality (1.2.34) are used.

Proof of the Cauchy criterion 2.6.5. First, suppose ε > 0 and (xn) converges to y in Rm. By the
definition of sequential limit (Definition 2.2.1), there is a threshold nε/2 where n ≥ nε/2 ensures

dm(xn,y) = ‖xn − y‖m <
ε

2 . (2.6.8)

Now suppose n and k are positive integers where n, k ≥ nε/2. Then we have

dm(xn,xk) = ‖xn − xk‖m (2.6.9)
= ‖xn−y + y︸ ︷︷ ︸

add zero

−xk‖m (2.6.10)

≤ ‖xn − y‖m + ‖y− xk‖m (2.6.11)

<
ε

2 + ε

2 (2.6.12)

= ε. (2.6.13)
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Therefore, nε/2 is a suitable threshold and (xn) is Cauchy.
To prove the converse, suppose (xn) is Cauchy. In order to find a suitable candidate for the

limit, note that by Lemma 2.6.3, (xn) is bounded. So by the Bolzano-Weierstrass Theorem 2.5.13,
there is a point y in Rm and subsequence (xnk) whose limit is y.

To show y is the limit of the original sequence (xn), let ε > 0. By the definition of a Cauchy
sequence (Definition 2.6.1), there is a threshold jε/2 such that n, j ≥ jε/2 ensures

dm(xn,xj) = ‖xn − xj‖m <
ε

2 . (2.6.14)

Since the subsequence (xnk) converges to y, by the definition of limit and convergence for sequences
(Definition 2.2.1), there is a threshold kε/2 such that nk ≥ k ≥ kε/2 ensures

dm(xnk ,y) = ‖xnk − y‖m <
ε

2 . (2.6.15)

Now, there is a positive integer k0 large enough so that both nk0 ≥ k0 ≥ kε/2 and nk0 is an index
for the subsequence where nk0 ≥ jε/2. Then for every n ≥ nk0 we have

dm(xn,y) = ‖xn − y‖m (2.6.16)
= ‖xn−xnk0

+ xnk0︸ ︷︷ ︸
add zero

−y‖m (2.6.17)

≤ ‖xn − xnk0
‖m + ‖xnk0

− y‖m (2.6.18)

<
ε

2 + ε

2 (2.6.19)

= ε. (2.6.20)

Therefore, nk0 is a suitable threshold and (xn) converges to y.

The next result solidifies the notion that if two sequences approach each other and one is
Cauchy, then they both converge to the same limit.

Corollary 2.6.7: Two sequences with the same limit

Suppose (an) and (bn) are sequences of points in Rm where (an) is Cauchy and

lim
n→∞

dm(an,bn) = lim
n→∞

‖an − bn‖m = 0. (2.6.21)

Then (an) and (bn) converge to the same limit.

Scratch Work 2.6.8: Apply the Cauchy criterion

By the Cauchy criterion 2.6.5, if (an) is Cauchy then (an) converges to some limit
a. From there, the condition of having the sequences approach each other, namely
limn→∞ dm(an,bn) = 0, can be used to show (bn) converges to a as well. Some of the
techniques used in the proof should look familiar.
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Proof of Corollary 2.6.7. Suppose (an) is Cauchy. Then by the Cauchy criterion 2.6.5, (an) con-
verges to some limit a.

Furthermore, suppose limn→∞ dm(an,bn) = 0 and let ε > 0. Then we also have ε/2 > 0 and
by two applications of the definition of limit and convergence for sequences (Definition 2.2.1),
there are thresholds jε/2 and kε/2 where

n ≥ jε/2 =⇒ dm(an, a) = ‖an − a‖m <
ε

2 and (2.6.22)

n ≥ kε/2 =⇒ |dm(an,bn)− 0| = ‖an − bn‖m <
ε

2 . (2.6.23)

Define nε = max{jε/2, kε/2}. Then for all n ≥ nε we have both n ≥ jε/2 and n ≥ kε/2. Therefore,
n ≥ nε implies

dm(bn, a) = ‖bn − a‖m (2.6.24)
= ‖bn−an + an︸ ︷︷ ︸

add zero

−a‖m (2.6.25)

≤ ‖bn − an‖m + ‖an − a‖m (2.6.26)

<
ε

2 + ε

2 (2.6.27)

= ε. (2.6.28)

Hence, nε is a threshold for the convergence of (bn) to a, and

lim
n→∞

an = a = lim
n→∞

bn. (2.6.29)

The contrapositions of Theorems 2.3.15 and 2.4.18 as well as the Cauchy criterion for sequences
(Theorem 2.6.5) provide conditions to ensure divergence. As such, the proof of the following
corollary is omitted.

Corollary 2.6.9: Divergence Criteria for Sequences

Suppose (xn) ⊆ Rm.

(i) If (xn) is unbounded, then (xn) diverges.

(ii) If (xn) has subsequences with different limits, then (xn) diverges.

(iii) If (xn) has a divergent subsequence or tail, then (xn) diverges.

(iv) If (xn) has a subsequence or tail which is not Cauchy, then (xn) diverges.

Example 2.6.10: Examples of divergent sequences

The sequences (bn) and (zn) from Examples 2.1.4 and 2.1.14, respectively, diverge. The
sequence (cn) defined by cn = n(−1)n diverges as well.
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Proofs for Example 2.6.10. Since cn = n(−1)n for each positive integer n, we have |cn| = n. So by
the Archimedean Property 1.4.6, (cn) is unbounded. Hence, by part (i) of the Divergence Criteria
for Sequences 2.6.9, (cn) diverges.

The subsequences (b2k−1) and (b2k) satisfy

b2k−1 = −
(

2− 1√
2k − 1

)
and b2k = 2− 1√

2k
(2.6.30)

for every positive integer k. Hence,

lim
k→∞

b2k−1 = −2 and lim
k→∞

b2k = 2. (2.6.31)

Therefore, (bn) diverges by part (ii) of the Divergence Criteria for Sequences 2.6.9.
A shown in Example 2.4.17, the subsequences (z2k−1) and (z2k) satisfy

lim
k→∞

z2k−1 = u =
[

2
1

]
and lim

k→∞
z2k = v =

[
−1
3

]
. (2.6.32)

Therefore, (zn) diverges by part (ii) of the Divergence Criteria for Sequences 2.6.9.

Divergence of unbounded sequences has a variety of flavors illuminated by different notions of
diverging to infinity.

Definition 2.6.11: Diverge to ∞ in Rm for m ≥ 2

A sequence (xn) ⊆ Rm where m ≥ 2 diverges to infinity if for every b > 0 there is a threshold
nε ∈ N such that

n ∈ N with n ≥ nε =⇒ ‖xn‖m > b. (2.6.33)

In this case, we write limn→∞ xn =∞.

The case is somewhat different and specialized for the real line R. Note the lack of absolute
values follwing the key implications. This means Definition 2.6.11 is not a generalization of
Definition 2.6.12.

Definition 2.6.12: Diverge to ±∞ in R

A sequence (xn) ⊆ R diverges to positive infinity if for every b > 0 there is a threshold
nε ∈ N such that

n ∈ N with n ≥ nε =⇒ xn ≥ b. (2.6.34)

In this case, we write limn→∞ xn =∞.

Similarly, a sequence (yn) ⊆ R diverges to negative infinity if for every c < 0 there is a
threshold nε ∈ N such that

n ∈ N with n ≥ nε =⇒ yn ≤ c. (2.6.35)
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In this case, we write limn→∞ yn = −∞.

Example 2.6.13: Approaching −∞

Consider the sequence (zn) ⊆ R given by zn = −n for each n ∈ N. We have

lim
n→∞

zn = lim
n→∞

−n = −∞ (2.6.36)

Proof for Example 2.6.13. Suppose c < 0. By the Archimedean Property 1.4.6, there is some
n|c| ∈ N such that

|c| < n|c|. (2.6.37)

Since c < 0, we have c = −|c|. So for all n ∈ N where n ≥ n|c| it follows that

zn = −n ≤ −n|c| < −|c| = c. (2.6.38)

Therefore, limn→∞ zn = limn→∞−n = −∞.

The next section explores decimals and their relationship with geometric sums.

Exercises
2.6.1. Suppose (xn) and (yn) are Cauchy sequences in Rm. Prove the sequence (zn) ⊆ R given
by

zn = ‖xn − yn‖m for all n ∈ N (2.6.39)

is Cauchy.

2.6.2. Use the definition of a Cauchy sequence (Definition 2.6.1) to prove directly that Cauchy
sequences are linear in the following sense: Suppose c ∈ R and suppose (xn) and (yn) are Cauchy
sequences in Rm. Then

(i) (xn + yn) is Cauchy (additivity); and

(ii) (cxn) is Cauchy (homogeneity).

2.6.3. Find a decreasing sequence of real numbers which is not Cauchy.

2.6.4. Find an example of a sequence (xn) ⊆ Rm where ((−1)nxn) is Cauchy but (xn) is not.

2.6.5. Suppose (yn) ⊆ Rm satisfies the condition that for every ε > 0, there is an index jε ∈ N
such that

‖yjε − yjε+1‖m < ε. (2.6.40)

Prove the sequence of square roots (
√
n) satisfies this condition even though (

√
n) is not Cauchy

as in Definition 2.6.1.
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2.6.6. This exercise showcases a well-known recursive process for approximating square roots.
Fix c > 0 and choose x1 ∈ R where x1 > 0 and x2

1 > c. From there, define (xn) by

xn+1 = 1
2

(
xn + c

xn

)
. (2.6.41)

Prove (xn) is decreasing and lim
n→∞

xn =
√
c.

2.6.7. Give an example of an unbounded sequence of real numbers which diverges to neither ∞
nor −∞.

2.6.8. Prove that for any r ∈ R, there is a divergent sequence (xn) where Slim(xn) = {r}.

2.6.9. Give an example of a sequence of real numbers with a subsequence that converges to 0, a
subsequence that diverges to∞, and a subsequence that diverges to −∞. (See Definition 2.6.12.)

2.6.10. Fix a ∈ Rm. Give an example of a sequence (an) ⊆ Rm with a subsequence that converges
to a and a subsequence that diverges to infinity as in Definition 2.6.11.

2.7 Geometric sums and decimals

Decimals provide a way to represent real numbers, something rational numbers cannot do. Al-
though they are probably familiar, there is a lot to say in terms of what they are in a detailed
and mathematically concrete manner.

To motivate the definitions found in this sections, specifically finite and infinite decimal ex-
pansions, let’s start with a classic result known as the Geometric Sum Formula (Theorem 2.7.2).

Definition 2.7.1: Geometric sum

A geometric sum is the linear combination of powers of a given real number r with a constant
weight a resulting in the form

n∑
k=0

ark = a+ ar + ar2 + · · ·+ arn (2.7.1)

for some n ∈ N ∪ {0}. The real number a is called the initial term and r is called the
common ratio. Also, we use the convention 00 = 1 and the indices begin with k = 0, so
there are actually n+ 1 summands (terms added together).

Geometric sums have a nice closed formula.
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Theorem 2.7.2: Geometric Sum Formula

If a, r ∈ R with r 6= 1 and n is a nonnegative integer, then
n∑
k=0

ark = a+ ar + ar2 + · · ·+ arn = a(1− rn+1)
1− r . (2.7.2)

Scratch Work 2.7.3: A classic trick

The key step in this proof is a classic trick everyone should see. Multiplying both versions
of the sum in (2.7.2) by 1 − r creates two copies with one increasing the powers of r and
making summands negative. This results in a lot of cancellation via “telescoping” and a
sleek form for the sum.

Proof of the Geometric Sum Formula 2.7.2. Suppose a, r ∈ R with r 6= 1 and n is a nonnegative
integer. We have

(1− r)
n∑
k=0

ark = (1− r)(a+ ar + ar2 + · · ·+ arn) (2.7.3)

= a + ar + ar2 + · · ·+ arn (2.7.4)
− ar − ar2 − · · · − arn − arn+1 (2.7.5)

= a− arn+1. (2.7.6)

Since r 6= 1, dividing by 1− r yields

n∑
k=0

ark = a+ ar + ar2 + · · ·+ arn = a(1− rn+1)
1− r . (2.7.7)

Remark 2.7.4: Closed form of a geometric sum

The rightmost expression

a(1− rn+1)
1− r (2.7.8)

in the conclusion of the Geometric Sum Formula 2.7.2 is called the closed form of the
corresponding geometric sum, but the conclusion only holds for r 6= 1. For the common
ratio r = 1 we have a different closed form:

n∑
k=0

a(1)k = a+ a+ · · ·+ a︸ ︷︷ ︸
n+1 copies of a

= a(n+ 1). (2.7.9)



2.7. GEOMETRIC SUMS AND DECIMALS 159

Example 2.7.5: Finite decimal expansion of nines

For a positive integer n, consider the sum of n terms given by

9
10 + 9

102 + 9
103 + · · ·+ 9

10n . (2.7.10)

This is actually a geometric sum defined by n − 1 (yielding n summands), a = 9/10, and
common ratio r = 1/10. We have

9
10 + 9

102 + 9
103 + · · ·+ 9

10n (2.7.11)

= 9
10 +

( 9
10

)( 1
10

)
+
( 9

10

)( 1
10

)2
+ · · ·+

( 9
10

)( 1
10

)n−1
(2.7.12)

=
n−1∑
k=0

( 9
10

)( 1
10

)k
(2.7.13)

= (9/10)(1− (1/10)n)
1− (1/10) (2.7.14)

= (9/10)(1− (1/10)n)
(9/10) (2.7.15)

= 1− 1
10n . (2.7.16)

Do you recognize the sum (2.7.10)? It defines the decimal with n digits that at are all 9:

0. 999 . . . 9︸ ︷︷ ︸
n digits

= 9
10 + 9

102 + 9
103 + · · ·+ 9

10n . (2.7.17)

More to the point, sums like this one define decimals.

Definition 2.7.6: Finite decimal expansion

A finite decimal expansion is a linear combination of powers of 1/10 of the form

0.x1x2 . . . xn = x1

10 + x2

102 + · · ·+ xn
10n (2.7.18)

where n ∈ N and

xj ∈ {0, 1, 2, . . . , 9} for each j ∈ {1, 2, . . . , n}. (2.7.19)

In this case, the weights xj are called digits.

Limits of finite decimal expansions built one summand at a time always converge. This allows
us to define infinite decimal expansions.
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Definition 2.7.7: Infinite decimal expansion

An infinite decimal expansion is the limit of a sequence of finite decimal expansions of the
form

0.x1x2 . . . = lim
n→∞

0.x1x2 . . . xn = lim
n→∞

(
x1

10 + x2

102 + · · ·+ xn
10n

)
(2.7.20)

where (xn) is a sequence of digits satisfying

xj ∈ {0, 1, 2, . . . , 9} for each j ∈ N. (2.7.21)

Due diligence suggests we should make sure these limits exist.

Theorem 2.7.8: Infinite decimal expansions converge

The limits defining infinite decimal expansions exist.

Scratch Work 2.7.9: Consider monotoncity and boundedness

The proof follows from a careful application of the Monotone and Bounded Convergence
Theorem 2.4.9.

Proof of Theorem 2.7.8. Suppose (xn) is a sequence of digits satisfying

xj ∈ {0, 1, 2, . . . , 9} for each j ∈ N (2.7.22)

and consider the corresponding sequence of finite decimal expansions given for each index n ∈ N
by

0.x1x2 . . . xn = x1

10 + x2

102 + · · ·+ xn
10n . (2.7.23)

Since every digit xn+1 is nonnegative (xn+1 ≥ 0 for each index n ∈ N), we have

0.x1x2 . . . xn = x1

10 + x2

102 + · · ·+ xn
10n (2.7.24)

≤ x1

10 + x2

102 + · · ·+ xn
10n + xn+1

10n+1 (2.7.25)

= 0.x1x2 . . . xnxn+1. (2.7.26)

Hence, our sequence of finite decimal expansions is increasing.
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Also, since each digit xj is bounded above by 9 (xj ≤ 9 for each j ∈ N), Example 2.7.5 yields

0.x1x2 . . . xn = x1

10 + x2

102 + · · ·+ xn
10n (2.7.27)

≤ 9
10 + 9

102 + · · ·+ 9
10n (2.7.28)

= 0. 999 . . . 9︸ ︷︷ ︸
n digits

(2.7.29)

= 1− 1
10n (2.7.30)

< 1. (2.7.31)
Hence, our sequence of finite decimal expansions is bounded above by 1.

Therefore, by the Monotone and Bounded Convergence Theorem 2.4.9, the limit of our se-
quence of finite decimal expansions exists and we have

0.x1x2 . . . = lim
n→∞

0.x1x2 . . . xn = sup{0.x1x2 . . . xn : n ∈ N}. (2.7.32)

Decimal expansions lead to some interesting representations of real numbers. Here’s a notorious
example.

Example 2.7.10: A controversial fact

The infinite decimal expansion whose digits are all 9 is equal to one. That is,

0.999 . . . = 1. (2.7.33)

The definition of the expansion 0.999 . . ., the comment immediately following Example 2.7.5,
and properties of convergent sequences give us

0.999 . . . = lim
n→∞

0. 99 . . . 9︸ ︷︷ ︸
n digits

(2.7.34)

= lim
n→∞

( 9
10 + 9

102 + · · ·+ 9
10n

)
(2.7.35)

= lim
n→∞

(
1− 1

10n
)

(2.7.36)

= 1. (2.7.37)

By the way, the last equation above is justified by the choice of a threshold nε ∈ N where,
given ε > 0, we make sure

nε > log10

(1
ε

)
. (2.7.38)

Example 2.7.10 serves as a warning before proceeding further: Some decimals with different
digits represent the same real number, like this:

0.999 . . . = 1 = 1.000 . . . . (2.7.39)



162 CHAPTER 2. SEQUENCES, TAILS, AND LIMITS

However, if we limit ourselves to the digits 0 and 1, then infinite decimal expansions with
different digits are distinct from one another. This special class of decimals, along with Examples
2.7.10 and 2.7.11, allow us to prove the real line R is uncountable. The next example helps set
the stage.

Example 2.7.11: Ones and one ninth

The infinite decimal expansion whose digits are all 1 is equal to 1/9. That is,

0.111 . . . = 1
9 . (2.7.40)

Thanks to the Geometric Sum Formula 2.7.2 where a = r = 1/10, and similar to Example
2.7.5, for each n ∈ N we have

0. 11 . . . 1︸ ︷︷ ︸
n digits

= 1
10 + 1

102 + · · ·+ 1
10n (2.7.41)

=
n−1∑
k=0

( 1
10

)( 1
10k

)
(2.7.42)

= (1/10)(1− (1/10)n)
1− (1/10) (2.7.43)

= (1/10)(1− (1/10)n)
9/10 (2.7.44)

= 1
9

(
1− 1

10n
)
. (2.7.45)

So, by the definition of infinite decimal expansions and properties of limits we have

0.111 . . . = lim
n→∞

0. 11 . . . 1︸ ︷︷ ︸
n digits

(2.7.46)

= lim
n→∞

(1
9

(
1− 1

10n
))

(2.7.47)

= 1
9 . (2.7.48)

We can use Example 2.7.11 to show that if we restrict the digits to 0 and 1 only, then infinite
decimal expansions with different digits are distinct from one another.

Lemma 2.7.12: Binary decimals are distinct

Suppose 0.x1x2 . . . and 0.y1y2 . . . are infinite decimal expansions such that for every index
n ∈ N we have xn, yn ∈ {0, 1} and for at least one index j0 ∈ N we have xj0 6= yj0 . Then

0.x1x2 . . . 6= 0.y1y2 . . . . (2.7.49)



2.7. GEOMETRIC SUMS AND DECIMALS 163

Scratch Work 2.7.13: Find a little distance

My goal is to use the first digit where the two infinite decimal expansions differ to force a
positive distance between their finite decimal expansions, then apply properties of conver-
gent sequences along with results from this section to complete the proof. This turned out
to be harder than I though! Ultimately, the proof shows us that for some index j0 ∈ N we
have

|0.x1x2 . . .− 0.y1y2 . . . | ≥
8

9 · 10j0 > 0, (2.7.50)

but it takes a while to get there.

Proof of Lemma 2.7.12. Suppose 0.x1x2 . . . and 0.y1y2 . . . are infinite decimal expansions such that
for each index n ∈ N we have xn, yn ∈ {0, 1} and, without loss of generality, j0 ∈ N is the smallest
index where the digits differ and we have xj0 < yj0 . Then we must also have

0 = xj0 < yj0 = 1. (2.7.51)

Hence, for any index n ∈ N where n > j0 we have

0.x1x2 . . . xn (2.7.52)
= 0.x1x2 . . . xj0−1xj0xj0+1 . . . xn (2.7.53)
≤ 0.x1x2 . . . xj0−10 11 . . . 1︸ ︷︷ ︸

n−j0 digits

(2.7.54)

= 0.x1x2 . . . xj0−1 +
n−j0−1∑
k=0

( 1
10j0+1

)( 1
10k

)
(2.7.55)

where the digits with indices j0 + 1 to n are all 1 in line (2.7.54). The summation in line (2.7.55)
simplifies thanks to the Geometric Sum Formula 2.7.2 with a = 1/10j0+1 and r = 1/10. For each
n > j0 we have

n−j0−1∑
k=0

( 1
10j0+1

)( 1
10k

)
=
( 1

10j0+1

)(1− (1/10)n−j0
1− (1/10)

)
(2.7.56)

≤
( 1

10j0+1

)( 1
1− (1/10)

)
(2.7.57)

=
( 1

10j0+1

)(10
9

)
(2.7.58)

= 1
9 · 10j0 . (2.7.59)

Hence, for every index n ≥ j0 we have

0.x1x2 . . . xn ≤ 0.x1x2 . . . xj0−1 + 1
9 · 10j0 . (2.7.60)

Therefore, by the order properties for limits of sequences in R (Corollary 2.3.22) we have

0.x1x2 . . . = lim
n→∞

0.x1x2 . . . xn ≤ 0.x1x2 . . . xj0−1 + 1
9 · 10j0 . (2.7.61)
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Now, since yj0 = 1 and the first j0 − 1 digits are the same for both 0.x1x2 . . . and 0.y1y2 . . .,
for every index n > j0 we have we have

0.x1x2 . . . xj0−1 + 1
10j0 = 0.x1x2 . . . xj0−11 (2.7.62)

≤ 0.x1x2 . . . xj0−1yj0yj0+1 . . . yn (2.7.63)
= 0.y1y2 . . . yn. (2.7.64)

Therefore, by the order properties for limits of sequences in R (Corollary 2.3.22) we have

0.y1y2 . . . = lim
n→∞

0.y1y2 . . . yn (2.7.65)

≥ 0.x1x2 . . . xj0−1 + 1
10j0 . (2.7.66)

Bringing these results together, and especially keeping in mind the first j0 − 1 digits are the
same, we have

|0.x1x2 . . .− 0.y1y2 . . . | = 0.y1y2 . . .− 0.x1x2 . . . (2.7.67)

≥ 1
10j0 −

1
9 · 10j0 (2.7.68)

= 8
9 · 10j0 (2.7.69)

> 0. (2.7.70)

Therefore (and finally), 0.x1x2 . . . and 0.y1y2 . . . are distinct.

The next section uses properties of sequences and infinite decimal expansions to explore how
large sets can be, including identifying different types of infinity.

Exercises
2.7.1. Explain why every real number between 0 and 1 has an infinite decimal expansion. That
is, for every x ∈ [0, 1], show there is a sequence of digits (xn) with xj ∈ {0, 1, . . . , 9} for each j ∈ N
such that

x = 0.x1x2x3 . . . . (2.7.71)

2.7.2. Prove every rational number between 0 and 1 has a repeating infinite decimal expansion.
That is, for every r ∈ [0, 1] ∩Q, there is a finite set of digits r1, r2, . . . , rk ⊆ {0, 1, . . . , 9} for each
j ∈ N such that

r = 0.r1r2 . . . rj r1r2 . . . rj︸ ︷︷ ︸
repeat

r1r2 . . . rj︸ ︷︷ ︸
repeat

. . . . (2.7.72)
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2.7.3. An infinite binary expansion is the limit of the form

0.b1b2 . . .2 = lim
n→∞

(
b1

2 + b2

22 + · · ·+ bn
2n

)
(2.7.73)

where bk ∈ {0, 1} for each k ∈ N. In contrast to Lemma 2.7.12, prove infinite binary expansions
are not distinct in the following sense:

(i) Prove the limits defining infinite binary expansions exist.

(ii) Prove there are sequences (an) and (cn) where

• ak, ck ∈ {0, 1} for each k ∈ N,
• aj 6= cj for at least one j ∈ N, and yet
• 0.a1a2 . . .2 = 0.c1c2 . . .2.

2.8 Countable and uncountable sets
The following mathematical fact blew my mind when I first found my own way to understand it:

There are different types of infinity.

Some sets can have all of their elements counted by associating each with its own positive integer.
Others are so large and have so many elements that they are uncountable: There are not enough
positive integers to count them all.

To help you find your own meaning for the different types of infinity and set the stage for
distinguishing between different types of infinite sets, let’s first see what we can say about finite
sets beyond Definition 1.2.22 by making use of the definitions for bijection (Definition 1.2.19) and
onto (Definition 1.2.16).

Remark 2.8.1: Finite versus infinite

A nonempty set B is finite if there is some n0 ∈ N and a bijection f where

f : {1, 2, . . . , n0} → B. (2.8.1)

Basically, f counts the elements of B from a first to an n0th. We have

B = {b1,b2, . . . , bn0} where f(1) = b1, f(2) = b2, . . . , f(n0) = bn0 . (2.8.2)

Furthermore, f is onto. On the other hand, a set J is infinite if for every n ∈ N and any
function g : {1, 2, . . . , n} → J , there is some point y ∈ J which is not an output of g since
there are not enough numbers in {1, 2, . . . , n} for g to count every element of J . In other
words, g is not onto.
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Infinite sets come in two flavors: countable and uncountable. Countable sets are the focus of
this section while uncountable sets are explored in the next.

The idea for countable sets extends finite sets (which have a bijection with some set {1, . . . , n})
to include sets which can be indexed by the set of positive integers N. In other words, countable
sets are the range of a sequence. It may help to revisit the definitions for sequence and onto
(Definitions 2.1.1 and 1.2.16).

Definition 2.8.2: Countable and uncountable

A set is countable if it is the empty set or the range of a sequence. So, a nonempty set is
countable when there is an onto function from N to the set. A set is uncountable if it is not
countable.

The notion of countable sets give us a way to view the set of positive integers N and the set
of integers Z as the same type of infinite set. Even though N is a proper subset of Z, there are
enough positive integers to count for all of integers.

Example 2.8.3: Z is countable

The set of integers Z is countable.

Scratch Work 2.8.4: Exploit the parity of integers

My idea takes advantage of the parity of even and odd positive integers, and that there
infinitely many of each. I’d like to define a function f : N→ Z which uses the odd positive
integers to account for the positive integers and zero (nonnegative integers) and use the
even positive integers to account for the negative integers, like this:

f(1) = 0

f(2) = −1

f(3) = 1

f(4) = −2

f(5) = 2

f(6) = −3

· · ·

· · ·

So, the outputs of f should alternate between the nonnegative and negative integers. With
the goal of finding a suitable function f in mind and after playing around with formulas for
a bit, I think the sequence (zn) defined by the function f : N→ Z where

zn = f(n) =


n− 1

2 , if n is odd,

−n2 , if n is even
(2.8.3)

is onto. This formula for f yields nonnegative outputs when n is odd and negative outputs
when n is even. The proof takes this a step further by showing every integer in Z is one of
the terms of (zn), that is, every integer is an output of f . Since f splits Z into nonnegative
and negative cases, the proof follows suit.
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Proof for Example 2.8.3. Consider the sequence (zn) defined by the function f : N→ Z given by

zn = f(n) =


n− 1

2 , if n is odd,

−n2 , if n is even.
(2.8.4)

The goal is to show f is onto with two cases.
Case (i) w ≥ 0: Suppose w ∈ Z where w ≥ 0. Define

nw = 2w + 1. (2.8.5)

Note that nw is positive and odd, so nw ∈ N. Then

znw = f(nw) = nw − 1
2 = 2w + 1− 1

2 = w. (2.8.6)

Case (ii) w < 0: Suppose w ∈ Z where w < 0. Define

nw = −2w. (2.8.7)

Note that nw is positive and even, so nw ∈ N. Then

znw = f(nw) = −nw2 = −2w
2 = w. (2.8.8)

Hence, for every w ∈ Z there is an index nw ∈ N where

znw = f(nw) = w. (2.8.9)

Therefore, f is onto and Z is the range of the sequence (zn), so Z is countable.

What about the set of rational numbers Q? Or the real line R? We’ll get to them in a
bit. First, consider a subset of the plane whose components are integers and positive integers,
respectively.

Example 2.8.5: Z× N

Consider the set Z× N defined by

Z× N =
{

x =
[
m
n

]
: m ∈ Z and n ∈ N

}
⊆ R2. (2.8.10)

I claim Z×N is countable. To partially justify my claim, I can provide evidence that there
is a sequence (xk) whose range is Z×N. However, I don’t have an explicit formula to define
(xk). All I offer is the path tracing through Z×N one point at a time in Figure 2.8.1, and
the assurance that every point in Z× N is eventually identified as a term of (xk). By that
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Z× N

Z

N

...

x1 x2

x3x4x5

Figure 2.8.1: The range of a sequence (xk) is the set Z×N, which is therefore
countable. See Example 2.8.5. Every point in Z × N is identified as a term of
(xk).

I mean there is an onto function h : N→ Z× N such that for every[
m
n

]
∈ Z× N, (2.8.11)

there is an index k ∈ N where

xk = h(k) =
[
m
n

]
. (2.8.12)

Example 2.8.6: Q is countable

Now consider the set of rational numbers Q defined by

Q =
{
m

n
: m ∈ Z and n ∈ N

}
. (2.8.13)

To show Q is countable, we can show Q is the range of a sequence.

Let h : N → Z × N be an onto function defining a sequence (xk) whose range is Z × N,
like the one described in Example 2.8.5 and Figure 2.8.1. Since h is onto, every point[
m
n

]
∈ Z× N is the image of some index k ∈ N under h where

h(k) = xk =
[
m
n

]
. (2.8.14)

From here, we can use the function g : Z× N→ Q defined by

g

([
m
n

])
= m

n
. (2.8.15)
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Note that g is onto since every rational number m/n in the codomain Q is the image of its

input
[
m
n

]
from the domain Z× N.

Since the range of h is the domain of g, their composition g ◦ h : N → Q is well-defined.
Furthermore, g ◦ h defines a sequence whose range is Q since both h and g are onto: Every

rational number m/n is the image of a point
[
m
n

]
∈ Z×N which is the image of an index

k ∈ N. We have

m

n
= g

([
m
n

])
= g(xk) = g(h(k)) = (g ◦ h)(k). (2.8.16)

Therefore, (g(xk)) is a sequence whose range is Q, and Q is countable.

So, the set of integers Z and the set of rational numbers Q are both countable since each is
the range of a sequence.

However, the real line R is uncountable3. It’s too large to be the range of a sequence. My
approach to prove this is to consider any function f : N→ R and show f is not onto: No matter
how f is defined, some real number y is not an output of f .

There is a fair amount of material to build up before diving into the full argument. For now,
there is more to say about countable sets.

Lemma 2.8.7: Finite sets are countable

Every finite set is countable.

Scratch Work 2.8.8: Repeat the last element

For a nonempty finite set, my idea is to construct a sequence that runs through the elements
in the set, then when those elements are exhausted, continue defining terms by repeating
the last element indefinitely, like this:

(xn) = (s1, s2, . . . , sn0 , sn0 , sn0 , . . .) (2.8.17)

Proof of Lemma 2.8.7. The empty set ∅ is countable by Definition 2.8.2. Now, suppose S is a
nonempty finite set. Then there is a positive integer n0 ∈ N where

S = {s1, s2, . . . , sn0}. (2.8.18)

For each index n = 1, 2, . . . , n0 − 1, define

xn = sn. (2.8.19)

For every other index n ≥ n0, define

xn = sn0 . (2.8.20)
3I think this is really cool.
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Then the range of the sequence (xn) is S, so S is countable.

The sets N, Z, Z×N, and Q are examples of infinite countable sets. That is, they are countably
infinite.

Definition 2.8.9: Countably infinite

A set is countably infinite if it is infinite and countable.

The distinction between finite and countably infinite sets allows for a distinction between their
underlying functions.

Definition 2.8.10: Enumeration

An enumeration of a nonempty finite set S with n0 elements is a bijection from {1, 2, . . . , n0}
to S. An enumeration of a countably infinite set T is a bijection from N to T .

Example 2.8.11: An enumeration of the integers

The function f : N→ Z in Example 2.8.3 assures us Z is countable since Z is the range of
the sequence defined by f . This means f is onto, but it is also a bijection. That is, f is an
enumeration of Z.

Proof for Example 2.8.11. Once again, define f : N→ Z for each n ∈ N by

f(n) =


n− 1

2 , if n is odd,

−n2 , if n is even.
(2.8.21)

To show f is a bijection from N to Z, it suffices to show f is both one-to-one and onto. The fact
that f is onto is established in the proof for Example 2.8.3. So, it remains to show f is one-to-one
(Definition 1.2.18).

Case (i): Suppose j, k ∈ N where j is odd and k is even. Then

f(j) = j − 1
2 ≥ 0 andf(k) = −k2 < 0. (2.8.22)

Hence, f(j) is nonnegative while f(k) is negative, so f(j) 6= f(k).
Case (ii): Suppose j, k ∈ N where j and k are both odd and, without loss of generality, j < k.

Then

f(j) = j − 1
2 <

k − 1
2 = f(k). (2.8.23)

Hence, f(j) 6= f(k).
Case (iii): Suppose j, k ∈ N where j and k are both even and, without loss of generality, j < k.

Then

f(j) = −j2 > −k2 = f(k). (2.8.24)
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Hence, f(j) 6= f(k).
Therefore, j 6= k implies f(j) 6= f(k), so f is one-to-one. Furthermore, f is a bijection and an

enumeration of Z.

Example 2.8.12: Not an enumeration of Q

The function h : N→ Z×N described in Example 2.8.6 is an enumeration of Z×N. However,
the composition g ◦ h : N→ Q also described in Example 2.8.6 is not an enumeration of Q.
Since h is onto (or at least seems to be), there are indices j, k ∈ N where j 6= k and

h(j) =
[

1
2

]
∈ Z× N and h(k) =

[
2
4

]
∈ Z× N. (2.8.25)

Hence, h(j) 6= h(k) but we have

(g ◦ h)(j) = g(h(j)) = 1
2 = 2

4 = g(h(k)) = (g ◦ h)(k), (2.8.26)

so g ◦ h is not one-to-one. Therefore, g ◦ h is not an enumeration of Q.

To wrap the section up, let’s prove the real line R is uncountable. The approach we take has a
name: Cantor’s Diagonalization. Note that the approach is named, not the result. The following
example showcases this classic idea.

Example 2.8.13: Cantor’s Diagonalization

Consider a sequence (tn) of infinite decimal expansions whose digits are 2 or 3 only and
where

t1 = f(1) = 0.t11t12t13t14 . . . = 0.2323 . . . (2.8.27)
t2 = f(2) = 0.t21t22t23t24 . . . = 0.2222 . . . (2.8.28)
t3 = f(3) = 0.t31t32t33t34 . . . = 0.3333 . . . (2.8.29)

...

Note that f is some function from N to the set of infinite decimal expansions whose digits
are only 2 or 3.

We can use Cantor’s Diagonalization to find another infinite decimal expansion using digits
2 and 3 only which is not the same as any of the tn, and so not an output of f . Let
s = 0.s1s2s3 . . . where we define

s1 = 3 6= 2 = t11, (2.8.30)
s2 = 3 6= 2 = t22, (2.8.31)
s3 = 2 6= 3 = t33, (2.8.32)

... (2.8.33)
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Can you see the pattern? We basically define each digit sn as the opposite of the digit tnn
in the nth row and nth column—the “diagonal”—of the list (tn).

More specifically, for each index n ∈ N, define the digit sn by

sn =
2, if tnn = 3,

3, if tnn = 2.
(2.8.34)

This scheme guarantees s = 0.s1s2s3n . . . is a different infinite decimal expansion from all
of the tn = 0.tn1tn2tn3 . . ., even though every digit of s is either 2 or 3. That is, for each
index n ∈ N, the digits sn and tnn are different. So s is not in the range of the function f
that defines (tn).

It’s taken a while to get this point, but we can now show that the real line R is a different
kind of infinite set.

Theorem 2.8.14: R is uncountable

The real line R is uncountable.

Scratch Work 2.8.15: Cantor’s Diagonalization to show uncountable

Based on the definition of uncountable sets (Definition 2.8.2), the goal is to show R cannot
be the range of a sequence. This means every function that defines a sequence of real
numbers, so where f : N → R, is not onto. We can use Cantor’s Diagonalization to help.
However, unlike Example 2.8.13, we cannot consider just one function and find a real
number which is not in its range.

Thankfully, this is not a big issue. We can modify Cantor’s Diagonalization to work for
any function f from N to a suitable subset of R, specifically the set B of infinite decimal
expansions with digits limited to 0 and 1. The goal is to show that every function from N
to B fails to be onto and, therefore, no function from N to R can be onto.

Proof of Theorem 2.8.14. Suppose B denotes the set of infinite decimal expansions with digits 0
and 1 only, and suppose a function f : N→ B defines a sequence such that for each index n ∈ N
we have

f(1) = 0.x11x12x13 . . . x1n . . . (2.8.35)
f(2) = 0.x21x22x23 . . . x2n . . . (2.8.36)
f(3) = 0.x31x32x33 . . . x3n . . . (2.8.37)

... (2.8.38)
f(n) = 0.xn1xn2xn3 . . . xnn . . . (2.8.39)

... (2.8.40)
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where, for every pair of indices j, k ∈ N, we have xjk ∈ {0, 1}. (This ensures every output of f has
digits that are 0 or 1 only.) Since infinite decimal expansions are real numbers (Theorem 2.7.8),
every output of f is a real number.

Now, to show f is not onto, use Cantor’s Diagonalization to define the digit yn for each index
n ∈ N by

yn =
0, if xnn = 1,

1, if xnn = 0.
(2.8.41)

Let y denote the resulting infinite decimal expansion

y = 0.y1y2y3 . . . (2.8.42)

Then y is also real number by Theorem 2.7.8.
Furthermore, y is different from every output of f . To see this, note that for every index n ∈ N

we have

yn 6= xnn. (2.8.43)

That is, the nth digit of y is distinct from the nth digit of f(n). Since both y and f(n) are real
numbers given by infinite decimal expansions which use on the digits 0 and 1, Lemma 2.7.12 tells
us

y 6= f(n). (2.8.44)

Hence, f is not onto since y ∈ B but y is not an output of f . Therefore, B is uncountable.
Furthermore, since B ⊆ R and no function with domain N maps to every element of B, so no
function with domain N maps onto the real line R. Therefore, R is uncountable.

The next section generalizes the notion of convergence to help us get a handle on some divergent
sequences.

Exercises
2.8.1. Prove that a countable union of countable sets is countable.

2.8.2. A real number r is an algebraic number if r is a the root of a polynomial p, meaning
p(r) = 0, where the coefficients of p are integers. (See Definition 1.6.8.)

(i) Prove the golden ratio ϕ = 1 +
√

5
2 is an algebraic number.

(ii) Prove r is an algebraic number if and only if r is the root of a polynomial q with rational
coefficients.

(iii) Let A denote the set of all algebraic numbers. Prove A is countable.
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2.8.3. Find a sequence of real numbers (xn) ⊆ R satisfying the following conditions:

(i) Slim(xn) = {−1, 0, 1},

(ii) there is a subsequence diverging to ∞, and

(iii) there is a subsequence diverging to −∞.

2.8.4. Show that for any finite set of real numbers F ⊆ R, there is a sequence (yn) where
Slim(xn) = F .

2.8.5. Find a sequence of real numbers (yn) where Slim (yn) is bounded and countably infinite.

2.8.6. Prove there is a sequence of real numbers whose set of subsequential limits is the whole
real line R. That is, find (an) ⊆ R where Slim(an) = R.

2.8.7. Suppose a, b ∈ R with a < b.

(i) Give an example of a sequence (zn) ⊆ R where Slim(zn) = [a, b].

(ii) Prove there is no sequence (yn) ⊆ R where Slim(yn) = (a, b].

2.8.8. Prove nontrivial intervals are uncountable. That is, if a, b ∈ R with a < b, then any interval
with endpoints a and b is uncountable.

2.8.9. The Cantor set C is perhaps the simplest example of a fractal. One way to define it is to
first define infinite ternary expansions given by

0.x1x2 . . .3 = lim
n→∞

(
x1

3 + x2

32 + · · ·+ xn
3n
)

(2.8.45)

where xk ∈ {0, 1, 2} for each k ∈ N are the digits. From there, the Cantor set is the set of points
whose ternary expansions have digits 0 or 2 only. That is,

C = {y ∈ [0, 1] : y = 0.y1y2 . . .3 where yk ∈ {0, 2} for each k ∈ N}. (2.8.46)

(i) Prove the infinite ternary expansion of a point in the Cantor set is unique.

(ii) Prove the Cantor set is uncountable.

(iii) Prove the Cantor set is a perfect set: Every point in the Cantor set is the limit of a sequence
of other points from the Cantor set.



2.9. LIM SUP AND LIM INF 175

A [ ) • •
supAinf A

B [ ) ◦...• •
supBinf B

Figure 2.9.1: Bounded sets of real numbers A and B where A ⊆ B and their
suprema and infima. By Corollary 1.4.4 or Lemma 2.9.1, we have inf B ≤ inf A
and supA ≤ supB.

2.9 lim sup and lim inf
What does it mean for a sequence to “approach” a given point, exactly? One interpretation is
provided by the definition for limit and convergence in Definition 2.2.1. But are there more flexible
interpretations that define what it means for a sequence to “approach” more than one point? Or
even a set? Or nothing in particular?

This section defines and explores additional features of sequences in the real line largely through
the use of tails, subsequences, and points arbitrarily close to the original sequence. First, the
following lemma helps parse the ideas explored in this section. It is a slight variation of Corollary
1.4.4.

Lemma 2.9.1: Suprema and infima of subsets

Suppose A and B are nonempty sets of real numbers.

(i) If A ⊆ B and B is bounded above, then supA ≤ supB.

(ii) If A ⊆ B and B is bounded below, then inf B ≤ inf A.

See Figure 2.9.1 for a pair of bounded sets real numbers A and B where A ⊆ B that exhibit
both parts of Lemma 2.9.1.

Proof of Lemma 2.9.1. To show (i), suppose A ⊆ B and B is bounded above. Then any upper
bound for B is also an upper bound for A. By the Axiom of Completeness (Axiom 1.3.8), both
supA and supB exist. Since A ⊆ B, supB is an upper bound for B as well as A. Since supA is
the least upper bound for A, we have

supA ≤ supB. (2.9.1)

Now, to show (ii), suppose A ⊆ B and B is bounded below. Then any lower bound for B is
also a lower bound for A. By Theorem 1.4.1, both inf A and inf B exist. Since A ⊆ B, inf B is a
lower bound for B as well as A. Since inf A is the greatest lower bound for A, we have

inf B ≤ inf A. (2.9.2)

Given a sequence of real numbers, the suprema and infima of its tails are interesting and allow
us to explore the behavior of a sequence beyond convergence and divergence.
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Figure 2.9.2: A graph of (xn≥4), the 4-tail of the sequence (xn) from Example
2.9.3, along with its supremum x4 and infimum x5.

Notation 2.9.2: Suprema and infima of tails

For a sequence of real numbers (xn) and an index k ∈ N, denote the supremum of the k-tail
by sup (xn≥k) and denote the infimum of the k-tail by inf (xn≥k). That is,

sup (xn≥k) = sup{xn : n ≥ k} = sup{xk, xk+1, . . .}, and (2.9.3)
inf (xn≥k) = inf{xn : n ≥ k} = inf{xk, xk+1, . . .}. (2.9.4)

Example 2.9.3: Supremum and infimum can be terms

Consider the sequence (xn) of real numbers defined for each n ∈ N by

xn = (−1)n
(

1 + 1√
n

)
. (2.9.5)

See Figure 2.9.2 for a plot of (xn≥4), the 4-tail of (xn), along with it supremum and infimum.
We have

sup(xn≥4) = x4 = 1 + 1√
4

= 3
2 , and (2.9.6)

inf(xn≥4) = x5 = −1− 1√
5
. (2.9.7)

Lemma 2.9.4: Monotonicity of the suprema and infima of tails

Let (xn) be a sequence of real numbers.

(i) If (xn) is bounded above, then the sequence of the suprema of its tails (sup(xn≥k)) is
decreasing.
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(ii) If (xn) is bounded below, then the sequence of the infima of its tails (inf(xn≥k)) is
increasing.

Both parts of Lemma 2.9.4 follow from Lemma 2.9.1 since the range of tail of a sequence is a
subset of the range of the whole sequence.

Proof of Lemma 2.9.4. In both cases of this proof, suppose (xn) is a sequence of real numbers.
For every index k ∈ N we have

(xn≥k+1) ⊆ (xn≥k). (2.9.8)

(Equivalently, {xn : n ≥ k + 1} ⊆ {xn : n ≥ k}.)
Case (i): Suppose (xn) is bounded above. Then for every index k ∈ N, the k-tail (xn≥k) is

bounded above by sup(xn), so sup(xn≥k) exists by the Axiom of Completeness (Axiom 1.3.8).
Therefore, by Lemma 2.9.1 we have

sup(xn≥k+1) ≤ sup(xn≥k). (2.9.9)

That is, (sup(xn≥k)) is decreasing.
Case (ii): Suppose (xn) is bounded below. Then for every index k ∈ N, the k-tail (xn≥k) is

bounded below by inf(xn), so inf(xn≥k) exists by Theorem 1.4.1. Therefore, by Lemma 2.9.1 we
have

inf(xn≥k) ≤ inf(xn≥k+1). (2.9.10)

That is, (inf(xn≥k)) is increasing.

When a sequence of real numbers is bounded (above and below), the sequences respectively
defined by the of the suprema and infima of its tails both converge.

Theorem 2.9.5: Existence of lim sup and lim inf for bounded sequences of real
numbers

Suppose (xn) is a bounded sequence of real numbers. Then the sequences (sup(xn≥k)) and
(inf(xn≥k)) converge.

Proof of Theorem 2.9.5. Suppose (xn) is a bounded sequence of real numbers. Since the range of
every tail of (xn) is a subset of the range of (xn), every tail of (xn) is bounded as well. By Lemma
2.9.4, the sequence of suprema of tails (sup(xn≥k)) and the sequence of infima of tails (inf(xn≥k))
are monotone. So, by the Monotone and Bounded Convergence Theorem (Theorem 2.4.9), both
sequences converge.

The notions of limit superior and limit inferior codify the limits of the sequences of suprema
and infima of a bounded sequence of real numbers.
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Definition 2.9.6: Limit superior and limit inferior

Let (xn) be a sequence of real numbers.

(i) If (xn) is bounded above, the limit superior, denoted by lim supn→∞ xn, is the limit of
the sequence of suprema of its tails (assuming this limit exists). That is,

lim sup
n→∞

xn = lim
k→∞

(sup(xn≥k)). (2.9.11)

If (xn) is not bounded above, we write

lim sup
n→∞

xn =∞. (2.9.12)

(ii) If (xn) is bounded below, the limit inferior, denoted by lim infn→∞ xn, is the limit of
the sequence of infima of its tails (assuming this limit exists). That is,

lim inf
n→∞

xn = lim
k→∞

(inf(xn≥k)). (2.9.13)

If (xn) is not bounded below, we write

lim inf
n→∞

xn = −∞. (2.9.14)

Remark 2.9.7: Strangeness of lim sup and lim inf

We can be more specific about the values the limit superior and limit inferior actually
attain when they exist, but they’re kind of strange: A lim sup is an infimum while a lim inf
is a supremum.

In the proof Theorem 2.9.5, we make use of the Monotone and Bounded Convergence
Theorem (Theorem 2.4.9) but not fully. When (xn) is bounded above, the sequence of
suprema of its tails (sup(xn≥k)) is increasing by Lemma 2.9.4. So when (xn) and therefore
(sup(xn≥k)) are bounded, the Monotone and Bounded Convergence Theorem (Theorem
2.4.9) tells us

lim sup
n→∞

xn = lim
k→∞

(sup(xn≥k)) = inf{sup(xn≥k) : k ∈ N}. (2.9.15)

Similarly, when (xn) is bounded we have

lim inf
n→∞

xn = lim
k→∞

(inf(xn≥k)) = sup{inf(xn≥k) : k ∈ N}. (2.9.16)
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Figure 2.9.3: A graph of the sequence (xn) from Example 2.9.8. Note how the
terms alternate between being close to −1 and 1 as the indices increase with the
suprema of the tails decreasing to 1 and the infima of the tails increasing to −1.
We have lim inf xn = −1 and lim sup xn = 1.

Example 2.9.8: Distinct lim sup and lim inf

Once again, consider the sequence (xn) of real numbers from Example 2.9.3 defined for each
n ∈ N by

xn = (−1)n
(

1 + 1√
n

)
. (2.9.17)

See Figure 2.9.3. We have

lim inf
n→∞

xn = −1 < 1 = lim sup
n→∞

xn. (2.9.18)

Proof for Example 2.9.8. For every index k ∈ N, the supremum and infimum of the k-tail (xn≥k)
depends on the parity of the index k as an even or odd positive integer. We have

sup(xn≥k) =
xk+1, if k is odd,
xk, if k is even.

(2.9.19)

Note that the value of sup(xn≥k) is a term whose index is even, whether the index k is even or
not. Since (xn) is bounded, Remark 2.9.7 tells us lim sup xn is the infimum of the range of the
sequence sup(xn≥k). Since the set of terms of (xn) with even indices is both bounded below by 1
and arbitrarily close to 1, by the definition of infimum (Definition 1.1.14) we have that 1 is the
infimum of the sequence of suprema of tails of (xn). Hence,

lim sup
n→∞

xn = inf{sup(xn≥k) : k ∈ N} = 1. (2.9.20)
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Figure 2.9.4: A graph of the sequence (tn) from Example 2.9.9. Note how the
terms alternate between 1, 0, and −1. We have lim inf tn = −1 and lim sup tn = 1.

Similarly, for every index k ∈ N we have

inf(xn≥k) =
xk, if k is odd,
xk+1, if k is even.

(2.9.21)

Here, the value of inf(xn≥k) is a term whose index is odd, whether the index k is odd or not. Since
the set of terms of (xn) with odd indices is both bounded above by −1 and arbitrarily close to
−1, by the definition of supremum (Definition 1.1.14) we have

lim inf
n→∞

xn = sup{inf(xn≥k) : k ∈ N} = −1. (2.9.22)

Example 2.9.9: A sequence with neither lim sup nor lim inf

Consider the sequence (tn) of real numbers defined for each n ∈ N by

tn =


1, if n = 3j − 2 for some j ∈ N,
0, if n = 3j − 1 for some j ∈ N,
−1, if n = 3j for some j ∈ N.

(2.9.23)

See Figure 2.9.4. We have

lim inf
n→∞

tn = −1 and lim sup
n→∞

tn = 1. (2.9.24)

But what about 0? We have (t3j−1), the subsequence of (tn) whose indices have remainder
2 when divided by 3, converges to 0:

lim
j→∞

t3j−1 = lim
j→∞

0 = 0. (2.9.25)
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Figure 2.9.5: A graph of the sequence (cn) from Example 2.9.10. Note how the
terms alternate between n and −n, and neither lim inf cn nor lim sup cn exist.

Hence, 0 is a subsequential limit of (tn) and so 0 ∈ Slim (tn). See Definition 2.4.16. In fact,
−1, 0, and 1 are subsequential limits of (tn). We have

lim
j→∞

t3j−2 = lim
j→∞

1 = 1 and (2.9.26)

lim
j→∞

t3j = lim
j→∞
−1 = −1. (2.9.27)

Example 2.9.10: Empty Slim

Consider the sequence (cn) of real numbers defined for each n ∈ N by

cn = n(−1)n =
−n, if n is odd,
n, if n is even.

(2.9.28)

See Figure 2.9.5. It turns out no real number is a subsequential limit of (cn) since every
real number is away from a tail of (cn). Thus, Slim(cn) = ∅. Also,

lim sup
n→∞

cn =∞ and lim inf
n→∞

cn = −∞. (2.9.29)

Proof for Example 2.9.10. Consider any x ∈ R. By the Archimedean Property (Theorem 1.4.6),
there is an index kx ∈ N such that |x| < kx. Then for every index n ∈ N where n ≥ kx we have

|x| < kx ≤ n = |n(−1)n| = |cn|. (2.9.30)
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By the reverse triangle inequality (1.2.37) and properties of absolute value, we have

|x− cn| ≥ ||cn| − |x|| = |cn| − |x| = n− |x| > kx − |x| > 0. (2.9.31)

That is, x is away from the kx-tail of (cn), which we can write as x awf (cn≥kx). Hence, x cannot
be the limit of a subsequence of (cn). Therefore,

Slim(cn) = ∅. (2.9.32)

By considering even and odd indices separately, the Archimedean Property 1.4.6 shows (cn) is
neither bounded above nor bounded below. Therefore,

lim sup
n→∞

cn =∞ and lim inf
n→∞

cn = −∞. (2.9.33)

For a bounded sequence of real numbers, its limit superior and limit inferior are examples of
points arbitrarily to every tail of the sequence. This idea is generalized by and formalized as the
coda of a sequence. For a sequence in a Euclidean space, the coda serves as a technical notion for
the set of all points the sequence “approaches” in some way, in fact exactly the same way as the
set of subsequential limits. The relationship between and the coda and the set of subsequential
limits is explored in the next section.

Exercises
2.9.1. Let (xn) be a sequence of real numbers. Prove (xn) converges if and only if

lim sup
n→∞

xn = lim inf
n→∞

xn. (2.9.34)

2.9.2. Suppose (xn) ⊆ R is bounded above.

(i) Prove lim supn→∞ xn = max Slim(xn).

(ii) State and prove a similar result for lim infn→∞ xn.

2.9.3. Suppose a, b ∈ R with a < b. Prove there is a sequence (yn) ⊆ R where lim infn→∞ yn =
a, lim supn→∞ yn = b, and yn /∈ [a, b] for all n ∈ N. What is Slim(yn) in this case?

2.9.4. Consider the sequence (zn) given by

(zn) =
(

1, 1
2 ,

1
3 ,

2
3 ,

1
4 ,

2
4 ,

3
4 , . . .

)
. (2.9.35)

Determine lim infn→∞ zn, lim supn→∞ zn, and Slim(zn).
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(an) ◦
2

...

a1

••••

(an≥2) ◦
2

...

a2

•••

(an≥3) ◦
2

...

a3

••

Figure 2.10.1: All of the tails of the sequence (an) from Examples 2.1.4 and
2.10.2 are arbitrarily close to 2. Also, 2 is the only real number arbitrarily close
to every tail of (an), so Coda (an) = {2}.

2.10 Coda and Slim
Sequences exhibit a wide variety of interesting behaviors with convergence and limits as in Def-
inition 2.2.1 being the most prominent. This section explores other behaviors by making use of
tails and subsequences in Euclidean spaces along with sets of points—as opposed to individual
points—that are arbitrarily close.

The section kicks off with the coda of a sequence, roughly the set of all points the sequence
“approaches” in a way that is not as constrained as convergence. Recall that the closure S of a
set S is the set of points arbitrarily close to S (see Definition 1.5.15).

Definition 2.10.1: Coda of a sequence

Let (xn) be a sequence of points in Rm. The coda of (xn), denoted by Coda(xn), is the set
of points arbitrarily close to every tail of (xn). Equivalently,

Coda(xn) = {y ∈ Rm : ∀ k ∈ N,y acl (xn≥k) } (2.10.1)
=
⋂
k∈N
{xn : n ≥ k}. (2.10.2)

Example 2.10.2: Codas of two sequences

Recall the sequences of real numbers (an) and (bn) from Example 2.1.4 defined for each
n ∈ N by

an = 2−
(

1√
n

)
and bn =

[
2−

(
1√
n

)]
(−1)n. (2.10.3)

We have

Coda(an) = {2} and Coda(bn) = {−2, 2}. (2.10.4)

See Figures 2.10.1 and Figure 2.10.2.
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(bn) • •• •
b1 b2b3 b4

◦ ◦......
−2 2

(bn≥2) •• •
b2b3 b4

◦ ◦......
−2 2

(bn≥3) • •
b3 b4

◦ ◦......
−2 2

Figure 2.10.2: All of the tails of the sequence (bn) from Examples 2.1.4 and
2.10.2 are arbitrarily close to both 2 and −2. Also, 2 and −2 are the only real
numbers arbitrarily close to every tail of (bn), so Coda (bn) = {−2, 2}.

Scratch Work 2.10.3: Similar to showing arbitrarily close

Finding the coda of a sequence amounts to gathering all points which are not only
arbitrarily close to the sequence, but arbitrarily close to all of the tails. For Example
2.10.2, only Coda(an) = {2} is proven here. The proof showing Coda (bn) = {−2, 2} is
similar but benefits from additional consideration of the parity of the indices as even or odd.

The proof for Coda(an) = {2} is similar to showing 2 acl (an) as with Example 2.1.4 and
partially follows from Scratch Work 2.1.5, but there are two key differences. We need to
show 2 is arbitrarily close to every tail of (an) and every other real number is away from at
least one tail of (an).

To capture every tail of (an), the first part of the proof begins with an arbitrary distance
ε > 0 and an arbitrary index k ∈ N. For the second part, we consider an arbitrary real
number that is not equal to 2, then find a tail of (an) which is away from it. Here, we take
advantage of the fact that (an) converges to 2, as shown in Example 2.2.7, which guarantees
a tail of (an) is closer to 2 than the other number.

Proof for Coda(an) = {2} in Example 2.10.2. Let ε > 0 and k ∈ N. Following Scratch Work
2.1.5, choose an index nε ∈ N large enough to satisfy both nε > 1/ε2 and nε ≥ k. Then

nε >
1
ε2 ⇐⇒ 1

√
nε

< ε. (2.10.5)

Hence, the term anε = 2− (1/√nε) is in the k-tail (an≥k) and within ε of 2:

dR(anε , 2) = |anε − 2| =
∣∣∣∣∣
(

2− 1
√
nε

)
− 2

∣∣∣∣∣ = 1
√
nε

< ε. (2.10.6)

Therefore, 2 acl (an≥k). That is, 2 is arbitrarily close to every tail of (an), so 2 ∈ Coda (an).
Now suppose x ∈ R where x 6= 2. Then |x− 2| > 0. By Example 2.2.7, we have

lim
n→∞

an = 2. (2.10.7)
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So, by the definition of sequential limit (Definition 2.2.1), there is a threshold nx ∈ N such that
for all indices n ≥ nx we have

|an − 2| < |x− 2|
2 ⇐⇒ −|x− 2|

2 < −|an − 2|. (2.10.8)

So, the nx-tail (an≥nx) is within |x − 2|/2 of 2. Furthermore, by the reverse triangle inequality
(1.2.37) and properties of absolute value, for all indices n ≥ nx we have

|x− 2|
2 = |x− 2| − |x− 2|

2 (2.10.9)

< |x− 2| − |2− an| (2.10.10)
≤ ||x− 2| − |2− an|| (2.10.11)
≤ |(x− 2) + (2− an)| (2.10.12)
= |x− an|. (2.10.13)

Hence, every term in the nx-tail (an≥nx) is |x−2|/2 or more away from x. Therefore, x awf (an≥nx)
and Coda (an) = {2}.

Example 2.10.4: Coda of a convergent sequence

The coda of the sequence of real numbers in Example 1.1.15 given by xn = 3140 − (1/n)
is a singleton and we have Coda(xn) = {3140}. The coda of the sequence (zn) in R2 from
Example 2.1.14 comprises two points and we have

Coda(zn) = {u,v} where u =
[

2
1

]
and v =

[
−1
3

]
. (2.10.14)

The proofs are left as an exercise, but they are similar to showing Coda (an) = {2} in
Example 2.10.2.

Examples 2.10.2 and 2.10.4 provide just a glimpse into the considerable variety of structures
exhibited by codas of sequences.

Example 2.10.5: Empty Coda

It is possible for the coda of a sequence to be empty. As in Examples 2.6.10 and 2.9.10, let
cn = n(−1)n for each n ∈ N. In Figure 2.10.3, it looks like the terms cn do not stay close to
any particular real number as the index n increases (that is, as we consider the tails). As a
result, Coda(cn) is empty. The proof is nearly identical to showing Slim(cn) is empty as in
Example 2.9.10.

Proof for Example 2.10.5. Consider any x ∈ R and let cn = n(−1)n. By the Archimedean Prop-
erty (Theorem 1.4.6), there is an index nx ∈ N such that |x| < nx. Then for every index n ∈ N
where n ≥ nx we have

|x| < nx ≤ n = |n(−1)n| = |cn|. (2.10.15)
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(cn) • •• •• •... ...

−1 2−3 4−5 6

(cn≥2) •• •• •... ...

2−3 4−5 6

(cn≥3) • •• •... ...

−3 4−5 6

(cn≥4) •• •... ...

4−5 6

Figure 2.10.3: The tails of the sequence (cn) from Example 2.10.5 do not seem
to approach anything. Ultimately, we have Coda(cn) = ∅.

By the reverse triangle inequality (1.2.37) and properties of absolute value, we have

|x− cn| ≥ ||cn| − |x|| = |cn| − |x| = n− |x| > nx − |x| > 0. (2.10.16)

That is, x is away from the nx-tail of (cn), which we can write as x awf (cn≥nx). Hence, x cannot
be the limit of a subsequence of (cn). Therefore, x is not in Coda(cn) and

Coda(cn) = ∅. (2.10.17)

Codas highlight the uniqueness of limits.

Theorem 2.10.6: Coda of a convergent sequence

If a sequence of points in Rm converges, then its coda is a singleton comprising the limit.

The first part of the proof shows the limit is in the coda and the second shows no other point
is in the coda.

Proof of Theorem 2.10.6. Assume limn→∞ xn = x, let ε > 0, and let k ∈ N. Since (xn) converges
to x, there is a threshold nε ∈ N large enough so that both nε ≥ k and

dm(xnε ,x) < ε. (2.10.18)

Hence, xnε is in the k-tail (xn≥k) and so x acl(xn≥k). Hence, x ∈ Coda(xn).
Now suppose y 6= limn→∞ xn = x. Considering the distance

ε0 = 1
2dm(x,y) > 0, (2.10.19)

it follows from the triangle inequality and the definition of sequential limit (Definition 2.2.1) that
there is a threshold n0 ∈ N such that for all indices n ≥ n0 we have

dm(x,y) ≤ dm(x,xn) + dm(xn,y) < 1
2dm(x,y) + dm(xn,y). (2.10.20)
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Therefore,

0 < ε0 = 1
2dm(x,y) ≤ dm(xn,y). (2.10.21)

Thus, y is away from the n0-tail (xn≥n0), which we can write as y awf (xn≥n0). Therefore, y /∈
Coda(xn) and

Coda(xn) = {x}. (2.10.22)

Remark 2.10.7: Coda does not determine convergence

Care must be taken when connecting the notions of coda and limit of a sequence: They’re
related but not equivalent. The limit of a sequence does not necessarily exist when the coda
is a singleton. That is, the converse of Theorem 2.10.6 is false.

Example 2.10.8: Singleton coda with divergence

Let (wn) be the sequence of real numbers with terms defined by wn = 0 when n is odd and
wn = n when n is even. That is, for each n ∈ N we have

wn = n+ n(−1)n
2 =

0, if n is odd,
n, if n is even.

(2.10.23)

See Figure 2.10.4. For each index k ∈ N and the range of the corresponding k-tail (wn≥k)
we have

{wn : n ≥ k} ⊆ {0} ∪ {k, k + 1, . . .}. (2.10.24)

Furthermore, every real number not in the range {wn : n ≥ k} is away from it. So

{wn : n ≥ k} ⊆ {0} ∪ {k, k + 1, . . .}. (2.10.25)

Hence, by the definition of coda (Definition 2.10.1) and its equilavent form in terms of
closure we have

{0} ⊆ Coda(wn) ⊆
⋂
k∈N

({0} ∪ {k, k + 1, . . .}) = {0}. (2.10.26)

Therefore, Coda(wn) = {0}. However, as an unbounded sequence (wn) does not converge.

Remark 2.10.9: Coda and Slim

It turns out the coda of a sequence in a Euclidean space is the set of subsequential limits of
the sequence. The definition of subsequential limit (Definition 2.4.16) uses both limits and
subsequences while the definition of coda for sequences uses only arbitrarily close and tails.
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(wn) • • • • ...

0 2 4 6

(wn≥2) • • • • ...

0 2 4 6

(wn≥3) • • • ...

0 4 6

(wn≥4) • • • ...

0 4 6

(wn≥5) • • ...

0 6

Figure 2.10.4: The tails of the sequence (wn) from Example 2.10.8 all contain
0 but the subsequence with even indices does not not seem to approach anything.
Ultimately, we have Coda(wn) = {0} but (wn) diverges.

Thus, the definition of coda uses weaker conditions to generate the same set, as summarized
in the following result.

Theorem 2.10.10: Equivalence of Coda and Slim

For every sequence of points in Rm, the coda and the set of subsequential limits are the
same set. That is, for every (xn) ⊆ Rm,

Coda(xn) = Slim(xn). (2.10.27)

Scratch Work 2.10.11: Tails versus subsequences

The proof of Theorem 2.10.10 amounts to carefully reorganizing terms of a given sequence
into tails and subsequences, accordingly. I had a hard time writing this one up! Ultimately,
I decided against a notation-heavy proof because it felt like I was making it hard to see the
forest for the trees.

Proof of Theorem 2.10.10. First, suppose z ∈ Slim(xn). Then there is a subsequence (xnk) of
(xn) whose limit is z. Since there are infinitely many terms in any subsequence, we have for any
tail of (xn) and any distance ε > 0 there is a term from the subsequence within ε of z whose index
is large enough to be in the tail. Hence, z is arbitrarily close to every tail of (xn). Therefore,
z ∈ Coda(xn).

Next, suppose y ∈ Coda(xn). Then y is arbitrarily close to every tail of (xn). Also, for every
index k ∈ N, we have 1/k > 0. Since every k-tail of (xn) contains all of the terms with indices
greater than or equal to k, we can recursively construct a sequence (xnk) where for every k we
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have

dm(xnk ,y) < 1
k

and nk < nk+1 (2.10.28)

by choosing terms from a succession of tails as needed. From there, an application of the corollary
to the Archimedean Property (Corollary 1.4.8) allows us to conclude

lim
k→∞

xnk = y. (2.10.29)

Hence, y ∈ Slim(xn).

The coda of a sequence, and therefore the set of subsequential limits, also connects directly to
the classical notions of limit superior and limit inferior for bounded sequences of real numbers.
An exploration of this fact is left as an exercise, but consider the following example.

Example 2.10.12: Coda, Slim, lim sup, and lim inf

Consider the bounded sequence (xn) of real numbers defined for each n ∈ N by

xn = (−1)n + 1√
n
. (2.10.30)

See Figure 2.10.5. We have min(xn) = min{xn : n ∈ N} does not exist while

max(xn) = max{xn : n ∈ N} = x2 = 1 + 1√
2
. (2.10.31)

Furthermore, Coda(xn) = Slim(xn) = {−1, 1} with

lim inf xn = −1 < lim sup xn = 1 < max(xn) = 1 + 1√
2
. (2.10.32)

Additionally,

−1 = lim inf xn = min Coda(xn) = min Slim(xn) and (2.10.33)
1 = lim supxn = max Coda(xn) = max Slim(xn). (2.10.34)

The deep relationships between codas, subsequential limits, limit superior, and limit inferior
are explored in the exercises. Give them a shot!

The next chapter explores the topology of Euclidean spaces through a lens provided by points
arbitrarily close to or away from sets and their complements.

Exercises
2.10.1. Find the coda of each of the following sequences, each defined by the corresponding
formula for every positive integer n. Don’t prove anything, but draw stuff!
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•
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•

•

•

•

•

•

•

•

•

•

•

•

•
graph of

(xn)

−

−

−

−

−

−2

lim inf xn = −1

0

lim sup xn = 1

2

terms

| | | |
4 8 12 16 indices

Figure 2.10.5: A graph of the sequence (xn) from Example 2.10.12. Note how
the terms alternate between being close to −1 and 1 as the indices increase. We
have lim inf xn = −1 and lim sup xn = 1.

(i) an = n

(ii) bn = 8− (−1)n/n

(iii) cn = 3(−1)n + 1/n

(iv) dn = 1− 10−n

2.10.2. Prove the codas of the sequences (xn) and (zn) in Example 2.10.4 are as stated. In
particular, why aren’t other points in these codas?

2.10.3. Prove the following reformulation of the Bolzano-Weierstrass Theorem 2.5.13: Every
bounded sequence of points in Rm has nonempty coda.

2.10.4. Suppose (xn) is a sequence of points in Rm. Prove

lim
n→∞

xn = y (2.10.35)

if and only if y is in the coda of every subsequence of (xn). (Note that the boundedness of the
sequence is not assumed.)

2.10.5. Prove that if (xn) is a bounded sequence of real numbers, then

lim sup xn = max Coda(xn) = max Slim(xn) and (2.10.36)
lim inf xn = min Coda(xn) = min Slim(xn). (2.10.37)

2.10.6. Find a sequence of real numbers whose coda is the whole real line.



Chapter 3

Topology of Euclidean Spaces

The definition of arbitrarily close in Definition 1.5.1 allows us to explore how points can be arbi-
trarily close to sets, whatever form the sets take. Expanding the setting to include complements
of sets leads to fundamental aspects of the usual topology on a Euclidean space Rm. The defini-
tion of arbitrarily close is essentially topological in nature: We have y aclB if and only if every
neighborhood of y intersects B. See Figure 3.1.1.

3.1 A closed-minded approach to topology
The set of points arbitrarily close to a given set gives rise to classic topological concepts: closure
and closed sets. The definition of closure was already provided in Definition 1.5.15; it’s repeated
here for convenience. For a reminder about notation and terminology regarding ε-neighborhoods
such as Vε(x), see Section 1.5, especially Definition 1.5.8, Figure 1.5.2, and Remark 1.5.9.

Definition 3.1.1: Closure and closed

The closure of a set B ⊆ Rm is the set of points arbitrarily close to B and is denoted by B.
That is,

B = {y ∈ Rm : y aclB} = {y ∈ Rm : ∀ ε > 0, Vε(y) ∩B 6= ∅}. (3.1.1)

A set F ⊆ Rm is closed if all points arbitrarily close to F are in F . That is, F is closed if

y aclF =⇒ y ∈ F or, equivalently, if F ⊆ F. (3.1.2)

Note that the empty set ∅ is vacuously closed. Also, by the definitions, closed sets contain
their closures. But more is true.

Lemma 3.1.2: Closed sets are their closures

A set F ⊆ Rm is closed if and only if F = F .

191
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B

•

• •

y

Figure 3.1.1: A point y and a set B in the plane R2 where y aclB. As such,
every neighborhood of y intersects B. Also, B is not closed since y is not in B.
See Definition 3.1.1.

• y

F

•

• •

ε

Figure 3.1.2: The set F contains all points in and arbitrarily close to F , in-
cluding the corner y and the sides of the rectangle. As such, F is closed. See
Definition 3.1.1.

Proof of Lemma 3.1.2. Given F ⊆ Rm, we always have F ⊆ F thanks to Lemma 1.5.4 which tells
us points in a set are arbitrarily close to the set. On the other hand, if F is closed, we have F ⊆ F
by Definition 3.1.1. Therefore, F is closed if and only if F = F .

Remark 3.1.3: The classic notion of closure

The definitions of closure and closed sets in Definition 3.1.1 are equivalent to “standard”
definitions found in other texts, at least in the context of Euclidean spaces. One benefit of
Definition 3.1.1 is how it follows directly from the definition of arbitrarily close (Definition
1.5.1). Classic approaches such as [1, Definition 3.2.7, p.90] require the definitions of more
complicated ideas such as limits of sequences or similar concepts like accumulation points
before defining closure and closed (see Definition 3.6.7). All this provides another reason I
consider arbitrarily close to be the kernel of analysis.

In order to prove a set is closed, it often helps to consider the contraposition of Definition
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3.1.1: A set F is closed if all points not in F are away from F .

Example 3.1.4: Z is closed

The set of integers Z is a closed set.

Scratch Work 3.1.5: Contraposition often helps

To ensure Z satisfies the definition of a closed set (Definition 3.1.1), we can work with
contraposition. More generally, instead of showing F ⊆ R is closed by directly proving

y aclF =⇒ y ∈ F, (3.1.3)

we can show

x /∈ F =⇒ x awf F. (3.1.4)

For this example, the proof below shows every noninteger is away from Z.

Proof for Example 3.1.4. By way of contraposition, suppose x /∈ Z. Then by Corollary 1.4.9,
there is an integer mx such that

mx < x < mx + 1. (3.1.5)

Define εx = min{|mx − x|, |mx + 1− x|} (so εx is the shorter of the two distances between x and
mx or between x and mx + 1). Since x is not an integer, we have εx > 0. Now suppose z ∈ Z.
Then either

z ≤ mx < x or x < mx + 1 ≤ z. (3.1.6)

So by part (vi) of Theorem 1.3.2 we have

|z − x| ≥ |mx − x| ≥ εx > 0 or |z − x| ≥ |mx + 1− x| ≥ εx > 0. (3.1.7)

Either way, x awf Z. Therefore, Z contains all points arbitrarily close to Z, so Z is closed.

The next result is a fundamental property of closed sets.

Lemma 3.1.6: Intersections of closed sets are closed

The intersection of any collection of closed sets is closed.

Scratch Work 3.1.7: Any means any

We need to be careful here. Lemma 3.1.6 refers to any collection of closed sets, no matter
how large. So, I let A stand for any nonempty index set which could be finite, countably
infinite, or uncountable. Aside from this sublety, the result follows from the definitions
of a closed set (Definition 3.1.1), arbitrarily close (Definition 1.5.1), and neighborhood
(Definition 1.5.8), as well as properties of intersections. It may help to revisit Remark 1.5.9
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as well.

Proof of Lemma 3.1.6. Let {Fα : α ∈ A} denote a collection of closed sets in Rm with a nonempty
index set A. If any Fα is empty, then the intersection ∩α∈AFα is empty as well and is therefore
closed.

Next, suppose Fα is nonempty for every α ∈ A and y is arbitrarily close to ∩α∈AFα. Let
ε > 0 and consider the ε-neighborhood Vε(y). By the definition of a closed set (Definition 3.1.1)
and the version of arbitrarily close in terms of neighborhoods as in Remark 1.5.9, there is some
x ∈ (∩α∈AFα) ∩ Vε(y) which means x ∈ Fα ∩ Vε(y) for each α. Since the distance ε was chosen
arbitrarily and each Fα is closed, it follows that y ∈ Fα for each α; thus y ∈ ∩α∈AFα. Therefore,
∩α∈AFα is closed.

Another lemma regarding closed sets indicates closures themselves are closed. Its proof is left
as an exercise.

Lemma 3.1.8: Closures are closed

For any set S ⊆ Rm, the closure S is a closed set.

There is another immediate result stemming from Lemma 3.1.6, Lemma 3.1.8, and the fact
that the coda of a sequence of points in Rm is defined to be an intersection of closed sets (see
Definition 2.10.1).

Corollary 3.1.9: Codas of sequences are closed

The coda—and therefore the set of subsequential limits—of a sequence of points in Rm is
closed.

Proof of Corollary 3.1.9. Suppose is (xn) a sequence of points in Rm. By Definition 2.10.1,
Coda((xn)) is the set of points arbitrarily close to every tail of (xn) and we have

Coda((xn)) =
⋂
k∈N
{xn : n ≥ k}. (3.1.8)

By Lemma 3.1.8, we have for each index k ∈ N the closure of k-tail (xn≥k) given by {xn : n ≥ k},
is closed for each index k ∈ N. So, line (3.1.8) tells us Coda((xn)) is an intersection of closed sets.
Therefore, Coda((xn)) is closed by Lemma 3.1.6.

A classic way to define closed sets in analysis stems from considering the limits of sequences
whose terms are in the set. The following theorem provides a first characterization along these
lines, but a more classic characterization which is very similar comes from considering what are
called accumulation points (see Definition 3.6.7).

Theorem 3.1.10: Closed sets contain their limits

A set F ⊆ Rm is closed if and only if F contains the limits of all convergent sequences of
points in F .
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Scratch Work 3.1.11: Definitions and a fundamental connection

The proof follows from the definition of a closed set (Definition 3.1.1) along with the fun-
damental connection between the definition of arbitrarily close (Definition 1.5.1) and the
definition of limit and convergence for sequences (Definition 2.2.1) provided by Theorem
2.3.1.

Proof of Theorem 3.1.10. Suppose F is a closed subset of Rm and let (xn) be a convergent se-
quence of points in F with limit x. By Theorem 2.3.1, we have x acl (xn). Since every xn is in F ,
we also have x aclF . So by the definition of a closed set (Definition 3.1.1), the limit x is in F .

Now suppose F contains the limits of all convergent sequences of points in F and suppose
y aclF . By Theorem 2.3.1, there is a sequence (yn) of points in F whose limit is y. So, F
contains y and F is closed.

Example 3.1.12: A set E and its closure E

To get a better idea of what’s going on with Definition 3.1.1 and the results in this section,
consider the set of real numbers E ⊆ R given by

E = [0, 1) ∪ {2} ∪ {3 + (1/n) : n ∈ N} (3.1.9)

See Figure 3.1.3. Neither 1 nor 3 is in E, but both are arbitrarily close to E so E is not
closed. Since points in a set are arbitrarily close to the set (Lemma 1.5.4), the closure of E
contains all the real numbers in E as well as 1 and 3. Ultimately, we have

E = [0, 1] ∪ {2} ∪ {3} ∪ {3 + (1/n) : n ∈ N}. (3.1.10)

By Lemma 3.1.8, E is closed. Theorem 3.1.10 tells us closed sets contain the limits of all
convergent sequences, so here are some sequences of real numbers in E whose limits are in
the closure E:

(i) If xn = 1− (1/2n) for each index n ∈ N, then

(xn) ⊆ E and lim
n→∞

xn = 1 ∈ E. (3.1.11)

(ii) If yn = 3 + (1/n) for each index n ∈ N, then

(yn) ⊆ E and lim
n→∞

yn = 3 ∈ E. (3.1.12)

(iii) If zn = 2 for each index n ∈ N, then

(zn) ⊆ E and lim
n→∞

zn = 2 ∈ E. (3.1.13)

The following lemma considers closed boxes of the form

B = [a1, b1]× · · · × [am, bm] ⊆ Rm (3.1.14)
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E [
0

)
1

•
2

◦
3
...• •
3.5 4

E [
0

]
1

•
2

•
3
...• •
3.5 4

Figure 3.1.3: A set of real numbers E and its closure E. See Definition 3.1.1
and Example 3.1.12.

where aj < bj for each j = 1, . . . ,m. See Definition 2.5.8. Even though these are called closed
boxes, the fact that they are also closed sets according to Definition 3.1.1 still needs to be justified.
It turns out boxes of this form are closed and bounded.

Lemma 3.1.13: Closed and bounded intervals make closed and bounded boxes

If B ⊆ Rm is a box of the form (3.1.14), then B is closed and bounded.

Scratch Work 3.1.14: Directly from definitions

Both parts of the proof are direct in the sense that it shows B directly satisfies the definitions
for bounded (Definition 1.5.20) and closed (Definition 3.1.1). For the latter, the proof shows
every point not in B is away from B, so B must contain all points arbitrarily close.

Proof of Lemma 3.1.13. Suppose B ⊆ Rm is a box of the form (3.1.14). For every point x ∈ B
we have

x =


x1
x2
...
xm

 and aj ≤ xj ≤ bj (3.1.15)

for every component (or coordinate) xj with j = 1, . . . ,m.
To show B is bounded, let

u = max{|a1|, . . . , |am|, |b1|, . . . , |bm|}. (3.1.16)

Then for every j = 1, . . . ,m we have |xj| ≤ u. Since 0 ≤ x ≤ y implies both
√
x ≤ √y and

x2 ≤ y2, for every x ∈ B we have

‖x‖m =
√
x2

1 + . . .+ x2
m (3.1.17)

≤
√
u2 + . . .+ u2︸ ︷︷ ︸
m copies of u2

(3.1.18)

= u
√
m. (3.1.19)

Therefore, B is bounded.
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To show B is closed, suppose w ∈ Rm\B where

w =


w1
w2
...
wm

 . (3.1.20)

Since w is not in B, at least one of its components (or coordinates) wj0 is less than aj0 or greater
than bj0 . Without loss of generality, suppose wj0 > bj0 . In this case we have wj0 − bj0 > 0. This
creates a positive distance between w and every point in B, as follows.

Since every point x ∈ B is of the form (3.1.15), we have every component xj with j = 1, . . . ,m
satisfies xj ≤ bj. For the particular index j0 we have

xj0 ≤ bj0 < wj0 =⇒ wj0 − xj0 ≥ wj0 − bj0 > 0, (3.1.21)

which follows from multiplying the left side by −1 then adding wj0 . Furthermore, by the reverse
triangle inequality (1.2.37) and various properties of absolute value we have

‖w− x‖m =
√

(w1 − x1)2 + . . .+ (wm − xm)2 (3.1.22)

≥
√

(wj0 − xj0)2 (3.1.23)
= |wj0 − xj0| (3.1.24)
= wj0 − xj0 (3.1.25)
≥ wj0 − bj0 (3.1.26)
> 0. (3.1.27)

Hence, w is away from B and therefore B is closed.

In the case where m = 1, Lemma 3.1.13 tells us closed and bounded intervals are in fact closed
sets since they satisfy Definition 3.1.1. Even so, a direct proof of this fact appears as an exercise.

The complements of the closed sets in a Euclidean space Rm form the fundamental objects in
the mathematical subject area known as topology. These complements are called open sets and
are the focus of the next section. See Definitions 3.2.1, 3.2.2, and 3.2.9.

Exercises
3.1.1. Consider a closed interval [a, b] = {x ∈ R : a ≤ x ≤ b} where a and b are real numbers
satisfying a < b. Prove [a, b] is closed according to Definition 3.1.1 and draw figures to help. Why
isn’t this trivial?

3.1.2. Consider an interval (a, b] = {x ∈ R : a < x ≤ b} where a and b are real numbers satisfying
a < b. Prove (a, b] is not closed.

3.1.3. Prove the set of positive integers N is closed.
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3.1.4. Prove the set of rational numbers Q is not closed.

3.1.5. Prove the real line R = (−∞,∞) is closed.

3.1.6. Prove Lemma 3.1.8: The closure of a set is a closed set.

3.1.7. Prove the closure of a given set in Rm is the smallest closed set containing the given set
in the following sense: Given a set S ⊆ Rm, every closed set which contains S also contains the
closure S.

3.1.8. Consider a rectangle B in the plane R2 such as in Figure 3.1.1 that contains some of its
sides and corners, but not all of them. Prove B is not closed.

3.1.9. A set E ⊆ Rm is said to be coda-closed if Coda((xn)) ⊆ E for every sequence (xn) of points
in E. Prove E is coda-closed if and only if E is closed.

3.2 Open sets and topology
This section explores the topology of Euclidean spaces. Our approach is somewhat backwards
compared to approaches to topology found in other texts in that we covered closed sets first. To
get to the heart of topology, open sets, a definition for complement is in order.

Definition 3.2.1: Complement

Let B be a subset of some set X. The complement of B (with respect to X) is the set of
points in X but not B. Thus, the complement of B is given by

X\B = {x ∈ X : x /∈ B}. (3.2.1)

To reinforce a key concept in Euclidean spaces, any point z not in a closed set F is away from
F (see Definitions 3.1.1 and 1.5.11). Hence, there is an εz-neighborhood Vεz(z) which does not
intersect F . This is precisely a characterizing property—therefore a defining property—of points
in an open set (cf. [1, Definition 3.2.1, p.88]). See Figure 3.2.1.

Definition 3.2.2: Open

A set U ⊆ Rm is open if every point in U has a neighborhood contained in U .

Remark 3.2.3: The classic notion of open

Equivalently, U is open if for every a ∈ U there is an εa > 0 such that Vεa(a) ⊆ U (see
Figure 3.2.1). In the language of the negation of arbitrarily close, a set U is open if every
point of U is away from the complement Rm\U (see Definition 1.5.11). In other words, all
points in an open set are interior points (see Definition 3.6.3 below).
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•
a

•
b

y

U

Figure 3.2.1: The set U contains a neighborhood around each of its points, such
as a and b. So, U is an open set (see Definition 3.2.2). Note the neighborhood
centered at b is necessarily smaller than the neighborhood centered at a. The
point y is arbitrarily close to U , but no neighborhood of y is contained in U and
y is not in U .

The fundamental connection between open and closed sets readily follows (cf. [1, Theorem
3.2.13, p.92]).

Theorem 3.2.4: Open versus closed

A set U ⊆ Rm is open if and only if its complement Rm\U is closed.

A proof very similar to the one presented here was created by Rasha Issa as she prepared for
a final exam in the summer of 2019. In particular, she used the language of arbitrarily close and
preferred this approach over the one used in [1, Theorem 3.2.13, p.92].

Rasha Issa’s proof of Theorem 3.2.4. Assume U is open and suppose y is arbitrarily close to
Rm\U . By way of contradiction, assume y ∈ U . Since U is open, there is an εy-neighborhood
of y contained in U . Hence, every x in Rm\U lies outside of this εy-neighborhood of y. Thus,
x is at least a positive distance εy away from y. Hence, y is away from Rm\U , a contradiction.
Therefore, Rm\U is closed.

For the converse, assume Rm\U is closed and let z ∈ U . Since Rm\U contains all points
arbitrarily close to Rm\U , z is away from Rm\U . So there must be some εz > 0 where Vεz(z) ⊆ U .
Therefore, U is open.

The following pair of examples illustrate the definition of an open set (Definition 3.2.2) and
Theorem 3.2.4 in the real line R by revisiting the closed interval F studied throughout Chapter
1, its complement R\F , and the set E from Example 3.1.12.

Example 3.2.5: Away from a closed interval

Consider the closed interval F = [0, 3140] and its complement

R\F = (−∞, 0) ∪ (3140,∞) = {x ∈ R : x < 0 or x > 3140}. (3.2.2)
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F [ ]
0 3140 4710

( ) Vεz(4710)|

Figure 3.2.2: Every point in the closed interval F = [0, 3140] is more than
the distance εz = 785 away from the real number z = 4710. Hence, the εz-
neighborhood Vεz(4710) is contained in the complement R\F .

The complement R\F is open. We could make use of Exercise 3.1.1 and Theorem 3.2.4 to
prove this, but I think it’d be helpful to work with the definition of an open set directly
(Definition 3.2.2). The idea is that every element in R\F comes with its own ε-neighborhood
contained in R\F . See Figure 3.2.2.

Proof for Example 3.2.5. For each z ∈ R\F , define the positive distance εz to be half of the
shorter of the two distances between z and the endpoints of F = [0, 3140]. That is, define

εz = 1
2 min{|z − 0|, |z − 3140|} =



|z − 0|
2 , if z < 0,

|z − 3140|
2 , if z > 3140.

(3.2.3)

(See Figure 3.2.2 where z = 4710 > 3140 and thus εz = 785.) Then for each z ∈ R\F , every point
in F is more than εz away from z. Hence,

Vεz(z) = (4710− εz, 4710 + εz) ⊆ R\F. (3.2.4)

So, the complement R\F is open since for every element z in R\F there is an εz-neighborhood
contained in R\F .

Example 3.2.6: E is not open

The set of real numbers E from Example 3.1.12 is not open. We have

E = [0, 1) ∪ {2} ∪ {3 + (1/n) : n ∈ N}. (3.2.5)

The real number 2 is in E, but no ε-neighborhood of the form

Vε(2) = (2− ε, 2 + ε) (3.2.6)

is contained in E, no matter how small we take the radius ε to be. See Figure 3.2.3 for one
such ε-neighborhood.

In Euclidean spaces, ε-neighborhoods are open sets: Neighborhoods contain neighborhoods of
their points.
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(
Vε(2)

)•

Figure 3.2.3: The set of real numbers E from Examples 3.1.12 and 3.2.6 is not
open. Here, the real number 2 is E but no ε-neighbhorhood of 2, such as the red
Vε(2) in the figure, is contained in E. See Definition 3.2.2.

Vε(c)
ε

•
c

Vεx(x)
εx •

x
•y

Figure 3.2.4: By Lemma 3.2.7, every ε-neighborhood Vε(c) is open since every
point x ∈ Vε(c) comes with an εx-neighborhood Vεx(x) contained in Vε(c): We
have Vεx(x) ⊆ Vε(c).

Lemma 3.2.7: ε-neighborhoods are open

For every c ∈ Rm and every distance ε > 0, the ε-neighborhood

Vε(c) = {x ∈ Rm : dm(x, c) = ‖x− c‖m < ε} (3.2.7)

is open.

Scratch Work 3.2.8: Distance from difference

The proof follows from defining the distance εx as the difference between a given ε > 0 and
the distance between x and c when x ∈ Vε(c). For a visual idea of what is going on, see
Figure 3.2.4.

Proof of Lemma 3.2.7. Suppose c ∈ Rm and ε > 0. Let x be an arbitrary point in Vε(c), which
means

dm(x, c) = ‖x− c‖m < ε. (3.2.8)

(The goal is to show Vεx(x) ⊆ Vε(c) for some distance εx > 0.) Define

εx = ε− ‖x− c‖m > 0 (3.2.9)
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and let y be an arbitrary point in Vεx(x), which means

dm(y,x) = ‖y− x‖m < εx = ε− ‖x− c‖m. (3.2.10)

By adding zero and applying the triangle inequality ((1.2.34) and (1.2.32)), we have

dm(y, c) = ‖y− c‖m (3.2.11)
= ‖y−x + x︸ ︷︷ ︸

add zero

−c‖m (3.2.12)

≤ ‖y− x‖m + ‖x− c‖m (3.2.13)
< εx + ‖x− c‖m (3.2.14)
= ε− ‖x− c‖m + ‖x− c‖m (3.2.15)
= ε. (3.2.16)

Hence, y ∈ Vε(c), so Vεx(x) ⊆ Vε(c) and therefore Vε(c) is open.

The word topology describes both a mathematical topic and a particular mathematical object.
The topic of topology is beautiful, massive, and connects to many other branches of mathematics
in beautiful and endless ways. The mathematical object called a topology is a particular collection
of subsets of a given set.

Definition 3.2.9: Topology

Let X be a set and let T be a collection of subsets of X. Then T is a topology on X if the
following properties hold:

(i) The empty set ∅ and the set X are in T .

(ii) The intersection of any finite number of sets in T is a set in T .

(iii) The union of any collection of sets in T is a set in T .

When a set X is paired with a topology on X, we call the ordered pair (X, T ) a topological
space but often refer only to X.

Theorem 3.2.10: Topologies comprise open sets

The collection of all open subsets of Rm is a topology on Rm. That is,

(i) The empty set ∅ and the set Rm are open.

(ii) The intersection of any finite number of open sets is open.

(iii) The union of any collection of open sets is open.
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Remark 3.2.11: Terminology of open sets in topology

For those of you who have seen topology before, Theorem 3.2.10 may sound like a tautology.
After all, in a topology class, open sets are defined to be the sets in a topology. However,
our definition for open sets (Definition 3.2.2) precedes the definition of topology (Definition
3.2.9), so the proof of Theorem 3.2.10 amounts to verifying the collection of all open subsets
of Rm satisfies the three properties defining a topology.

Scratch Work 3.2.12: Apply the definitions

All of the results follow from a careful application of the definitions.

Proof of Theorem 3.2.10. Let S denote the collection of all open subsets of Rm.

Proof of (i): Consider the empty set ∅. Then ∅ vacuously satisfies the definition of an open set
(Definition 3.2.2) since it has no points in need of a neighborhood. Hence, ∅ is in S.

Now consider the set Rm itself. Since Rm contains all ε-neighborhoods of all points in Rm, we
have Rm is open. (For instance, Rm contains the 17-neighborhood of x for every x ∈ Rm). Hence,
Rm is in S.

Proof of (ii): Suppose U1, U2, . . . , Un are open sets in Rm and let

x ∈
n⋂
j=1

Uj. (3.2.17)

So, x is in the open set Uj for each j = 1, . . . , n. By the definition of open (Definition 3.2.2), for
each j = 1, . . . , n there is an εj > 0 such that the εj-neighborhood of x, Vεj(x), is contained in
Uj. Since we are considering a finite number of open sets, the smallest of these neighborhoods has
positive radius ε0 = min{ε1, . . . , εn} and is contained in each of the εj-neighborhoods of x. That
is,

Vε0(x) ⊆
n⋂
j=1

Vεj(x) ⊆
n⋂
j=1

Uj. (3.2.18)

Hence, the intersection of any finite number of open sets in Rm is an open set, and so ⋂nj=1 Uj is
in S.

Proof of (iii): Suppose {Uα : α ∈ A} is a collection of open sets in Rm with nonempty index set
A and let

x ∈
⋃
α∈A

Uα. (3.2.19)

Then there must be some index αx in A where x is in the open set Uαx . By the definition of open
(Definition 3.2.2), there is an εx > 0 where

Vεx(x) ⊆ Uαx ⊆
⋃
α∈A

Uα. (3.2.20)
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Therefore, the union of any collection of open sets in Rm is an open set.
Since all three conditions defining a topology in Definition 3.2.9 are satisfied by S, the collection

of open subsets of Rm is a topology on Rm.

Theorem 3.2.10 justifies the following definition. It may sound like a tautology if you are
familiar with topology.

Definition 3.2.13: Standard topology on Rm

The standard topology on a Euclidean space Rm is the collection of all open subsets of Rm

as defined in Definition 3.2.2.

Example 3.2.14: Standard topology on R

The standard topology on the real line R is the collection of all open intervals and all
unions of open intervals.

However, the idea that open intervals are actually open sets is not to be taken for granted.
The proof is left as an important exercise which encourages you understand the definitions
involved. The fact that unions of opens intervals are open follows from part (iii) of Theorem
3.2.10.

Example 3.2.14 is just one piece of a more powerful statement regarding the standard topology
on the real line. Its proof is left as a challenging exercise and makes use of the following definition.

Definition 3.2.15: Pairwise disjoint

A collection of sets C is pairwise disjoint if for every pair of sets A,B ∈ C where A 6= B we
have A ∩B = ∅.

Theorem 3.2.16: Open sets in the real line R

Every open subset of the real line is the union of a pairwise disjoint countable collection of
open intervals. That is, for every open set U ⊆ R, there is a sequence of open intervals (In)
where the collection {In : n ∈ N} is pairwise disjoint and

U =
∞⋃
n=1

In. (3.2.21)

An analogue of Theorem 3.2.10 holds for collections of closed sets, one of which has already
been stated in Lemma 3.1.6.

Theorem 3.2.17: A trio of results on closed sets

The following properties regarding closed sets in Rm hold:

(i) The empty set ∅ and the set Rm are closed.
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(ii) The union of any finite number of closed sets is closed.

(iii) The intersection of any collection of closed sets is closed.

Scratch Work 3.2.18: De Morgan’s Laws play a key role

Part (iii) of Theorem 3.2.17 is a rephrased version of Lemma 3.1.6. Parts (i) and (ii) follow
from Theorem 3.2.4 and results from set theory on the relationships between complements,
intersections, and unions known as De Morgan’s Laws. These results are stated but not
proven below, the proofs of Theorems 3.2.17 3.2.19 are left as an exercise.

Theorem 3.2.19: De Morgan’s Laws

Suppose A and B are subsets of some set X. Then:

(i) X\(A ∩B) = (X\A) ∪ (X\B); and

(ii) X\(A ∪B) = (X\A) ∩ (X\B).

Suppose C is a collection of subsets of some set X. Then:

(i) X\
( ⋂
S ∈C

S

)
=

⋃
S ∈C

(X\S); and

(ii) X\
( ⋃
S ∈C

S

)
=

⋂
S ∈C

(X\S).

The following section explores the classic topological notion of connectedness using an uncon-
ventional definition that stems from the concept of arbitrarily close.

Exercises
3.2.1. Consider an open interval (a, b) given by

(a, b) = {x ∈ R : a < x < b} (3.2.22)

where a and b are real numbers satisfying a < b. Prove (a, b) is open according to Definition 3.2.2
and draw figures to help. Why isn’t this trivial?

3.2.2. Consider an interval (a, b] = {x ∈ R : a < x ≤ b} where a and b are real numbers satisfying
a < b. Prove (a, b] is not open.

3.2.3. Prove the set of noninteger real numbers R\Z is open. HINT: See Example 3.1.4.

3.2.4. Prove the set of rational numbers Q is not open.
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3.2.5. Consider the real line R = (−∞,∞). Prove R is both open and closed.
3.2.6. Consider a rectangle B in the plane R2 such as in Figure 3.1.1 which contains some of its
sides and corners, but not all of them. Prove B is not open.
3.2.7. Prove Theorem 3.2.16.
3.2.8. Prove Theorem 3.2.17.
3.2.9. Prove De Morgan’s Laws (Theorem 3.2.19).

3.3 Connected sets
The notion of connectedness is yet another classic topic in analysis and topology which lends itself
to a description in terms of arbitrarily close (Definition 1.5.1). Intuitively, a set E is connected if
it comes in one piece with no separate chunks. For the purpose of writing proofs, a more technical
definition is in order: A set is connected if every partition into two sets features a point in one set
arbitrarily close to the other set.

The definition for connected in this section is parsed using the idea of coupled sets, similar to
the way convergence and limits for sequences are parsed by arbitrarily close and tails in Chapter
2.

Definition 3.3.1: Coupled

Two sets are coupled if there is a point in one set arbitrarily close to the other set. That is,
if A,B ⊆ Rm, then A and B are coupled if there is a point x ∈ A where x aclB or there is
a point y ∈ B where y aclA.

See Example 3.3.2 and Figure 3.3.1 for two coupled sets I and C in the real line. See Example
3.3.3 and Figure 3.3.2 for a coupled square S and disk D in the plane.

Example 3.3.2: An interval coupled with a countable set

In the real line R, consider the interval I and countable set C in Figure 3.3.1 given by

I = (0, 2] and C =
{

2 + 2
n

: n ∈ N
}
. (3.3.1)

The sets I and C are coupled.

Proof for Example 3.3.2. The real number 2 is in I since I includes its right endpoint. Also, 2 is
arbitrarily close to C since, given any ε > 0, an index nε ∈ N where nε > 2/ε produces a real
number cnε such that

cnε = 2 + 2
nε

=⇒ |cnε − 2| = 2
nε

< ε. (3.3.2)

Hence, cnε is in C and within ε of 2. Therefore, I and C are coupled.
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I ( ]... •••
0 2 3 4

C

Figure 3.3.1: The interval I = (0, 2] and the countable set C = {2 + (2/n) :
n ∈ N} are coupled since 2 ∈ I and 2 aclC. See Definition 3.3.1 and Example
3.3.2.

E

S

D

w

Figure 3.3.2: The closed square S and the open disk D in Example 3.3.3 are
coupled since the point w is in S and arbitrarily close to D, acting like an anchor.
Furthermore, their union E = S∪D is connected, though this is harder to justify.
See Definitions 3.3.1 and 3.3.4.

Example 3.3.3: A connected set in the plane R2

In the plane R2, consider the closed square S and the open disk D in Figure 3.3.2 given by

S =
{

x ∈ R2 : x =
[
x
y

]
,−1 ≤ x ≤ 1, and − 1 ≤ y ≤ 1

}
, and (3.3.3)

D = V√2(x0) =
{

x ∈ R2 : d2(x,x0) <
√

2 where x0 =
[

2
2

]}
. (3.3.4)

S and D are coupled since the point w =
[

1
1

]
is both in S and arbitrarily close to D.

We can use the idea of coupled sets to parse the definition for connected sets. Connectedness
is a much more subtle idea since it considers all possible ways to partition a set into two sets.

Definition 3.3.4: Connected

A set E ⊆ Rm is connected if every pair of nonempty sets A and B where A ∪ B = E is
coupled.



208 CHAPTER 3. TOPOLOGY OF EUCLIDEAN SPACES

Remark 3.3.5: The empty set is connected

The empty set ∅ is vacuously connected since it is not a union of two nonempty sets. When
E is nonempty and connected where A and B are nonempty sets with A ∪ B = E, then
there is either some x ∈ A ∩B or some y ∈ B ∩ A.

Remark 3.3.6: From coupled to connected

As mentioned with Figure 3.3.2, the square S and disk D in Example 3.3.3 form a
connected union E = S ∪ D, but why? A proof at this point would be cumbersome and
probably not instructive, so we can revisit the idea later after more tools are developed.

Still, what is connectedness? For the set E = S ∪D, we should consider not just the point
w which ensures S and D are coupled, but any partition of E into two sets should result
in a coupled pair. For example, try drawing a figure to accompany this process: What if
we cut the square S along a diagonal from its upper left to its lower right? We could keep
the points on this diagonal in the resulting closed triangle T and leave everything else to
the set E\T . Then a point on this diagonal would be in T and arbitrarily close to E\T ,
meaning T and E\T are coupled.

But what about splitting E into one subset comprising points with rational components
and another comprising points with at least one irrational component? The density of both
the rational and the irrationals in the real line could play a role here, but to ensure E is
connected this new pair of sets should also be coupled. In general, it can be very difficult to
prove a set is connected by directly verifying Definition 3.3.4 holds since we need to account
for every partition into two sets.

Example 3.3.7: Disconnected interval with countable set

In the real line R, consider the unionW of the interval I and countable set C from Example
3.3.2 and Figure 3.3.1. See Figure 3.3.3. We have

W = (0, 2] ∪
{

2 + 2
n

: n ∈ N
}
. (3.3.5)

Even though the sets I and C are coupled, their union W is not connected. Consider the
pair of sets given by the singleton {4} and the set W\{4}. Since n = 1 produces the real
number

2 + 2
n

= 2 + 2
1 = 4, (3.3.6)

so 4 is inW and the pair {4} andW\{4} are two nonempty sets whose union isW . However,
as indicated in Figure 3.3.3, the real number 4 is more than a distance of ε4 = 1/2 away
from every other point in W . Hence, {4} and W\{4} are not coupled, meaning W is not
connected.



3.3. CONNECTED SETS 209

W ( ]... •••
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Figure 3.3.3: The set of real numbers W is not connected since the only point
in the singleton {4} is more than the distance ε4 = 1/2 away from the rest of
W , meaning {4} and W\{4} are uncoupled. See Example 3.3.7 and Definitions
3.3.1, 3.3.4 and 3.3.8.

The negation of coupled is important enough to merit its own definition.

Definition 3.3.8: Uncoupled

Two sets A and B are uncoupled if every point of A is away from B and every point of B
is away from A.

There is a straightforward way to show a given pair of sets is uncoupled: Find disjoint open
sets that split the pair.

Lemma 3.3.9: Uncoupled when split by disjoint open sets

Two sets A and B are uncoupled if and only if there are disjoint open sets U and V such
that A ⊆ U and B ⊆ V .

Scratch Work 3.3.10: Uncoupled when split by disjoint open sets

The proof relies on a common consequence of the definitions of away from (Definition 1.5.11)
and open (Definition 3.2.2): Points in a set have neighborhoods also contained in the set.

Proof of Lemma 3.3.9. First, suppose A and B are uncoupled. Then for each a ∈ A there is some
εa > 0 such that Vεa(a) ∩ B = ∅. Similarly, for each b ∈ B there is some εb > 0 such that
Vεb(b) ∩ A = ∅. Define

U =
⋃

a∈A
Vεa(a) and V =

⋃
b∈B

Vεb(b). (3.3.7)

Then A ⊆ U , B ⊆ V , and U ∩V = ∅. Since ε-neighborhoods are open (Lemma 3.2.7) and unions
of open sets are open (Theorem 3.2.10), U and V are open.

To prove the converse, suppose there are disjoint open sets U and V such that A ⊆ U and
B ⊆ V . Since U is open and a ∈ U for each a ∈ A, there is some εa > 0 such that Vεa(a) ⊆ U .
Since U and V are disjoint and B ⊆ V , we have Vεa(a) ∩ B = ∅. Hence, every element of A is
away from B. A similar argument shows every element of B is away from A. Therefore, A and B
are uncoupled.

A slight change in the definition of the square S (from closed to open) in Example 3.3.3 creates
a new pair of sets So and D which are uncoupled. See Example 3.3.11 and Figure 3.3.4.
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So

D

w

Figure 3.3.4: The open square So and the open disk D in Example 3.3.11 are
uncoupled, so their union U = S ∪D is disconnected. See Definitions 3.3.8 and
3.3.12. The point w (the upper right corner of So) is not in So but is arbitrarily
close to both So and D.

Example 3.3.11: Disconnected set in the plane

Now consider the open square So given by

So =
{

x ∈ R2 : x =
[
x
y

]
,−1 < x < 1, and − 1 < y < 1

}
(3.3.8)

and once again consider the open disk D from Example 3.3.3. See Figure 3.3.4. In this
case, the point

w =
[

1
1

]
(3.3.9)

is in neither So nor D. Moreover, So and D are disjoint (So ∩D = ∅) and they are both
open (though I won’t prove it here). So, by Lemma 3.3.9, every point in one of the sets is
away from the other, so So and D are uncoupled.

The union of So and D is disconnected.

Definition 3.3.12: Disconnected and separation

A set E is disconnected if there are nonempty uncoupled sets A and B where A ∪ B = E.
In this case, A and B form a separation of E.

Remark 3.3.13: Classic notion of connected

Standard approaches to defining connectedness first define disconnected using separation in
one way or another, then take the negation of disconnected to define connected. Here are
two such examples:

(i) A set F ⊆ Rm is disconnected if there is a pair of nonempty sets A and B where
A ∪ B = F,A ∩ B = ∅, and B ∩ A = ∅. Such a pairing of nonempty sets A and B
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is called a separation of F . From there, a set E ⊆ Rm is said to be connected if it is
not disconnected. (Cf. [1, Definition 3.4.4, p.104].)

(ii) A set F ⊆ R is disconnected if there is a pair of nonempty open sets U and V where
F ⊆ U ∪ V , U ∩ V = ∅, U ∩ F 6= ∅, and V ∩ F 6= ∅. Such a pairing of sets U and V
is called a separation of F . From there, a set E ⊆ Rm is said to be connected if it is
not disconnected.

The fact that these two approaches to defining connectedness are equivalent to Definition
3.3.4 is left as an exercise.

Thanks to the deep connection between limits of convergent sequences and the notion of
arbitrarily close established in Theorem 2.3.1, there is a characterization of connectedness in
terms of limits.

Corollary 3.3.14: Connected and arbitrarily close

A nonempty set E ⊆ Rm is connected if and only if for any pair of nonempty sets A and B
where A ∪B = E, there is a sequence of points in A whose limit is in B, or vice versa.

Scratch Work 3.3.15: Connected and arbitrarily close

The result follows from the definitions for coupled and connected (Definitions 3.3.1 and
3.3.4) along with both directions of Theorem 2.3.1 (the fundamental connection between
arbitrarily close and limits of sequences).

Proof of Corollary 3.3.14. First, suppose E is both nonempty and connected. Then any pair of
nonempty sets A and B where A ∪ B = E is coupled. So, without loss of generality, there is a
point y in B where y aclA. By Theorem 2.3.1, some sequence (xn) of points in A converges to y.

Now suppose A and B are nonempty sets where A ∪ B = E. Also, without loss of generality,
suppose there is a sequence (xn) of points in A whose limit is y where y is in B. By Theorem
2.3.1, y aclA and therefore A and B are coupled. So, E is nonempty and connected.

Theorem 3.3.17 is yet another special feature of the real line R: Intervals and singletons are
the only connected subsets of the real line.

In the case of intervals, their characterization in Lemma 3.3.16 provides a helpful perspective
to consider as when trying to prove Theorem 3.3.17. The proof of Lemma 3.3.16 amounts to
checking the definition of an interval in Definition 1.2.9, so it is omitted. After all, intervals are
defined to be subsets of the real line comprising the points between endpoints and possibly the
endpoints themselves. See Figure 1.2.1.

Lemma 3.3.16: A characterization of intervals

A subset I of the real line R is an interval if and only if whenever x ∈ I, y ∈ I, and
x < z < y, then z ∈ I as well.
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Theorem 3.3.17: Intervals are the connected subsets of the real line R

A nonempty subset of the real line R is connected if and only if the subset is an interval or
a singleton.

The proof of the forward direction is handled via contraposition. But first, the backward
direction is handled directly with a pair of cases.

Proof of Theorem 3.3.17. Suppose E is a nonempty subset of the real line R.
Case (i): Suppose is a singleton where E = {c}. Then any nonempty subsets A and B of E

must also be the same singleton, that is

A = B = {c}. (3.3.10)

Since c ∈ A and c ∈ B, by Lemma 1.5.4 we have c aclA and c aclB. Hence, A and B are coupled
and therfore E is connected (see Definitions 3.3.4 and 3.3.4).

Case (ii): Suppose E is an interval with nonempty subsets A and B where E = A ∪ B and,
without loss of generality, there are real numbers a0 ∈ A and b0 ∈ B where a0 < b0.

Now consider the closed interval I0 = [a0, b0] which is a subset of E since E is an interval.
Following a bisection method much like the proof of the NCBI Property 2.5.4, the midpoint
(a0 + b0)/2 is in E. Therefore, (a0 + b0)/2 is in A or B. Define I1 = [a1, b1] by either I1 =
[a0, (a0 + b0)/2] or I1 = [(a0 + b0)/2, b0], chosen so that a1 ∈ A and b1 ∈ B. Proceeding recursively,
define a sequence of closed and bounded intervals In where: the midpoint of In is an endpoint of
In+1; In+1 is chosen so its left endpoint an+1 is in A, and its right endpoint bn+1 is in B. Then
the sequence of intervals (In) is nested, so by the NCBI Property 2.5.4, there is a point x where

x ∈
∞⋂
n=1

In ⊆ E. (3.3.11)

Since the In are constructed via bisection, their lengths are successively cut in half. So, for
every n ∈ N we have

an ≤ x ≤ bn and |an − bn| =
|a0 − b0|

2n . (3.3.12)

By the linearity of limits for sequences and Corollary 2.4.19, we have

lim
n→∞

|a0 − b0|
2n = 0. (3.3.13)

Now let ε > 0. Since an ≤ x ≤ bn, by properties inequalities and the definition of limit and
convergence (Definition 2.2.1), there is a threshold nε where for every n ≥ nε we have both

|an − x| ≤ |an − bn| =
|a0 − b0|

2n < ε and (3.3.14)

|bn − x| ≤ |an − bn| =
|a0 − b0|

2n < ε. (3.3.15)

Since an ∈ A and bn ∈ B for every n ∈ N, we have x aclA and x aclB. Since x ∈ E and E = A∪B,
we have x ∈ A or x ∈ B. Therefore, A and B are coupled and E is connected.
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Next, to show a nonempty connected subset of the real line is an interval, let’s argue via
contraposition. Suppose E contains at least two points and is not an interval (otherwise, E
contains just one point and is thus a singleton). By Lemma 3.3.16 and without loss of generality,
there are x ∈ E and y ∈ E where x < y as well as z ∈ (x, y) where z /∈ E. Define

Lz = (−∞, z) ∩ E and Rz = (z,∞) ∩ E. (3.3.16)

Then E = Lz ∪Rz, x ∈ Lz, and y ∈ Rz. For every ` ∈ Lz and every r ∈ Rz we have

` < z < r. (3.3.17)

So, for every ` ∈ Lz and every r ∈ Rz we have both

|`− r| > |`− z| > 0 and (3.3.18)
|`− r| > |r − z| > 0. (3.3.19)

Hence, every ` ∈ Lz is away from Rz and every r ∈ Rz is away from Lz. Therefore, E is
disconnected (see Definition 3.3.12).

Next up, consider the classic example of the topologist’s sine curve thought of as a subset of
the plane.

Example 3.3.18: Topologist’s sine curve

Let G be the graph of the function g : R+ → R given by

g(x) = sin
(1
x

)
. (3.3.20)

That is,

G =
{

x ∈ R2 : x =
[
x
y

]
where x > 0 and y = sin

(1
x

)}
. (3.3.21)

Try using free online software such as Desmos, GeoGebra, or WolframAlpha to plot G.
Also, let L be the line segment given by

L =
{

x ∈ R2 : x =
[
x
y

]
where x = 0 and − 1 ≤ y ≤ 1

}
. (3.3.22)

Even though G ∩ L = ∅, the set E = G ∪ L is connected. The proof that E = G ∪ L is
connected will be handled later when we have more tools at our disposal. For now, we can
prove every point in L is the limit of a convergent sequence of points in G.

Partial proof of Example 3.3.18. Let p =
[

0
y0

]
be a point in L. Then (3.3.22) ensures we have

−1 ≤ y0 ≤ 1, so there is some x0 > 0 where sin(x0) = y0.
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Now consider the sequence of positive real numbers defined by

an = 1
x0 + 2πn (3.3.23)

for each positive integer n. Then, thanks to the periodicity of the sine function, we have

g(an) = sin
( 1
an

)
= sin(x0 + 2πn) = y0. (3.3.24)

From there, consider the sequence (xn) in the plane defined by

xn =
[

an
g(an)

]
=
[
an
y0

]
(3.3.25)

for each positive integer n and (xn) is a sequence of points in G. Since

lim
n→∞

an = lim
n→∞

( 1
x0 + 2πn

)
= 0 and (3.3.26)

lim
n→∞

g(an) = lim
n→∞

sin
( 1
an

)
= lim

n→∞
y0 = y0, (3.3.27)

Theorem 2.4.11 (regarding componentwise convergence) applies and tells us

lim
n→∞

xn =
 lim

n→∞
an

lim
n→∞

y0

 =
[

0
y0

]
= p. (3.3.28)

So, every point in L is the limit of a sequence of points in G.

To conclude the section, the following definition provides a specific meaning for the concept
of having two sets arbitrarily close to one anothern, so not comparing a set to a point but rather
another set. Former students Jeffrey Robbins, Lekha Patil, and Ryan Aniceto each thought of
equivalent versions of this definition.

Definition 3.3.19: Two sets arbitrarily close

Suppose A,B ⊆ Rm. The sets A and B are said to be arbitrarily close if there is a point
y ∈ Rm where both y aclA and y aclB.

In other words, when two sets A and B are arbitrarily close, their closures intersect and we
have A ∩B 6= ∅.

There is a nice pair of one-way relationships between sets that intersect, are coupled, or are
arbitrarily close.

Theorem 3.3.20: Intersecting, coupled, and arbitrarily close sets

Suppose A and B are subsets of Rm.

(i) If A and B intersect (i.e., A ∩B 6= ∅), then they are coupled.
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(ii) If A and B are coupled, then they are arbitrarily close.

Proof of Theorem 3.3.20. For both proofs below, suppose A and B are subsets of Rm.
Proof of (i): Suppose A and B intersect. Then there is a point in both sets. By Lemma 1.5.4,

a point in a set is arbitrarily close to the set. So, A and B are coupled.
Proof of (ii): Suppose A and B are coupled. Then there is a point y in one set that’s arbitrarily

close to the other. By Lemma 1.5.4, a point in a set is arbitrarily close to the set, so y is arbitrarily
close to both A and B. Hence, A and B are arbitrarily close.

The converses of statements (i) and (ii) in Theorem 3.3.20 are false in general.

Example 3.3.21: Sets arbitrarily close yet disconnected

The sets S and D from Example 3.3.3 are coupled, but their intersection is empty. On the
other hand, the open sets So and D in Example 3.3.11 are arbitrarily close in the sense of
Definition 3.3.19 since the point w is arbitrarily close to both sets in the sense of Definition
1.5.1. However, So and D are uncoupled since neither contains w and each of their points
is away from the other set.

Remark 3.3.22: Arbitrarily close for pairs of points

A perspective on having two points arbitrarily close to one another is provided by Lemma
1.5.5: In Rm, two points are arbitrarily close to one another if and only if they are the same
point. In the more general setting of topological spaces, this is not necessarily the case.

Example 3.3.21 shows us two sets can be arbitrarily close while having a disconnected union.
The following corollary of Theorem 3.3.20 tells us that when a union of two sets is connected, the
two sets are arbitrarily close. The proof is omitted since it follows directly from Theorem 3.3.20
and the corresponding definitions.

Corollary 3.3.23: Connected implies sets arbitrarily close

Suppose E ⊆ Rm is connected. Then for every pair of nonempty sets A and B where
E = A ∪B we have A aclB.

The next section explores compactness, another important classic topic in analysis and topology
with a difficult definition. I have not been able to determine a useful way to parse the definition
of compactness using arbitrarily close directly, but I think it helps to parse compactness by
considering open covers for a bit beforehand.

Exercises
3.3.1. Prove Q and R\Q are coupled.



216 CHAPTER 3. TOPOLOGY OF EUCLIDEAN SPACES

3.3.2. Prove N,Z,Q, and R\Q are disconnected.

3.3.3. Prove the range of a sequence of real numbers is connected if and only if the sequence is
constant.

3.3.4. Suppose A,B ⊆ Rm are connected and A ∩B 6= ∅. Prove A ∪B is connected.

3.3.5. Prove the claim made in Remark 3.3.13: The definition for connected sets in Definition
3.3.4 and the classic definitions (i) and (ii) in Remark 3.3.13 are equivalent.

3.3.6. Prove every ε-neighborhood is connected. That is, for every c ∈ Rm and every ε > 0, the
set Vε(c) given by

Vε(c) = {x ∈ Rm : ‖x− c‖m < ε} (3.3.29)

is connected.

3.3.7. Prove the closure of a connected set is connected.

3.3.8. The open subsets of the real line R have a special characterization: A subset of R is open
if and only if it is a union of countably many disjoint open intervals. More formally, U ⊆ R is
open if and only if there is a sequence of open intervals (In) such that

U =
∞⋃
n=1

In and Ij ∩ Ik = ∅ when j 6= k. (3.3.30)

Prove this claim.

3.4 Open covers and compact sets
Compactness is a topological property with implications across analysis and topology. It proves
to be a powerful concept and plays a key role in many of the nice results throughout the book.
But its definition can be difficult to understand and appreciate at first, and I find it difficult to
motivate.

As my former student Ryan Aniceto says:

Compactness is the next best thing to finiteness.

This section aims to interpret Ryan’s idea in a mathematically precise way so we can prove
stuff. To motivate the formal definition of compactness in Definition 3.4.12, let’s first see what
we can say about finite sets in the real line R.

Theorem 3.4.1: Facts about finite sets of real numbers

Suppose S is a nonempty and finite set of real numbers. Then:

(i) S is bounded.
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(ii) Both max S and minS exist.

(iii) S is closed.

(iv) Every sequence of real numbers in S has a constant subsequence.

Thanks to the order structure of the real line, we can always list the elements in a finite set
of real numbers from least to greatest.

Proof of Theorem 3.4.1. Let S be a nonempty and finite set of real numbers S with n0 elements.
Without loss of generality, we have

S = {s1, s2, . . . , sn0} where s1 < s2 < · · · < sn0 . (3.4.1)

Hence, s1 is a lower bound for S which is in S and sn0 is an upper bound for S which is in S. So,
S is bounded with minS = s1 and max S = sn0 .

To see why S is closed, note that by Lemma 1.5.4, each of the elements in S is arbitrarily close
to S. Also, every other real number is away from S. To that end, suppose x is a real number that
is not in S. Then for every k = 1, . . . , n0 we have

x 6= sk and so dR(x, sk) = |x− sk| > 0. (3.4.2)

Now let εx = min{|x − sk| : k = 1, . . . , n0}. Since there are only finite distances to consider, we
have εx > 0. Also, for every k = 1, . . . , n0 we have

dR(x, sk) = |x− sk| ≥ εx > 0. (3.4.3)

Therefore, x awf S. Since S contains all points arbitrarily close to S, S is closed.
Finally, suppose (xn) is a sequence of points in S. Since there are infinitely many terms of the

sequence (xn) but only a finite number of real numbers in S, at least one of the real numbers in
S must be repeated an infinite number of times. Hence, for some index j0 ∈ {1, 2, . . . , n0} and its
corresponding element sj0 ∈ S, there is a constant subsequence (xnk) such that for every index nk
we have xnk = sj0 .

Each of the properties in Theorem 3.4.1 fails to hold in general for infinite subsets of the real
line and Euclidean spaces. For an example of a set of real numbers where none of these properties
hold, consider the set of rational numbers Q.

Example 3.4.2: Some properties of Q

The set of rational numbers Q is unbounded. Moreover, neither supQ nor inf Q exist, so
neither maxQ and minQ exist. Q is not closed since, for instance,

√
2 is arbitrarily close to

Q but not in Q. Also, some sequences of rational numbers have no constant subsequences.
For instance, consider the sequence (cn) defined by cn = n for each positive integer n: Each
cn = n is a rational number, but each one appears in any given subsequence of (cn) at most
once and cannot be repeated. Therefore, given any subsequence of (cn), no term is repeated
an infinite number of times. Hence, (cn) has no constant subsequences.
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Sets which are both closed and bounded provide a first glimpse of compactness and represent
a collection of infinite sets with properties very similar to those of finite sets in Theorem 3.4.1.

Theorem 3.4.3: Properties of closed and bounded intervals

Suppose a, b ∈ R with a < b. Then the interval I = [a, b] satisfies the following properties:

(i) I is bounded.

(ii) Both max I and min I exist.

(iii) I is closed.

(iv) Every sequence of real numbers in I has a convergent subsequence whose limit is in
I.

Remark 3.4.4: Properties of closed and bounded intervals

The only difference between the properties for finite sets of real numbers in Theorem 3.4.1
and closed and bounded intervals in Theorem 3.4.3 lies with the fourth property, respec-
tively.

Proof of Theorem 3.4.3. For the interval I = [a, b], a is a lower bound for I which is in I and b is
an upper bound for I which is in I. Hence, I is bounded with min I = a and max I = b.

The proof that I is closed is left an important exercise. See Exercise 3.1.1.
This leaves property (iv). Suppose (xn) is a sequence of real numbers in I. Since I is bounded,

(xn) is bounded as well. By the Bolzano-Weierstrass Theorem in the real line (Theorem 2.5.6),
(xn) has a convergent subsequence (xnk) with limit `. By Theorem 2.3.1, since ` is arbitrarily
close to (xnk), ` is arbitrarily close to I as well. Since I is closed, ` is in I.

There is another key property of finite sets emulated by compact sets to explore before getting
to the definition for compactness (Definition 3.4.12), but it’s the hardest property for me to
motivate. So let’s consider an example.

Example 3.4.5: A notion of finiteness

Consider the closed and bounded interval

H = [0, 100] = {x ∈ R : 0 ≤ x ≤ 100}. (3.4.4)

This set is uncountable, which follows from applying the same proof that the real line is
uncountable in Theorem 2.8.14 to the interval H. Even so, we can use collections of open
sets to imbue H with a finite structure.
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Consider the following collections of open sets:

A = {V5(x) = (x− 5, x+ 5) : x ∈ H}, (3.4.5)

B = {(−10, 10), (99, 101)} ∪
{( 100

n+ 1 ,
100
n− 1

)
: n ≥ 2, n ∈ N

}
, and (3.4.6)

C = {Vδx(x) = (x− δx, x+ δx) : x ∈ H and δx > 0}. (3.4.7)

A comprises open sets of the same size at each point in H, namely their 5-neighborhoods.
So, A is an uncountable collection since H is uncountable. B is a countable collection
of open sets of various sizes. C is an uncountable collection of open sets of various and
unspecified sizes.

I strongly suggest you draw stuff! Unlike many of the other examples in this book, I think
you will get a better feel for what’s going on if you draw figures yourself. What I’ve come
up with ends up looking cluttered in the end, but the process of drawing stuff helped me
justify the rest of the work in this example.

Even though they’re infinite collections, each comes with a finite subcollection that
accounts for all the points in H. We can specify suitable subcollections for A and B since
we have detailed descriptions of their sets. We’ll deal with C later.

For the collection A, consider the subcollection A0 defined by integers in H which are
multiples of 5:

A0 = {V5(5j) : j = 0, 1, 2, . . . , 19, 20} (3.4.8)
= {(−5, 5), (0, 10), (5, 15), . . . , (90, 100), (95, 105)}. (3.4.9)

We have every real number in H is contained in one or two of the open sets in A0. Therefore,
H is a contained in the union of a finite number of the open sets in A and we have

H ⊆
20⋃
j=1

V5(5j). (3.4.10)

For the collection B, consider the subcollection B0 that contains (−10, 10), (99, 101), and
enough of the other open sets to make sure we account for all the real numbers in H. Since
the intervals with consecutive indices n and n + 1 overlap and (−10, 10) already contains
all the points in H from 0 to just shy of 10, let’s solve for an index n0 ∈ N where

10 ∈
( 100
n0 + 1 ,

100
n0 − 1

)
⇐⇒ 100

n0 + 1 < 10 < 100
n0 − 1 . (3.4.11)

This will allow us to cover all the real numbers in H with one or two of the open sets from
B. We have

100
n0 + 1 < 10 ⇐⇒ n0 >

100
10 − 1 = 9. (3.4.12)
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So, n0 = 10 will work. Define the subcollection B0 by

B0 = {(−10, 10), (99, 101)} ∪
{(

100
j + 1 ,

100
j − 1

)
: j = 2, 3, . . . , 10

}
. (3.4.13)

Then H is a contained in the union of a finite number of the open sets in B and we have

H ⊆ (−10, 10) ∪ (99, 101) ∪
 10⋃
j=1

(
100
j + 1 ,

100
j − 1

) . (3.4.14)

It is also true that H is a contained in the union of a finite number of the open sets in C. But
how can we prove this? More definitions and results will get us there.

Remark 3.4.6: The next best thing to finiteness

How far can we push the analogy of finiteness to infinite sets? Compactness is one way to
answer this question, and it uses collections of open sets to imbue a modicum of finiteness
on infinite sets, just like the closed and bounded interval H and the collections of open sets
A and B in Example 3.4.5. Loosely speaking, compactness replaces the idea of having a
finite number of elements in a set with the notion of approximating the set with a finite
number of open sets in a peculiar way. The collections of open sets should be substantial
enough to account for all points in the would-be compact sets, leading to the definition of
open covers.

Definition 3.4.7: Open cover

Let S be a subset of Rm. An open cover for S is a collection W where

(i) every object in W is an open set; and

(ii) S ⊆
⋃

U∈W
U , in which case we say W covers S.

Remark 3.4.8: Examples of open covers

In Example 3.4.5, the collections of open sets A,B, and C are open covers for the closed
and bounded interval H = [0, 100].

The following example provides a countable set of real numbers and a pair of collections of
open sets, but only one suffices to be an open cover.

Example 3.4.9: Open covers or not

Consider the set of real numbers F given by

F = {0} ∪ 1
N

= {0} ∪
{ 1
n

: n ∈ N
}

=
{

0, 1, 1
2 ,

1
3 , . . .

}
. (3.4.15)
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F ...• • • • •
0 1/4 1/3 1/2 1

V ...• • • • •( )
V1

( )
V2

( )
V3

( )
...

W0 • • • • •( )
V1

( )
V2

( )
V3

( )
V0

Figure 3.4.1: The set of real numbers F along with collections of open sets V
and W0 from Example 3.4.9 and Remark 3.4.10. V is not a cover for F , but W0
is.

See Figure 3.4.1. Consider the open sets

V1 =
(3

4 ,
5
4

)
and Vn = (an, bn) (3.4.16)

where Vn is the open interval defined for each index n ∈ N where n ≥ 2 by taking an to be
the midpoint between 1/n and 1/(n+ 1) and bn to be the midpoint between 1/(n− 1) and
1/n. From there, consider the collection of open sets V given by

V = {Vn : n ∈ N} = {V1, V2, . . .}. (3.4.17)

See Figure 3.4.1.

It turns out V is not an open cover for F since 0 is in F but 0 is not in any of the Vn, thus
V does not cover F since

F *
∞⋃
n=1

Vn =
⋃
U∈V

U. (3.4.18)

However, by including one more open set that contains 0 to the collection, we get an open
cover W for the set F . To that end, define

V0 =
(
−1

3 ,
1
3

)
and W = V ∪ {V0} = {V0, V1, V2, . . .}. (3.4.19)

Then 0 ∈ V0 and 1/n ∈ Vn for each n ∈ N. Therefore,

F ⊆
∞⋃
n=0

Vn =
⋃

U∈W
U. (3.4.20)

Since W covers F and V0 and every Vn is open, W is an open cover for F .
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Remark 3.4.10: Open covers or not

By adding the single open set V0 to the countably infinite collection V in Example 3.4.9,
we obtain a collection W which is an open cover for F . Furthermore, after adding V0 to
the collection, we only needed a finite number of open sets to contain F . More specifically,
consider the finite collection

W0 = {V0, V1, V2, V3}. (3.4.21)

See Figure 3.4.1 once again. Then 0 ∈ V0, 1/n ∈ Vn for n = 1, 2, 3, and 1/n ∈ V0 for every
n ≥ 4. Hence,

F ⊆
3⋃

n=0
Vn =

⋃
U∈W0

U. (3.4.22)

Therefore, W0 is a finite subcollection of W whose objects are open sets with a union that
still contains F . That is, W0 is itself an open cover for F , so W0 is a finite subcover.

Definition 3.4.11: Finite subcover

Let S ⊆ Rm and let W be an open cover for S. A subcollection W0 (of W) is a finite
subcover if there are a finite number of open sets U1, . . . , Un0 such that

(i) W0 = {U1, . . . , Un0} ⊆ W , and

(ii) S ⊆
n0⋃
n=1

Un =
⋃

U∈W0

U . (That is, W0 covers S.)

In Example 3.4.5, the open covers A and B for H have finite subcovers A0 and B0. In Example
3.4.9, the collection W0 provides a way for us to represent the infinite collection of points in F
with a finite number of open sets: Every real number in F can be represented by an open set in
the collection W0 containing the real number. Specifically, Vn represents 1/n for each n = 1, 2, 3
while V0 simultaneously represents 0 and all of the 1/n where n ≥ 4. This is an interpretation of
the “next best thing to finiteness” idea and leads us to the following definition for compactness.

Definition 3.4.12: Compact

A set K ⊆ Rm is compact if every open cover for K has a finite subcover.

Remark 3.4.13: Compactness beyond the examples

The definition of compactness (Definition 3.4.12) goes beyond the finite sets in Theorem
3.4.1, the closed and bounded intervals in Example 3.4.5 and Theorem 3.4.3, and the closed
and countable set F in Example 3.4.9 in a couple of important ways: (i) K is not necessarily
a subset of the real line; and (ii) every open cover forK has a finite subcover (not just some).
This is not an easy definition to process!
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N ...• • • • •
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( )U1

( )U2

( )U3

Figure 3.4.2: The set of positive integers N and the first few intervals in the
open cover U = {U1, U2, . . .} from Example 3.4.14.

The next example contains two sets which, for different reasons, are not compact.

Example 3.4.14: Not compact

Consider the set of positive integers N and the set of reciprocals of positive integers S given
by

N = {n : n ∈ N} = {1, 2, 3, . . .} and (3.4.23)

S = 1
N

=
{ 1
n

: n ∈ N
}

=
{

1, 1
2 ,

1
3 , . . .

}
. (3.4.24)

Neither N nor S is compact. To prove this, it suffices to find an open cover with no finite
subcover.

Proof for Example 3.4.14. For the set of positive integers N, consider the open cover given by the
collection U = {U1, U2, . . .} comprising open intervals defined for each positive integer n by

Un =
(
n− 1

2 , n+ 1
2

)
. (3.4.25)

See Figure 3.4.2. For each positive integer n, the only open interval in the collection U that
contains n is Un. Now let V be any finite subcollection of U . Then there is some positive integer
k0 where

⋃
U∈V

U ⊆
k0⋃
n=1

Un ⊆
(1

2 , k0 + 1
2

)
. (3.4.26)

Since k0 + 1 is a positive integer but k0 + 1
2 < k0 + 1, we have

k0 + 1 /∈
⋃
U∈V

U. (3.4.27)

Therefore, V is not an open cover for N. Since V represents an arbitrary finite subcollection of U ,
we have that U has no finite subcover. Therefore, N is not compact.
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For the set S, consider the open cover W = {W1,W2, . . .} given by

W1 =
(1

2 , 2
)

and Wn =
( 1
n+ 1 ,

1
n− 1

)
for n ≥ 2. (3.4.28)

(Try drawing a figure for S and W , it should be similar to Figure 3.4.1.) For every index n ∈ N,
1/n is in Wn and only Wn. Now let T be any finite subcollection of W . Then there is some
positive integer j0 where

⋃
W∈T

W ⊆
j0⋃
n=1

Wn ⊆
(

1
j0 + 1 , 2

)
. (3.4.29)

So, 1/(j0 + 2) ∈ S but 1/(j0 + 2) /∈ ∪W∈TW . Therefore, T is not an open cover for S. Since
T represents an arbitrary finite subcollection of W , we have that W has no finite subcover.
Therefore, S is not compact.

Remark 3.4.15: Not compact from either not closed or not bounded

The open covers with no finite subcovers in the proof of Example 3.4.14 exploit features
of the underlying sets: U takes advantage of the fact that N is unbounded while W takes
advantage of the fact that S is not closed since 0 is arbitrarily close to S but not in S.
These ideas will help with the exercises.

The section concludes with an example of a compact set along with a proof.

Example 3.4.16: A compact set

Once again, consider the set of real numbers F from Figure 3.4.1, Example 3.4.9, and
Remark 3.4.10 given by

F = {0} ∪ 1
N

= {0} ∪
{ 1
n

: n ∈ N
}

=
{

0, 1, 1
2 ,

1
3 , . . .

}
. (3.4.30)

F is compact.

Scratch Work 3.4.17: Generalize an example

The argument in Example 3.4.9 can be generalized to prove F is compact. Below, we take
advantage of the convergence of (1/n) to 0 to generate a finite subcover of a given open
cover. The idea is that any open cover for F must cover 0 with a neighborhood, and such
a neighborhood contains all but a finite number of the 1/n in F . A suitable finite subcover
comprises an open set from the original open cover that contains both 0 and a neighborhood
of 0 along with open sets for each of finite number of points in F not in that neighborhood.

Proof for Example 3.4.16. Suppose U is an open cover for F . Then there is an open set U0 ∈ U
where 0 ∈ U0 and, for each n ∈ N, there is an open set Un ∈ U where 1/n ∈ Un. Since U0 is open,
by Definition 3.2.2 there is some ε0 > 0 where

|x− 0| = |x| < ε0 =⇒ x ∈ U0. (3.4.31)
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Since limn→∞(1/n) = 0, by Definition 2.2.1 there is a threshold n0 ∈ N such that for all n ∈ N
where n ≥ n0 we have ∣∣∣∣ 1n − 0

∣∣∣∣ = 1
n
≤ 1
n0

< ε0 =⇒ 1
n
∈ U0. (3.4.32)

Now consider the finite subcollection S of the open cover U given by

S = {U0, U1, . . . , Un0−1} . (3.4.33)

Then 0 and each 1/n where n ≥ n0 is contained in U0, and if needed, each 1/n where n =
1, . . . , n0 − 1 is contained in its own Un. Hence,

F ⊆
n0−1⋃
n=0

Un. (3.4.34)

Therefore, S is a finite subcover of U , and so F is compact by Definition 3.4.12.

The Heine-Borel Theorem 3.5.1, the focus of the next section, provides a variety of equivalent
perspectives on compactness which help us identify and work with compact sets in Euclidean
spaces.

Exercises
3.4.1. Prove finite subsets of Euclidean spaces are compact.
3.4.2. Consider the set K given by

K = {5} ∪
{

5 + (−1)n√
n

: n ∈ N
}
. (3.4.35)

Prove K is compact.
3.4.3. Suppose (xn) ⊆ Rm converges to y ∈ Rm. Prove

F = {xn : n ∈ N} ∪ {y} (3.4.36)

is compact.
3.4.4. Prove the open unit interval (0, 1) is not compact.
3.4.5. Prove the unbounded interval [0,∞) is closed but not compact.
3.4.6. Prove [0, 1] ∩Q is not compact.
3.4.7. Prove that if (xn) ⊆ R is bounded and strictly decreasing, then the range of (xn) is not
compact.
3.4.8. Suppose (xn) ⊆ Rm is bounded and its range does not contain Slim(xn), the set of subse-
quential limits. Prove the range of (xn) is not compact.
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3.5 The Heine-Borel Theorem
In general, how can we check whether or not a given set is compact? Definition 3.4.12 is so difficult
to work and the question is so tough to answer they merit this additional section. The answer
itself comes in the form of the Heine-Borel Theorem 3.5.1 which establishes various equivalent
forms of compactness for Euclidean spaces.

Throughout this section, please take both a stand-alone “compact” and the phrase “topologi-
cally compact” to stand for Definition 3.4.12, as it does here.

Theorem 3.5.1: Heine-Borel

For a subset K of a Euclidean space Rm, the following are equivalent:

(i) K is topologically compact: Every open cover for K has a finite subcover.

(ii) K is closed and bounded.

(iii) K is sequentially compact: Every sequence in K has a convergent subsequence whose
limit is in K.

The word “topologically” supplements “compact” in part (i) of the Heine-Borel Theorem to
help me distinguish between the two other statements. In the context of Euclidean spaces, (i),
(ii), and (iii) are interchangeable and each one stands for compactness. However, the statement
“every open cover has a finite subcover” defines compactness in all topological settings, which is
why the phrase “topologically compact” is attributed to it.

Each version of compactness in the Heine-Borel Theorem 3.5.1 has its own pros and cons, and
all three will be used throughout the book.

This entire section is dedicated to proving the Heine-Borel Theorem 3.5.1. Instead of proving
it all at once, we parse the statements and prove them in a series of lemmas which are interesting
enough on their own anyway. A complete proof of the Heine-Borel Theorem 3.5.1 appears at the
end of the section.

Lemma 3.5.2: Compact implies bounded

Every compact set in Rm is bounded.

Scratch Work 3.5.3: Contraposition via unbounded

The idea behind the proof of Lemma 3.5.2 is very similar to the proof that the set of positive
integers N is not compact in Example 3.4.14: Unbounded sets have open covers made up of
bounded open sets which have no finite subcovers. The approach argues via contraposition
and defines a generic open cover for arbitrary unbounded sets which cannot have a finite
subcover.

Proof of Lemma 3.5.2. Suppose S is an unbounded set of points in Rm. Also, consider the col-
lection of open sets V = {Vn(0) : n ∈ N} where for each positive integer n we have

Vn(0) = {x ∈ Rm : ‖x‖m < n}. (3.5.1)
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S...• • • • • • •

0
...

Figure 3.5.1: A unbounded set S in the plane R2 and open cover V = {Vn(0) :
n ∈ N} of open disks centered at the origin (in red) with radii given by positive
integers. S is not compact since V has no finite subcovers. See Lemma 3.5.2 and
its proof.

(See Figure 3.5.1 for a version of S and an open cover V in the plane R2.) Then for every point
x in S, by the Archimedean Property 1.4.6 there is a positive integer nx large enough so that
‖x‖m < nx. Therefore, x is in Vnx(0) and so V is an open cover for S.

Now supposeW is a finite subcollection of the open sets in V . Then there is a positive integer
k0 where we have

⋃
V ∈W

V ⊆
k0⋃
n=1

Vn(0) = Vk0(0) (3.5.2)

Since S is unbounded, there is a point x0 in S where ‖x0‖m > k0. As such,

x0 /∈ Vk0(0) =⇒ x0 /∈
⋃

V ∈W
V. (3.5.3)

So, W is not an open cover for S. Since W is an arbitrary finite subcollection of V , we have S is
not compact.

Lemma 3.5.4: Compact implies closed

Every compact set in Rm is closed.

Scratch Work 3.5.5: Contraposition via not closed

The idea behind the proof of Lemma 3.5.4 is very similar to the proof that the set S is
not compact in Example 3.4.14: Sets that are not closed have a point whose neighborhoods
have complements (well, almost complements) which can be used to create an open cover
for S with no finite subcover.

Proof of Lemma 3.5.4. To argue via contraposition, suppose T is a subset of Rm that is not closed.
Then there is a point y in Rm such that y aclT but y is not in T . Now, for each positive integer
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T...◦
y

• • • •
...

Figure 3.5.2: A set T and a point y in the plane R2 where y is arbitrarily
close to T but y is not in T , so T is not closed. The circles in red represent the
neighborhoods centered at y whose radii are the reciprocals of positive integers.
However, the complements of the closures of these neighborhoods R2\V1/n(y)
form the open cover used to show T is not compact in the proof of Lemma 3.5.4.

n, consider the open set Rm\V1/n(y) where

Rm\V1/n(y) = {x ∈ Rm : dm(x,y) = ‖x− y‖m > 1/n} . (3.5.4)

See Figure 3.5.2. Note that Rm\V1/n(y) is the complement of the closed 1/n-neighborhood of y,
so Rm\V1/n(y) is open by Theorem 3.2.4. Since y is not in T , for every point t in T we have

dm(t,y) = ‖t− y‖m > 0. (3.5.5)

So, by the Corollary of the Archimedean Property (Corollary 1.4.8), there is some positive integer
nt large enough so that

1
nt

< dm(t,y) = ‖t− y‖m. (3.5.6)

Thus, t is in Rm\V1/nt(y) and therefore

V =
{
Rm\V1/n(y) : n ∈ N

}
(3.5.7)

is an open cover for T .
Now supposeW is a finite subcollection of the open sets in V . Then there is a positive integer

k0 where we have
⋃

V ∈W
V ⊆

k0⋃
n=1

(Rm\V1/n(y)) = Rm\V1/k0(y). (3.5.8)

Since y aclT , there is a point t0 in T such that

dm(t0,y) = ‖t0 − y‖m <
1
k0
. (3.5.9)

Therefore,

t0 ∈ V1/k0(y) =⇒ t0 /∈ Rm\V1/k0(y) =⇒ t0 /∈ ∪V ∈WV. (3.5.10)

Hence, W is not an open cover for T . Since W is an arbitrary finite subcollection of V , we have
T is not compact.
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At this point, Lemmas 3.5.2 and 3.5.4 tell us topologically compact sets are closed and bounded.
That is, we have proven (i) implies (ii) in the Heine-Borel Theorem 3.5.1. The next two lemmas
allow us to prove (ii) implies (i) with an interesting combination of special cases at the end of the
section.

Lemma 3.5.6: Closed and bounded boxes are compact

If B0 ⊆ Rm is a closed box of the form

B0 = [−a, a]× · · · × [−a, a]︸ ︷︷ ︸
m copies of [−a,a]

= [−a, a]m (3.5.11)

for some a > 0, then B0 is compact.

Scratch Work 3.5.7: An open cover with no finite subcover

The proof argues via contraposition and uses the negation of the definition for compactness,
Definition 3.4.12, to provide the existence of an open cover with no finite subcover. A careful
argument based on repeated bisection of boxes follows from there, similar to the proof of the
Bolzano-Weierstrass Theorem in Euclidean spaces (Theorem 2.5.13). However, the details
regarding the choice of a suitable threshold are omitted.

Proof Lemma 3.5.6. Suppose B0 ⊆ Rm is a closed box of the form (3.5.11), which is closed by
Lemma 3.1.13. See Figure 3.5.3.

By way of contradiction, suppose B0 is not compact. Then there is an open cover W for the
set B0 which has no finite subcovers. Bisecting each of the sides of B0 creates 2m smaller boxes of
the form (3.1.14) whose sides are half the length of the sides of B0. Then at least one of the 2m
smaller boxes, call it B1, can only be covered by an infinite subcollection of the open sets in W ,
otherwiseW would have a finite subcover. (Such a finite subcover could be obtained by gathering
the open sets in the finite subcollections for all of the 2m smaller boxes.) Another application of
Lemma 3.1.13 tells us B1 is closed and bounded.

Repeating this bisection and smaller-box-selection process yields a nested sequence of closed
and bounded boxes where

B0 ⊇ B1 ⊇ B2 ⊇ . . . (3.5.12)

and each of these boxes can only be covered by an infinite subcollection of the open sets in W .
By the NCBB Property (Theorem 2.5.10), there is a point y where

y ∈
∞⋂
n=0

Bn. (3.5.13)

See Figure 3.5.3.
Since W covers B0 and y ∈ B0, there is an open set U in the open cover W which contains y.

Since U is open, there is a positive distance εy > 0 such that Vεy(y), the εy-neighborhood of y is
contained in U .
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Figure 3.5.3: A box of the form B0 = [−a, a]2 in the plane R2 to go along
with the proof of Lemma 3.5.6. The boxes B1, B2, and the small one containing
y are obtained by repeatedly bisecting sides and choosing a smaller box which
requires an infinite subcover. The point y has a neighborhood containing one of
the smaller boxes, facilitating a contradiction.
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However, for each index n ∈ N, the length of each of the sides of Bn is half that of the previous
box Bn−1. Since B0 is bounded, this implies the sequence of lengths of the sides converges to 0, as
in the proof of the Bolzano-Weierstrass Theorem in Euclidean spaces (Theorem 2.5.13). Hence,
there is a threshold ny ∈ N for which the box Bny is small enough to be contained in U . That is,
for large enough ny we have

Bny ⊆ U. (3.5.14)

(See the smallest box containing y in Figure 3.5.3.) However, this means {U} is a finite subcol-
lection of W which covers Bny , contradicting the assertion that Bny can only be covered by an
infinite subcollection of W .

Therefore, B0 is compact.

The previous lemma directly pairs with the next in the proof of the Heine-Borel Theorem
3.5.18 at the end of the section.

Lemma 3.5.8: Closed subsets of compact sets are compact

Every closed subset of a compact set in Rm is compact.

Proof of Lemma 3.5.8. Suppose K is a compact set in Rm and F is a closed set in Rm where
F ⊆ K.

Let W be an open cover for F . To take advantage of the compactness of K, we can create
an open cover for K by expanding W with one more open set to pick up any points that might
be in K\F . By Theorem 3.2.4, Rm\F is an open set. Furthermore, the collection of open sets
W ∪ {Rm\F} is an open cover for K since

F ⊆
⋃

U∈W
U (3.5.15)

implies

K ⊆ Rm = F ∪ (Rm\F ) ⊆
( ⋃
U∈W

U

)
∪ (Rm\F ). (3.5.16)

By the definition of compact (Definition 3.4.12), there is a finite subcover W0 = {U1, . . . , Un0} of
W ∪ {Rm\F} where

K ⊆
n0⋃
n=1

Un. (3.5.17)

If Rm\F = Uj for some j = 1, . . . , n0, then W0\{Rm\F} is a finite subcover of W which covers
F . Otherwise, W0 is a finite subcover of W which covers F . Either way, since W is an arbitrary
open cover for F , we have F is compact.

Lemmas 3.5.2 through 3.5.8 can be used to prove a set is topologically compact if and only if
the set is closed and bounded (showing statements (i) and (ii) in the Heine-Borel Theorem 3.5.1
are equivalent). However, there is still a little work is left to do.
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Lemma 3.5.9: Closed and bounded implies compact

Every set in Rm which is both closed and bounded is compact.

Scratch Work 3.5.10: Apply the previous lemmas

The goal is to find a closed box large enough to contain K, then apply the two previous
lemmas to conclude K is topologically compact.

Proof of Lemma 3.5.9. Suppose K is a closed and bounded subset of Rm. Since K is bounded,
there is a bound u > 0 such that for every point x ∈ K we have ‖x‖m ≤ u. Define the closed box
B by

B = [−u, u]× · · · × [−u, u]︸ ︷︷ ︸
m copies of [−u,u]

= [−u, u]m. (3.5.18)

To see that K ⊆ B, for every index j = 1, . . . ,m let xj denote the j-th component (or coordinate)
of x. For every x ∈ B and index j = 1, . . . ,m we have

|xj| =
√
x2
j ≤

√
x2

1 + . . .+ x2
m = ‖x‖m ≤ u. (3.5.19)

Hence, xj ∈ [−u, u] for each j and so x ∈ B. Therefore, K ⊆ B.
Now, since B is a closed box, B is topologically compact by Lemma 3.5.6. Since K is a closed

subset of a topologically compact set, K is also topologically compact by Lemma 3.5.8.

Next up is a definition for and a brief discussion of sequential compactness, statement (iii) of
the Heine-Borel Theorem 3.5.1.

Definition 3.5.11: Sequentially compact

A set K ⊆ Rm is sequentially compact if every sequence in K has a convergent subsequence
whose limit is in K.

Example 3.5.12: Sequential compactness

Once again, consider the of real numbers E and its closure E from Example 3.1.12. We
have

E = [0, 1) ∪ {2} ∪ {3 + (1/n) : n ∈ N} and (3.5.20)
E = [0, 1] ∪ {2} ∪ {3} ∪ {3 + (1/n) : n ∈ N}. (3.5.21)

See Figure 3.5.4. To get an idea for sequential compactness, consider the sequences (xn)
and (yn) defined for each index n ∈ N by

xn = 3 + 1
n

and yn = 1
2 + (n+ 1)(−1)n

4n . (3.5.22)
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Figure 3.5.4: The set of real numbers E and its closure E from Examples 3.1.12
and 3.5.12. The closure E is sequentially compact, topologically compact, closed,
and bounded.

Then (xn) is a sequence of points in both E and E where

lim
n→∞

xn = lim
n→∞

(
3 + 1

n

)
= 3. (3.5.23)

So, (xn) converges to 3 and, thanks to Theorem 2.4.18, all of the subsequences of (xn)
converge to 3 as well. However, 3 is not in E, so (xn) is a sequence in E whose subsequences
all converge to a limit which is not in E. Therefore, E is not sequentially compact. On the
other hand, 3 is in the closure E.

Also, (yn) is also a sequence of points in both E and E, as follows. For every index n ∈ N,
we add at least −1/2 but no more than 1/4 to 1/2, so we have

yn = 1
2 + (n+ 1)(−1)n

4n ∈ [0, 1) ⊆ E ⊆ E. (3.5.24)

The sequence (yn) diverges by Divergence Criteria 2.6.9 since its subsequences (y2k) and
(y2k−1) have different limits:

lim
k→∞

y2k = lim
k→∞

(
1
2 + 2k + 1

4(2k)

)
= 3

4 while (3.5.25)

lim
k→∞

y2k−1 = lim
k→∞

(
1
2 + −2k

4(2k − 1)

)
= 1

4 . (3.5.26)

Both of these subsequential limits are in the closure E.

Moreover, E is sequentially compact, but proving this directly is difficult since we’d need
to consider any sequence of real numbers in E, find a convergent subsequence and its limit,
then show this limit is in the set.

At this point, it is much easier to show E is closed and bounded: As the closure of a set, E
is closed by Lemma 3.1.8; and E is bounded by 4.

Example 3.5.12 leads us to a string of lemmas showing statements (ii) and (iii) in the Heine-
Borel Theorem 3.5.1 are equivalent: A subset of a Euclidean space is sequentially compact if and
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only if it is closed and bounded.

Lemma 3.5.13: Sequentially compact implies closed

Every sequentially compact set in Rm is closed.

Scratch Work 3.5.14: Contraposition via convergence outside of the set

The proof argues via contraposition to construct a nice sequence, but it also deals with
the subtlety of considering every subsequence of the sequence we construct. The trick is to
show all of these subsequences converge to a point that is not in the set, which we get from
assuming our set is not closed.

Proof of Lemma 3.5.13. Suppose A ⊆ Rm is not closed. Then there is a point y ∈ Rm where y is
not in A but y aclA. By the fundamental connection between arbitrarily close and convergence
(Theorem 2.3.1), there is a sequence of points in A whose limit is y. By Theorem 2.4.18, all
subsequences of a convergent sequence in Rm converge to the same limit. In this case, they all
converge to y. So, none of the subsequences of have a limit in A. Therefore, A is not sequentially
compact.

Lemma 3.5.15: Sequentially compact implies bounded

Every sequentially compact set in Rm is bounded.

Scratch Work 3.5.16: Contraposition via an unbounded sequence

The proof argues via contraposition to construct a nice sequence, but like the previous
proof it also deals with the subtlety of considering every subsequence of the sequence we
construct. The idea here is to show all of these subsequences are unbounded, in which case
they diverge by Divergence Criteria 2.6.9.

Proof of Lemma 3.5.15. Suppose U ⊆ Rm is unbounded. Then for every positive integer n ∈ N,
there is a point un in U where

n < ‖un‖m. (3.5.27)

The goal from here is to show every subsequence of (un) is unbounded. So, consider an arbitrary
subsequence (unk) and any real number x ∈ R. By the Archimedean Property (Theorem 1.4.6)
along with the definition of subsequences (Definition 2.4.14) and inequality (3.5.27), there is an
index k ∈ N large enough to give us

x < k ≤ nk < ‖unk‖m. (3.5.28)

Hence, the subsequence (unk) is unbounded and by the Divergence Criteria 2.6.9, (unk) diverges.
Moreover, (un) is a sequence of points in U whose subsequences all diverge, so none of them

have a limit in U . Therefore, U is not sequentially compact.

Up next is the final lemma of the section before stringing the results together to prove the
Heine-Borel Theorem 3.5.1.
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Lemma 3.5.17: Closed and bounded implies sequentially compact

Every set in Rm which is both closed and bounded is sequentially compact.

Proof of Lemma 3.5.17. Suppose K is a closed and bounded subset of Rm and (xn) is a sequence
of points in K. SinceK is bounded, (xn) is bounded as well. By the Bolzano-Weierstrass Theorem
in Euclidean spaces (Theorem 2.5.13), (xn) has a convergent subsequence with a limit y. Since
K is closed, the subsequential limit y must be in K by Theorem 3.1.10 (closed sets contain
their limits). Therefore, K is sequentially compact since every sequence in K has a convergent
subsequence whose limit is also in K.

Time to prove the Heine-Borel Theorem 3.5.1, copied here for convenience.

Theorem 3.5.18: A copy of the Heine-Borel Theorem

For a subset K of a Euclidean space Rm, the following are equivalent:

(i) K is topologically compact: Every open cover for K has a finite subcover.

(ii) K is closed and bounded.

(iii) K is sequentially compact: Every sequence in K has a convergent subsequence whose
limit is in K.

Scratch Work 3.5.19: A string of equivalences

The proof below gets the job done by showing (i) is equivalent to (ii) and (ii) is equivalent
to (iii), so (i) and (iii) are also equivalent.

Proof of the Heine-Borel Theorem 3.5.1. Throughout this proof, suppose K is a subset of a Eu-
clidean space Rm.

(i) =⇒ (ii): Suppose K is topologically compact. By Lemma 3.5.4, K is closed. By Lemma
3.5.2 K is bounded.

(ii) =⇒ (i): Suppose K is closed and bounded. By Lemma 3.5.9, K is topologically compact.
Hence, (i) ⇐⇒ (ii) and topological compactness is equivalent to closed and bounded.

(ii) =⇒ (iii): SupposeK is closed and bounded. By Lemma 3.5.17,K is sequentially compact.
(iii) =⇒ (ii): Suppose K is sequentially compact. By Lemma 3.5.13, K is closed. By Lemma

3.5.15, K is bounded.
Hence, (iii) ⇐⇒ (ii) and sequential compactness is equivalent to closed and bounded.

(i) ⇐⇒ (iii): Since topological and sequential compactness are both equivalent to closed and
bounded, they’re equivalent to each other. That is, since (i) ⇐⇒ (ii) and (iii) ⇐⇒ (ii), we have
(i) ⇐⇒ (iii).

Compactness is a hard idea to process! So much so that this section and the previous one
were designed to share the burden. Moving forward, the Heine-Borel Theorem 3.5.1 gives us the
flexibility to think of compact subsets of Euclidean spaces in three equivalent ways.
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The next section provides a change of pace by introducing a variety of ways to use arbitrarily
close and away from to explore other classic properties of sets in Euclidean spaces.

Exercises
3.5.1. An analogue of Theorem 3.2.17 holds for collections of compact sets. Prove the following
properties regarding compact sets in Rm hold:

(i) The empty set ∅ is compact, but Rm is not.

(ii) The union of any finite number of compact sets is compact.

(iii) The intersection of any nonempty collection of compact sets is compact.

3.5.2. Suppose a < b and consider the set [a, b]\Q, the set of irrational numbers between a and
b. Prove [a, b]\Q is not compact.

3.5.3. Prove that if (xn) ⊆ Rm is bounded, then the set of subsequential limits Slim(xn) is
compact.

3.5.4. Recall the Cantor set C from Exercise 2.8.9.

(i) Prove the Cantor set C is compact.

(ii) Prove the Cantor set C is arbitrarily small in the following sense: For every ε > 0, there is
a finite collection of compact subintervals [a1, b1], . . . , [an, bn] ⊆ [0, 1] where

C ⊆
n⋃
j=1

[aj, bj] and
n∑
j=1

(bj − aj) < ε. (3.5.29)

Hint: Do an online search for the “middle third” construction of the Cantor set and find a
geometric sum for ∑n

j=1(bj − aj).

3.5.5. There is another equivalent form of compactness in Euclidean spaces: A set is coda-compact
if every sequence in the set has nonempty coda contained in the set. Prove K ⊆ Rm is compact
if and only K is coda-compact.

3.6 Other topological properties
The lenses provided by arbitrarily close and away from in Definitions 1.5.1 and 1.5.11 allow us to
explore classic concepts in an unconventional way. But please know I did not make the decision
to buck convention lightly.
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I believe arbitrarily close is the kernel of analysis. This perspective drives the way everything
in this textbook is designed. It gives me hope that the intuition and technical skills gained from
studying arbitrarily close and away from will make the process of finding your own understanding
of analysis a little smoother.

This section continues the trend of bucking convention by defining some classic concepts from
topology and analysis using arbitrarily close and away from. The theorems, lemmas, exercises,
etc., connect the concepts with their classic versions.

Let’s start with the set of points arbitrarily close to both a given set and its complement.

Definition 3.6.1: Boundary and boundary point

The boundary of a set B ⊆ Rm, denoted by ∂B, is the set of points arbitrarily close to both
B and its complement Rm\B. That is,

∂B = {y ∈ Rm : y aclB and y acl (Rm\B)} . (3.6.1)

A point y ∈ ∂B is called a boundary point of B.

Remark 3.6.2: Multiple figures

Figures 3.6.1, 3.6.2, and 3.6.3 along with Example 3.6.9 feature a set of real numbers E and
a set B in the plane along with their closures, boundaries, and other related sets defined in
this section. Please revisit them as you work through the definitions.

For a comparison of our definition for the boundary of a set with a classic approach, see [2,
Definition 2.13, p.65] but also the discussions on page 9 of that text where the phrase “arbitrarily
close” is used but not formally defined, and page 65 regarding “points that lie close to both the
inside and the outside of the set”.

The points in a set that come with some distance away from the complement form the interior
of the set.

Definition 3.6.3: Interior and interior point

The interior of a set B ⊆ Rm, denoted by Bo, is the set of points away from the complement
Rm\B. A point y ∈ Bo is called an interior point of B.

For a set B ⊆ Rm, its interior Bo is given by

Bo = {y ∈ Rm : y awf (Rm\B)} . (3.6.2)

As mentioned in Remark 3.2.3, the definition for away from (Definition 1.5.11) characterizes the
key feature of open sets (Definition 3.2.2): Points in an open set have neighborhoods contained
in the set. Take a look at Figure 3.6.2 again. The interior points a and b of the set B have
neighborhoods contained in B.

This leads us to the following relationship with the definition for interior (Definition 3.6.3), an
analogue of Lemma 3.1.2 which tells us closed sets are their closures. The proof is omitted since
it follows immediately from these definitions.
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Figure 3.6.1: The set of real numbers E from Examples 3.1.12, 3.2.6, and 3.6.9
along with its closure E, interior Eo, boundary ∂E, accumulation points E ′, and
isolated points IE. What does the exterior Ee look like? See Definitions 3.6.1
through 3.6.8.

Lemma 3.6.4: Open sets are their interiors

A set U ⊆ Rm is open if and only if U = U o.

By turning the tables and considering the points away from a set, we get the exterior.

Definition 3.6.5: Exterior and exterior point

The exterior of a set B ⊆ Rm, denoted by Be, is the set of points away from B. A point
y ∈ Be is called an exterior point of B.

For a set B ⊆ Rm, its exterior Be is given by
Be = {y ∈ Rm : y awf B} . (3.6.3)

Thus, an exterior point of a set comes with a neighborhood contained in the complement of the
set. In Figure 3.6.2, the exterior point w has a neighborhood contained in Rm\B. With this and
Lemma 3.6.4 in mind, we have the following result.

Theorem 3.6.6: Interior and exterior via neighborhoods

For any B ⊆ Rm we have:

(i) The interior of B, Bo, is the set of points in B which have a neighborhood contained
in B.
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•
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• ••••

w

z· · ·x1 x2

B = R ∪ {xn : n ∈ N}

Figure 3.6.2: A set B in the plane R2 which is the union of a rectangle R and
the range of a convergent sequence (xn). Here we have: x1, x2, y, and z are
boundary points of B; a and b are interior points of B; w is an exterior point
of B; a, b, y, and z are accumulation points of B; and x1 and x2 are isolated
points of B. See Example 3.6.9 and Definitions 3.6.1 through 3.6.8.

(ii) The exterior of B, Be, is the set of points in the complement Rm\B which have a
neighborhood in Rm\B.

Next up is an idea that characterizes the notion of a point having other points from a set
nearby.

Definition 3.6.7: Accumulation point

A point y ∈ Rm is an accumulation point of a set B ⊆ Rm if y acl(B\{y}), meaning y is
arbitrarily close to other points in B. The set of accumulation points of B is denoted by
B′.

For a set B ⊆ Rm, its set of accumulation points B′ is given by

B′ = {y ∈ Rm : y acl(B\{y})} . (3.6.4)

The penultimate definition of this section characterizes points in a set that are not near any
other points from the set.

Definition 3.6.8: Isolated point

A point y ∈ Rm is an isolated point of a set B ⊆ Rm if y ∈ B but y awf(B\{y}), meaning
y is in B but away from the rest of B. The set of isolated points of B is denoted by IB.

For a set B ⊆ Rm, its set of isolated points IB is given by

IB = {y ∈ Rm : y ∈ B and y awf(B\{y})} . (3.6.5)
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Figure 3.6.3: A set B in the plane R2 along with its closure B, interior Bo,
boundary ∂B, and accumulation points B′. Compare with Figure 3.6.2. What
do the exterior Be and isolated points IB look like? See Definitions 3.6.1 through
3.6.8.
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The following pair of examples help us explore a bunch of the definitions from this chapter in
the context of the plane R2 and the real line R.

Example 3.6.9: More points arbitrarily close to sets

To get a better idea of what’s going on with Definitions 3.6.1 through 3.6.8, consider the
subset B of the plane R2 in Figures 3.6.2 and 3.6.3, and for a subset of the real line R
consider the set E in Figure 3.6.1. We have

B = R ∪ {xn : n ∈ N} (3.6.6)

where R is a rectangle that includes its left side and two of its corners while {xn : n ∈ N}
is the range of a convergent sequence (xn) whose limit z is not in B.

The set E in Figure 3.6.1 is an uncountable set of real numbers which is neither an interval
nor the range of a sequence, but is the union of two such sets. E also appears in Examples
3.1.12 and 3.2.6 as well as their Figures 3.1.3 and 3.2.3. Here’s a summary.

original set: E = [0, 1) ∪ {2} ∪ {3 + (1/n) : n ∈ N} (3.6.7)
closure: E = [0, 1] ∪ {2} ∪ {3} ∪ {3 + (1/n) : n ∈ N} (3.6.8)

boundary: ∂E = {0, 1, 2, 3} ∪ {3 + (1/n) : n ∈ N} (3.6.9)
interior: Eo = (0, 1) (3.6.10)
exterior: Ee = (3.6.11)

(−∞, 0) ∪ (1, 2) ∪ (2, 3) ∪
[ ∞⋃
n=1

(
3 + 1

n+ 1 , 3 + 1
n

)]
∪ (4,∞) (3.6.12)

accumulation : E ′ = [0, 1] ∪ {3} (3.6.13)
isolated: IE = {2} ∪ {3 + (1/n) : n ∈ N} (3.6.14)

Theorem 2.3.1 establishes a central result which appears throughout the textbook: A point is
arbitrarily close to a set if and only if there is a sequence in the set whose limit is the point. The
negation of this statement is also useful: A point is away from a set if and only if no sequence in
the set converges to the point.

Together with the definitions found in this section—all of which involve arbitrarily close or
away from—we can immediately characterize closure, boundary, interior, exterior, accumulation
points, and isolated points in terms of sequences and where they converge. See the definitions for
tails (Definition 2.1.7), eventually (Definition 2.2.13) as well as Definitions 3.1.1 and 3.6.1 through
3.6.8. The characterizations are summarized in the following theorem.

Theorem 3.6.10: Limits versus sets

Let y ∈ Rm and B ⊆ Rm. Then:

(i) y ∈ B if and only if a sequence in B converges to y.

(ii) y ∈ ∂B if and only if a sequence in B and a sequence in Rm\B converge to y.
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(iii) y ∈ Bo if and only if the sequences that converge to y have a tail contained in B
(thus, they are eventually contained in B).

(iv) y ∈ Be if and only if no sequence in B converges to y.

(v) y ∈ B′ if and only if some sequence in B excludes y and converges to y.

(vi) y ∈ IB if and only if every sequence in B that converges to y has a constant tail
defined by the term y (thus, these sequences are eventually constant).

Totally disconnected sets exhibit a particular notion of sparseness.

Definition 3.6.11: Totally disconnected

A set S ⊆ Rm is totally disconnected if all of its connected subsets are singletons.

Example 3.6.12: Totally disconnected sequences

Consider the positive integers N and their reciprocals S given by

S = 1
N

=
{ 1
n

: n ∈ N
}

=
{

1, 1
2 ,

1
3 , . . .

}
. (3.6.15)

N and S are totally disconnected. Both sets are countable, so neither contains a nontrivial
open interval, which are uncountable. (See Exercise 2.8.8.) Hence, the only connected
subsets of N and S are singletons.

The next and final definition in this section provides a characterization of sets which provide
a nice approximations of the points in a given set.

Definition 3.6.13: Dense

Given two sets A,B ⊆ Rm, we say A is dense with respect to B if every point in B is
arbitrarily close to A. In this case, we have B ⊆ A. If we also have A ⊆ B, then we say A
is dense in B.

Remark 3.6.14: Density results

A nice way to interpret the meaning of density as in Definition 3.6.13 is as follows:
Thinking of B as a set of points we’d like to approximate and A is dense with respect to
B, then we can use the points in A as approximations for the points in B and make the
approximations as close as we like.

We have already seen statements involving density. Here’s a summary involving rational
and irrational real numbers:

(i) Q is dense in R: Every real number is approximately a rational number. See Theorem
1.4.10.
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(ii) R\Q is dense in R: Every real number is approximately an irrational number. See
Corollary 1.4.13.

(iii) Q is dense with respect to R\Q: Every rational number is approximately irrational.
This follows immediately from (ii).

(iv) R\Q is dense with respect to Q: Every irrational number is approximately rational.
This follows immediately from (i).

The next chapter explores the ways in which functions preserve closeness. For instance, what
kind of function will take a point arbitrarily close to a subset of the domain and preserve that
closeness in their images? This type of question leads to parallel approaches for continuity and
limits of functions.

Exercises
3.6.1. Give an example to show that the interior of a connected set is not necessarily connected.

3.6.2. Give examples of nonempty sets with the following properties:

(i) A set A where both Ao = ∅ and Ae = ∅.

(ii) A set B where B′ = B.

(iii) A set C where C is infinite, C = IC , and C ′ = ∅.

(iv) A set D which is open and yet D ⊆ D.

(v) A countable set E whose boundary ∂E is uncountable.

3.6.3. Prove for every B ⊆ Rm we have the following:

(i) B = B ∪B′.

(ii) IB = B\B′.

(iii) ∂B = B\Bo.

3.6.4. Prove the interior of a given set in Rm is the largest open set contained in the given set in
the following sense: Given a set S ⊆ Rm, every open set which is contained in S is also contained
in the interior So.

3.6.5. Prove the closure of a given set in Rm is the smallest closed set containing the given set
in the following sense: Given a set T ⊆ Rm, every closed set that contains T is also contains the
closure T .
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3.6.6. Given any set B ⊆ Rm, prove the trio of sets Bo, Be, and ∂B are pairwise disjoint and we
have Bo ∪Be ∪ ∂B = Rm.

3.6.7. Prove Q and R\Q are totally disconnected.

3.6.8. Prove nonempty countable subsets of Rm are totally disconnected. In contrast, find an
example of a countably infinite subset of the real line R whose closure is connected.

3.6.9. Recall the Cantor set C from Exercises 2.8.9 and 3.5.4. Prove the Cantor set is totally
disconnected.



Chapter 4

Continuity

How do functions transform points, sets, and sequences? If a given sequence has one of the
properties explored in Chapter 2 like convergence or boundedness, does its image under a function
have the same property? If a set is closed, connected, or compact, or if it has another topological
property from Chapter 3, can we say the same about its images?

Our focus will be on functions that map one Euclidean space to another, often the real line to
the real line. And of course, arbitrarily close and away from provide fruitful perspectives to build
on.

Notions such as continuity, limits, convergence, and codas defined in this chapter allow us
to explore to the structure and behavior of functions. The first section builds on the formal
definitions for functions and images covered in Section 1.2 by delving into some of their basic
structures and adds a formal definition and various descriptions of preimages. (See Definition
4.1.7.)

4.1 Functions, images, and preimages
The following terminology and notation summarizes a few of the definitions involving functions
and sequences given in Section 1.2 and elsewhere. Moving forward, the term image is used as a
catch-all to refer to the outputs we get when plugging various inputs into a function.

Notation 4.1.1: Images

The following terminology and notation may be used whenever f : A→ B, summarizing a
few of the definitions given in Section 1.2 and elsewhere:
(i) Images of points are points: When f(x) = y, we say x is an input in the domain A

and y is its output or image in the range f(A).

(ii) Images of sequences are sequences: For a sequence (xn) in the domain A, its output
or image is the sequence (f(xn)) in the range f(A).

(iii) Images of sets are sets: For a subset S of the domain A, its image f(S) is the subset

245
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Figure 4.1.1: The function f : R → R in Example 4.1.2 given by f(x) = x/2
transforms the connected interval I = [0, 4] into the connected interval f(I) =
[0, 2].

of the range f(A) given by

f(S) = {y ∈ B : f(x) = y for some x ∈ S} ⊆ f(A). (4.1.1)

For the definitions of function, domain, range, and image, see Definitions 1.2.12, 1.2.13, and
1.2.14. A formal definition for sequences is provided by Definition 2.1.1.

The examples in this section focus on images and preimages of points and sets. Sequences
are explored later since we have plenty explore for now and sequences will add an interesting
perspective.

For a first set of examples to get the ball rolling and revisit throughout the chapter, we consider
a quartet of functions from the real line to the real line. How do these functions transform sets?
What do their images look like?

Example 4.1.2: A line with slope 1/2

Consider the function f : R→ R given by given by

f(x) = x/2. (4.1.2)

See Figure 4.1.1 which features the connected and compact interval I = [0, 4] in the domain
along with its image f(I) = [0, 2] which is also connected and compact. Both I = [0, 4]
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Figure 4.1.2: The function g : R → R in Example 4.1.3 transforms the con-
nected interval I = [0, 4] into the disconnected image g([0, 4]) = [0, 1) ∪ [2, 3].

and f(I) = [0, 2] are intervals, so they are connected by Theorem 3.3.17. Both I = [0, 4]
and f(I) = [0, 2] are closed and bounded, so by the Heine-Borel Theorem 3.5.1, both are
compact.

Based on my intuition from calculusa, it looks to me like f is continuous at c = 2. Actually,
it looks like f is continuous at every c ∈ I = [0, 4], but for now my focus is on c = 2
specifically.

aFrom way back at the start of my senior year of high school in 1996.

Example 4.1.3: A piecewise defined function

Consider the function g : R→ R given by

g(x) =
x/2, if x < 2,

1 + (x/2), if x ≥ 2.
(4.1.3)

See Figure 4.1.2 which features the connected and compact interval I = [0, 4] in the
domain along with its image g([0, 4]) = [0, 1) ∪ [2, 3] which is neither connected nor
compact. The sets [0, 1) and [2, 3] form a separation of g([0, 4]), so g([0, 4]) is discon-
nected. The real number 1 is arbitrarily close to but not in g([0, 4]), so g([0, 4]) is not closed.
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Figure 4.1.3: The graph of the square function h : R→ R given by h(x) = x2 in
Example 4.1.4 transforms the connected interval J = [−2, 2] into the connected
interval h(J) = [0, 4]. The two distinct real numbers −1 and 1 in the domain
map to the same image 1 in the range.

My intuition tells me g is discontinuous at c = 2. The graph of g (in blue) has a definitive
break, a jump in the height from 2 to 3 at c = 2. Continuous functions should not create
jumps like this, right? But how can we capture that behavior with our definitions?

Example 4.1.4: The square function

Figure 4.1.3 features the graph of the function h : R→ R given by

h(x) = x2. (4.1.4)

Note h(−1) = h(1) = 1 and the range is h([−2, 2]) = [0, 4]. Both J = [−2, 2] and h(J) =
[0, 4] are intervals, so they are connected by Theorem 3.3.17. Both J = [−2, 2] and h(J) =
[0, 4] are closed and bounded, so by the Heine-Borel Theorem 3.5.1, both are compact. Also,
h is not one-to-one since h(−1) = h(1) = 1. My intuition tells me h is continuous at every
point in its domain.
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Example 4.1.5: Images of sine

Consider the trigonometric function s : R→ R and subsets of the domain T and U where

s(x) = sin x, T = {πz : z ∈ Z}, and U = (0, 2π). (4.1.5)

A couple things to note:

(i) The set T = {πz : z ∈ Z} is countable since Z is countable by Example 2.8.3 and its
image is a singleton

s(T ) = {sin πz : z ∈ Z} = {0}. (4.1.6)

(ii) The interval U = (0, 2π) is open but its image s(U) = [−1, 1] is not open since 1 is in
s(U) but no neighborhood of 1 is contained in s(U).

To get a glimpse into how functions between Euclidean spaces behave, consider the following
example which transforms a disk in the plane R2 to a disconnected subset of the real line R.

Example 4.1.6: A function from the plane to the real line

Consider the function w : R2 → R given by

w(x) =
‖x‖, if 0 ≤ ‖x‖ < 1,

2, if ‖x‖ ≥ 1.
(4.1.7)

The function w maps every point in the open unit disk V1(0) to its magnitude (also its
length from the origin) and maps every point outside of V1(0) to 2.

In Figure 4.1.4 featuring the function w, the standard basis vectors e1 and e2 are plotted as
points (•) instead of arrows. Since neither e1 nor e2 is in V1(0), we have w(e1) = w(e2) = 2.

In the domain, the unit circle C contains the unit vectors e1 and e2 which are arbitrarily
close to open unit disk V1(0). However, in the range the images w(e1) = w(e2) = 2 and
w(V1(0)) = [0, 1) are away from each other. This is dichotomy is true of every point in C
and their images since

w(V1(0)) = [0, 1) while w(C) = {2}. (4.1.8)

Does this mean w is discontinuous?

Preimages also play an important role in the study of functions, especially when it comes to
continuity. Preimages are also called inverse images.
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•e2

•e1

V1(0) ∪ C

7→

w(V1(0) ∪ C) = [0, 1) ∪ {2}

[ ) •
0 1 2

Figure 4.1.4: In Example 4.1.6, we have e1 and e2 are in the unit circle C, but
neither is in the open unit disk V1(0). However, we have both e1 aclV1(0) and
e2 aclV1(0) in the domain. But the function w transforms e1, e2, and V1(0) into
images w(e1) = w(e1) = 2 and w(V1(0)) = [0, 1) which are away from each other
in the range.

Definition 4.1.7: Preimage

Given a function f : A→ B and a subset S of the codomain B (so S ⊆ B), the preimage of
S is the subset of the domain whose image is S. The preimage of S is denoted by f−1(S)
and given by

f−1(S) = {x ∈ A : f(x) ∈ S ⊆ B}. (4.1.9)

Remark 4.1.8: Terminology of preimages

The word preimage is used in multiple contexts, namely points, sequences, and sets. This
is similar to way we use the word image as in Notation 4.1.1, but we are not as definitive.

For instance, in Example 4.1.11 where h(x) = x2 we can ask: What is h−1(5), the preimage
of the real number

√
5? Depending on the conversation, the answers “

√
5”, “−

√
5”, or

even “
{√

5,−
√

5
}
” could make sense. Of course, the first two are points and the second is

a set. Sometimes, the preimage of a point could be a sequence.

Instead of providing a formal definition for the preimage of a point or a sequence, situations
are handled more loosely in general but made specific by the context at hand when they
come up. However, in agreement with Definition 4.1.7, preimages of sets are always sets.

Example 4.1.9: Preimages of a line

Consider the function f : R → R from Example 4.1.2 and subsets of the codomain E and
G where

f(x) = x/2, E = {1}, and G = (0, 2). (4.1.10)
Every real number y in the codomain R is the image of exactly one real number xy = 2y in
the domain since

f(xy) = xy/2 = (2y)/2 = y. (4.1.11)
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graph
of f
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0
x

y

f

• |

•
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E •
1

f−1(E) •
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0 2

f−1(G) ( )
0 4

Figure 4.1.5: The preimage of the singleton E = {1} is the singleton f−1(E) =
{2} while the preimage of the open set G = (0, 2) is the open set f−1(G) = (0, 4).
See Example 4.1.9.

This shows f is onto and the preimages of E and G are given

f−1(E) = {2}, and f−1(G) = (0, 4). (4.1.12)

See Figure 4.1.5. A few things to note:

(i) E = {1} is a closed singleton in the codomain and its preimage f−1(E) = {2} is a
closed singleton in the domain.

(ii) G = (0, 2) is an open interval in the domain and f−1(G) = (0, 4) is an open interval
in the domain.

Example 4.1.10: Preimages of a piecewise defined function

Consider the function g : R → R from Example 4.1.3 and the subset of the codomain H
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graph
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Figure 4.1.6: The preimage of the singleton F = {2} is the singleton g−1(F ) =
{2}. The set H = (1, 3) is open in the codomain, but its preimage g−1(H) = [2, 4)
is not open in the domain. See Example 4.1.10.

where

g(x) =
x/2, if x < 2,

1 + (x/2), if x ≥ 2,
and H = (1, 3). (4.1.13)

See Figure 4.1.6. The interval H = (1, 3) is open in the codomain, but its preimage g−1(H)
is not open in the domain: We have

g−1(H) = [2, 4) (4.1.14)

and 2 is in g−1(H) but no neighborhood of 2 is contained in g−1(H).
Also, in the codomain R, no real number in the interval [1, 2) is an output of g, so g is not
onto.
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Example 4.1.11: Preimages of the square function

Consider the function h : R→ R and subsets of the codomain S, T , and U where

h(x) = x2, S = {1}, T = [−4,−1], and U = (0, 4). (4.1.15)

Their preimages are given by

h−1(S) = {−1, 1} , h−1(T ) = ∅, and h−1(U) = (−2, 2). (4.1.16)

See Figure 4.1.7. A few things to note:

(i) S = {1} is a singleton but its preimage h−1(S) = {−1, 1} is not. So, h is not one-to-
one.

(ii) Since every real number in T = [−4,−1] is negative but all the outputs of h(x) = x2

are nonnegative, no real number in the domain maps into T . So, h−1(T ) = ∅ and h
is not onto.

(iii) U = (0, 4) is open in the codomain and its preimage h−1(U) = (−2, 0)∪ (0, 2) is open
in the domain.

Example 4.1.12: Preimages of sine

Consider the function s : R→ R and subsets of the codomain A,B, and C where

s(x) = sin x, A = {1}, B = [2,∞), and C =
(
−1

2 ,
1
2

)
. (4.1.17)

A few things to note:
(i) The preimage of A = {1} is the range of a sequence since

s−1({1}) =
{
π

2 + 2πz : z ∈ Z
}

(4.1.18)

and Z is countable by Example 2.8.3.

(ii) We have s−1(B) = ∅ since every real number in the interval B = [2,∞) is at least 2
but the outputs s(x) = sin x are bounded by 1: For every x ∈ R we have

|s(x)| = | sin x| ≤ 1 ⇐⇒ −1 ≤ sin x ≤ 1. (4.1.19)

(iii) The interval C and its preimage s−1(C) are open since open intervals are open sets
and

s−1(C) = s−1
((
−1

2 ,
1
2

))
(4.1.20)

= . . . ∪
(
−π6 ,

π

6

)
∪
(5π

6 ,
7π
6

)
∪
(11π

6 ,
13π
6

)
. . . (4.1.21)

=
⋃
z∈Z

(
πz − π

6 , πz + π

6

)
. (4.1.22)
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Figure 4.1.7: The set S = {1} in the codomain is a singleton but its preimage
h−1(S) = {−1, 1} in the domain is not. The set U = (0, 4) is open in the
codomain and its preimage h−1(U) = (−2, 0) ∪ (0, 2) is open in the domain. See
Example 4.1.11.
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This section concludes with the relationship between preimages, unions, and intersections.
Unions and images have a different relationship with images, as explored in the exercises.

Lemma 4.1.13: Preimages of unions and intersections

Suppose D ⊆ Rk and f : D → Rm. Then the preimages of f respect unions and intersec-
tions, as follows: For any A,B ⊆ Rm we have

(i) f−1(A ∪B) = f−1(A) ∪ f−1(B); and

(ii) f−1(A ∩B) = f−1(A) ∩ f−1(B).

Note that A and B are subsets of the codomain Rm.

Scratch Work 4.1.14: Follow from the definitions

Both parts of Lemma 4.1.13 follow from the definitons of preimages, unions, and intersec-
tions. Basically, points in the union of two sets in the codomain come from at least one
of their preimages, while points in the intersection of two sets in the codomain must be in
both preimages. And vice versa.

Proof of Lemma 4.1.13. Throughout the proof, suppose we have D ⊆ Rk, f : D → Rm, and
A,B ⊆ Rm. By the definitions of union and intersection (Definition 1.2.5) and the definition of
preimage (Definition 4.1.7), we have

f−1(A ∪B) = {x ∈ D : f(x) ∈ A or f(x) ∈ B} (4.1.23)
= {x ∈ D : f(x) ∈ A} ∪ {x ∈ D : f(x) ∈ B} (4.1.24)
= f−1(A) ∪ f−1(B) (4.1.25)

as well as

f−1(A ∩B) = {x ∈ D : f(x) ∈ A and f(x) ∈ B} (4.1.26)
= {x ∈ D : f(x) ∈ A} ∩ {x ∈ D : f(x) ∈ B} (4.1.27)
= f−1(A) ∩ f−1(B). (4.1.28)

The next section develops my personal take on continuity: Continuity is when a function
transforms a point and set which are arbitrarily close into images which are arbitrarily close. This
version of continuity is called the preservation of closeness.

Exercises
4.1.1. Give an example of a function g : U → R where U ⊆ R is open but not closed and yet its
image g(U) is closed.
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4.1.2. Give an example of a function t : F → R where F ⊆ R is closed but not open and yet its
image t(F ) is open.

4.1.3. Give an example of a function q : B → R where B ⊆ R is a bounded interval and yet its
image q(B) is an unbounded interval.

4.1.4. Give an example of a function v : S → R where S ⊆ R and (xn) is a convergent sequence
in I whose image (v(xn)) diverges.

4.1.5. Suppose D ⊆ Rk, f : D → Rm, and S, T ⊆ Rm. The image of a union is the union of
images, but something else holds for intersections.

(i) Prove f(S ∪ T ) = f(S) ∪ f(T ).

(ii) Prove f(S ∩ T ) ⊆ f(S) ∩ f(T ).

(iii) Find an example where f(S ∩ T ) ( f(S) ∩ f(T ). (That is, the containment in (ii) can be
proper.)

4.1.6. Consider the square function h : R→ R given by h(x) = x2. Fix c ∈ R and let δ > 0.

(i) Show that the image of the δ-neighborhood h(Vδ(c)) = h((c− δ, c+ δ)) is an interval.

(ii) Find a value of c0 ∈ R such that h(Vδ(c0)) = h((c0− δ, c0 + δ)) is not open, regardless of the
value of δ.

4.1.7. Consider the square function h : R → R given by h(x) = x2. Fix c ∈ R and let ε > 0.
Prove that the inverse image h−1(Vε(h(c)) = h−1((h(c)− ε, h(c) + ε)) is an open interval.

4.2 Preserving closeness
Continuous functions preserve many properties by transforming sets and sequences while keeping
much of their structures intact. For instance, continuous functions leave intervals unbroken since
their images are intervals. But how does the formal definition for continuity (Definition 4.3.2)
capture an ability to preserve properties? And how can we motivate this vital but notoriously
difficult definition?

This section looks at how functions transform relationships between points and sets in the
domain using arbitrarily close and away from (Definitions 1.5.1 and 1.5.11).

Let’s revisit the functions f and g from Section 4.1 in and add the function v in Example 4.2.4
to help us along. For f, g, and v, let’s consider a common collection of intervals and a common
real number and see how they’re transformed by these functions.

Example 4.2.1: A quarter of sets

Consider the following quartet of intervals, each of which is arbitrarily close to c = 2. See
Figure 4.2.1.
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E1 [ •)
0 2

E2 [• ]
2 4

E3 ( • )
1 2 3

E4 (•)
7/4 2

Figure 4.2.1: Various intervals in the real line R from Example 4.2.1. Each is
connected, arbitrarily close to c = 2, and used throughout this section.

(i) E1 = [0, 2)

(ii) E2 = [2, 4]

(iii) E3 = (1, 3)

(iv) E4 = (7/4, 2)

Recall that for a distance δ > 0, the δ-neighborhood of c in the real line R is the open
interval

Vδ(c) = (c− δ, c+ δ). (4.2.1)

For instance, E3 is a δ-neighborhood of c = 2 with δ = 1. We have

V1(2) = (2− 1, 2 + 1) = (1, 3) = E3. (4.2.2)

My use of the variable δ instead of ε is deeply intentional, by the way.

Example 4.2.2: Images under a function defining a line

For the function f : R→ R from Examples 4.1.2 and 4.1.9 given by

f(x) = x/2, (4.2.3)

we have the images

(i) f(2) = 1,

(ii) f(E1) = f([0, 2)) = [0, 1),

(iii) f(E2) = f([2, 4]) = [1, 2],

(iv) f(E3) = f((1, 3)) = (1/2, 3/2), and

(v) f(E4) = f((7/4, 2)) = (7/8, 1).
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Figure 4.2.2: Images under f of the intervals from Example 4.2.1. Each interval
in the domain is connected and arbitrarily close to 2, while their images are
connected and arbitrarily close to f(2) = 1. See Example 4.2.2.
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See Figure 4.2.2. In the domain, the point c = 2 is arbitrarily close to each of the Ek
intervals. The function f maps the point 2 and the sets Ek to a point f(2) = 1 and sets
f(Ek) in the range in a way that preserves closeness. That is, at least for k = 1, 2, 3, 4, we
have f ensures

2 aclEk =⇒ f(2) acl f(Ek). (4.2.4)

What about g?

Example 4.2.3: Images under a split line

For the function g : R→ R from Examples 4.1.3 and 4.1.10 given by

g(x) =
x/2, if x < 2,

1 + (x/2), if x ≥ 2,
(4.2.5)

we have the images

(i) g(2) = 2,

(ii) g(E1) = g([0, 2)) = [0, 1),

(iii) g(E2) = g([2, 4]) = [2, 3],

(iv) g(E3) = g((1, 3)) = (1/2, 1) ∪ [2, 5/2), and

(v) g(E4) = g((7/4, 2)) = (7/8, 1).

See Figure 4.2.3. What do you notice?

Let’s investigate the images of the Ek one at a time. Even though 2 is arbitrarily close to
E1 in the domain, in the range g(2) = 2 is away from g(E1) = [0, 1). That is,

2 aclE1 but g(2) awf g(E1). (4.2.6)

So, g does not preserve the closeness of 2 and E1 like f does.

On other hand, g(2) = 2 is in both g(E2) and g(E3), so g(2) is arbitrarily close to both
of these images by Lemma 1.5.4. However, in the case of g(E3), g did not preserve the
connectedness of the interval E3 = (1, 3) since g(E3) = (1/2, 1) ∪ [2, 5/2) is disconnected
(see Definition 3.3.12).

The case for E4 is like E1. We have

2 aclE4 but g(2) awf g(E4). (4.2.7)

We can prove g(2) awf g(E1) and g(2) awf g(E4) simultaneously using the definition of away
from (Definition 1.5.11).
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Figure 4.2.3: Images under g of the intervals from Example 4.2.1. Each interval
in the domain is connected and arbitrarily close to 2, but their images have
different relationships with g(2) = 2. See Example 4.2.3.
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Proof for Example 4.2.3. Every output g(x) in either g(E1) or g(E4) satisfies g(x) < 1 ≤ 2.
Hence, when x ∈ E1 or x ∈ E4, by the reverse triangle inequality (1.2.37) we have

|g(x)− g(2)| = |g(x)− 2| = 2− g(x) > 1. (4.2.8)

Hence, g(2) awf g(E1) and g(2) awf g(E4).

The next example behaves somewhat differently at c = 2.

Example 4.2.4: Images under another piece-wise defined function

Consider the unbounded function v : R→ R given by

v(x) =


1

2− x, if x < 2,

1 + x

2 , if x ≥ 2.
(4.2.9)

For the function v we have images v(2) = 2 and

(i) v(E1) = v([0, 2)) = [1/2,∞),

(ii) v(E2) = v([2, 4]) = [2, 3],

(iii) v(E3) = v((1, 3)) = (1,∞), and

(iv) v(E4) = v((7/4, 2)) = (4,∞).

See Figure 4.2.4. What do you notice this time?

It looks like v preserves the connectedness of all of the Ek intervals since all of the images
v(Ek) are intervals, too. (See Theorem 3.3.17.)

But the images v(E4) = (4,∞) and v(2) = 2 in Figure 4.2.4 show us v does not preserve
the closeness between c = 2 and E4 = (7/2, 2). We have

2 aclE4 but v(2) awf v(E4). (4.2.10)

Once again, we can prove v(2) awf v(E4) using the definition of away from (Definition 1.5.1).

Proof for Example 4.2.4. Every output v(x) in v(E4) satisfies v(x) > 4 > 2. Hence, when x ∈ E4
we have

|v(x)− v(2)| = |v(x)− 2| = v(x)− 2 > 4− 2 = 2. (4.2.11)

Therefore, v(2) awf v(E4).

But the function f is different. Example 4.2.2 and Figure 4.2.2 suggest f preserves the closeness
at c = 2 to not only the intervals E1, E2, E3, and E4, but any set in the real line that’s arbitrarily
close to c = 2.
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Figure 4.2.4: Images under v of the intervals from Example 4.2.1. All of the
images are connected, but only v(E4) = (4,∞) is away from v(2) = 2. See
Example 4.2.4.
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How can we prove this? We need definition for preserving closeness to work with.

Definition 4.2.5: Preserving closeness

Let D ⊆ Rk, c ∈ D, and f : D → Rm. We say f preserves closeness at c if for every subset
E of the domain D we have

c aclE =⇒ f(c) acl f(E). (4.2.12)

If f preserves closeness at every point in its domain D, we say f preserves closeness.

So, whether E is an interval, the range of a sequence, or something else, if f preserves closeness
at c, then anytime E is arbitrarily close to c in the domain we also have f(E) is arbitrarily close
to f(c) in the range.

To show a function does not preserve closeness at c, it suffices to find a single set in the domain
arbitrarily close to c whose image is away from the image of c.

Example 4.2.6: Not preserving closeness

The functions g and v from Examples 4.1.3 and 4.2.4 do not preserve closeness at c = 2.
Recall that E4 = (7/4, 2). We have:

(i) 2 aclE4 but g(2) awf g(E4); and

(ii) 2 aclE4 but v(2) awf v(E4).

What about the case when we believe a function f preserves closeness? It is more difficult
since we would need to prove that for any subset E of the domain where c aclE we end up
with f(c) acl f(E). More importantly, the process of proving a function preserves closeness via
Definition 4.2.5 is very similar to the process of proving a function is continuous via its Definition
4.3.2.

Example 4.2.7: The line f preserves closeness

The function f : R→ R given by

f(x) = x/2 (4.2.13)

preserves closeness at c = 2. See Figure 4.2.5.

Scratch Work 4.2.8: Start at the end

Given the definition of preserving closeness (Definition 4.2.5), it looks like we should
consider the definition for arbitrarily close twice: Can we show arbitrarily close in the
domain implies arbitrarily close in the range? See Definitions 1.1.8 and 1.5.1 for the
definitions of arbitrarily close in the real line and Euclidean spaces, respectively.
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As done throughout Chapters 1 and 2, the scratch work starts at the end. To show
f(c) acl f(E), first consider how close we would like the images f(E) and f(c) = f(2) = 1
to be, again using ε > 0 to denote an arbitrary positive distance. The goal is to end up
with this: For some f(x) ∈ f(E), we have

|f(x)− f(c)| =
∣∣∣∣x2 − c

2

∣∣∣∣ < ε. (4.2.14)

To ensure f(x) ∈ f(E), we consider x ∈ E only.

To ensure f(x) is within ε of f(c), we can use the assumption that E is arbitrarily close to
c = 2 in the domain. That is, given any positive distance ε > 0 for the range, we want to
find a distance δε > 0 for the domain where

x ∈ E with |x− c| < δε =⇒ |f(x)− f(c)| < ε. (4.2.15)

This is a key step: Since f(x) = x/2, we can try to find a suitable formula for δε by
multiplying the inequality (4.2.14) through by 2. We get

|x− c| < 2ε = δε. (4.2.16)

Since 2 aclE, there is some xε in E and within δε = 2ε of c = 2. We should end up with
f(c) acl f(E).

Time for a proof. The key step in the scratch work of finding a suitable distance δε for the
domain pays off right after asserting the assumptions. Please keep Figure 4.2.5 in mind as
you work through it.

Proof for Example 4.2.7. Let ε > 0 denote an arbitrary positive distance in the range and suppose
E is arbitrarily close to c = 2 in the domain. For the domain, choose the distance δε given by

δε = 2ε. (4.2.17)

Since δε > 0 and c = 2 is arbitrarily close to E, by the definition of arbitrarily close in the real
line (Definition 1.1.8) there is a real number xε where

xε ∈ E and |xε − c| < 2ε = δε. (4.2.18)

We have f(x) = x/2 for every real number x, so

|f(xε)− f(c)| =
∣∣∣∣xε2 − c

2

∣∣∣∣ = 1
2 |xε − c| <

1
2(2ε) = ε. (4.2.19)

Also, xε ∈ E implies f(xε) ∈ f(E), hence f(c) = f(2) = 1 is arbitrarily close to f(E). Therefore,
f preserves closeness at c = 2.

Example 4.2.7 extends to the more general setting of basic affine transformations without
much effort. They transform their inputs by a scaling followed by a translation.
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(i) f(2) = 1 •

0
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f
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•

2
|
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1 + ε
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(ii) f(2) = 1 •
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2

1 + ε
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2− δε 2 + δε
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•
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Figure 4.2.5: A three-step figure built on E = [0, 4] in the domain to accompany
the scratch work and proof that f(x) = x/2 preserves closeness at c = 2: (i) Start
with an ε > 0 to give us a distance around f(c) = f(2) = 1; (ii) the key step,
do scratch work to find a suitable distance δε > 0 around c = 2; (iii) use the
assumption c aclE to prove there is some point xε is in E and within δε of c = 2,
leading to an output f(xε) in f(E) and within ε of f(c) = f(2) = 1. This shows
f(c) acl f(E).



266 CHAPTER 4. CONTINUITY

Definition 4.2.9: Basic affine transformation

A basic affine transformation is a function f : Rm → Rm given by a linear combination of
form

f(x) = αx + v (4.2.20)

where α ∈ R and v ∈ Rm.

Theorem 4.2.10: Basic affine transformations preserve closeness

If f : Rm → Rm is a basic affine transformation given by f(x) = αx + v where α ∈ R and
v ∈ Rm, then f preserves closeness.

Scratch Work 4.2.11: Generalize an example

Following Scratch Work 4.2.8, let’s start at the end. From the definition of preserving
closeness (Definition 4.2.5), we want to show f(c) acl f(E). By the definition for arbitrarily
close (Definition 1.5.1) and assuming f(x) = αx + v, applying the homogeneity of the
Euclidean norm (1.2.33) tells us we want to end up with

‖f(xε)− f(c)‖m = ‖αxε + v− (αc + v)‖m (4.2.21)
= ‖α(xε − c)‖m (4.2.22)
= |α|‖xε − c‖m (4.2.23)
< ε (4.2.24)

for some xε ∈ E. To take advantage of the assumption that c is arbitrarily close to a
set E ⊆ Rm in the domain, dividing by |α| suggests a suitable choice for a distance δε to
constrain the domain is given by

δε = ε

|α|
. (4.2.25)

However, such a choice is only valid when |α| 6= 0. To compensate, the proof is broken into
two cases: α = 0 and α 6= 0. When α = 0, the proof becomes trivial in the sense that
f(c) acl f(E) regardless of the point c and the set E.

Proof of Theorem 4.2.10. Throughout the proof, suppose f : Rm → Rm is given by f(x) = αx+v
for some α ∈ R and v ∈ Rm. Also, suppose c ∈ Rm and E ⊆ Rm where c aclE.

Case (i): Suppose α = 0. Then for every x ∈ E we have f(x) = αx+v = v, hence f(E) = {v}.
Since f(c) = v as well and points in a set are arbitrarily close to the set (Lemma 1.5.4), we have

v acl {v} ⇐⇒ f(c) acl f(E). (4.2.26)

Therefore, f preserves closeness when α = 0.
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Case (ii): Now suppose α 6= 0 and let ε > 0. Since |α| 6= 0, define

δε = ε

|α|
(4.2.27)

to provide a constraint for the domain. Since c aclE and δε > 0, by the definition of arbitrarily
close (Definition 1.5.1), there is a point xε ∈ E such that

f(xε) ∈ f(E) and ‖xε − c‖m < δε = ε

|α|
. (4.2.28)

Hence, by the homogeneity of the Euclidean norm (1.2.33) we have

‖f(xε)− f(c)‖m = ‖αxε + v− (αc + v)‖m (4.2.29)
= ‖α(xε − c)‖m (4.2.30)
= |α|‖xε − c‖m (4.2.31)

< |α| · ε
|α|

(4.2.32)

= ε. (4.2.33)

Therefore, f(c) acl f(E) and f preserves closeness when α 6= 0.

Let’s work through another challenging example.

Example 4.2.12: The square function preserves closeness

The function h : R→ R given by

h(x) = x2 (4.2.34)

preserves closeness at c = 0.

Scratch Work 4.2.13: Square function preserves closeness at c = 0

The scratch work here follows a path similar to Scratch Work 4.2.8 as laid out in Figure
4.2.5:

• Start at the end using ε > 0;

• key step, find a suitable δε > 0;

• use arbitrarily close in the domain to conclude we have arbitrarily close in the range.

The goal is to end up with this: Given h(x) = x2, c = 0, c aclE in the domain, and a
distance ε > 0 for the range, we want some h(x) ∈ h(E) where

|h(x)− h(c)| = |x2 − 02| = x2 < ε. (4.2.35)

To ensure h(x) ∈ h(E), we consider x ∈ E only.
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Next is the key step: Find a suitable distance δε > 0 for the domain where

x ∈ E with |x− c| = |x| < δε =⇒ |h(x)− h(c)| = x2 < ε. (4.2.36)

We can do this by taking square roots in the inequality x2 < ε. Since c = 0, we get

|x− c| = |x| <
√
ε = δε. (4.2.37)

By assumption, c aclE. So, there is some xε in E and within δε =
√
ε of c = 0. We should

end up with h(c) acl h(E).

One again, the key step of finding a suitable distance δε for the domain pays off early in the
proof.

Proof for Example 4.2.12. Let ε > 0 denote an arbitrary positive distance in the range and sup-
pose E is arbitrarily close to c = 0 in the domain. For the domain, choose the distance δε given
by

δε =
√
ε. (4.2.38)

Since δε > 0 and c = 0 is arbitrarily close to E, by the definition of arbitrarily close in the real
line (Definition 1.1.8) there is a real number xε where

xε ∈ E and |xε − c| = |xε| <
√
ε = δε. (4.2.39)

We have h(x) = x2 for every real number x and 0 ≤ y < z implies y2 < z2, therefore

|h(xε)− h(c)| = |x2
ε − 02| = x2

ε < (
√
ε)2 = ε. (4.2.40)

Also, xε ∈ E implies h(xε) ∈ h(E), hence h(c) = h(0) = 0 is arbitrarily close to h(E). So, h
preserves closeness at c = 0.

As evidenced by the effort it took to establish the results in this section, it can be quite a
challenge to prove functions preserve closeness. On the other hand, proving a function does not
preserve closeness can be relatively straightforward.

Example 4.2.14: Dirichlet’s function

Consider Dirichlet’s function, the indicator function of the rationals 1Q : R→ R given by

1Q(x) =
1, if x ∈ Q,

0, if x ∈ R\Q.
(4.2.41)

Dirichlet’s function 1Q does not preserve closeness at any c ∈ R.

The proof follows from the density of both the rationals and the irrationals in the real line
(Theorem 1.4.10 and Corollary 1.4.13, respectively).
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Proof for Example 4.2.14. Suppose c ∈ Q and y ∈ R\Q. Then

1Q(c) = 1 and 1Q(y) = 0. (4.2.42)

Hence, 1Q(R\Q) = {0}. By the density of the irrationals in the reals (Corollary 1.4.13), we have
c aclR\Q. However, using the distance ε0 = 1/2 and the definition of away from (Definition
1.5.11), we have 1 awf{0}. Therefore, 1Q does not preserve closeness at c since

c aclR\Q but 1Q(c) awf 1Q(R\Q). (4.2.43)

A similar argument handles the complementary situation. Suppose c ∈ R\Q and x ∈ Q. Then

1Q(c) = 0 and 1Q(x) = 1. (4.2.44)

Hence, 1Q(R\Q) = {1}. By the density of the rationals in the reals (Theorem 1.4.10), we have
c aclQ. However, by using the distance ε0 = 1/2 again, we have 0 awf{1}. Thus, 1Q does not
preserve closeness at c since

c aclQ but 1Q(c) awf 1Q(Q). (4.2.45)

Therefore, 1Q does not preserve closeness at any c ∈ R.

I hope the scratch work and proofs showing functions preserve closeness have begun to make
sense. Given a distance ε > 0 for the range, we ensure the preservation of closeness by using
scratch work to find a responding distance δ > 0 for the domain, then showing that points within
δ of each other in the domain produce images within ε of each other in the range. This process is
very similar to the work done to prove functions are continuous.

John Rodriguez, thank you for the conversations about proving functions preserve closeness
using the definition of arbitrarily close and how it leads to continuity!

Exercises
4.2.1. Prove monomials preserve closeness at c = 0. That is, the functions hn : R→ R given by
hn(x) = xn for each n ∈ N preserve closeness at c = 0. (See Example 4.2.12.)

4.2.2. Give an example of a function f : R→ R where |f | preserves closeness at c = 1 but f does
not.

4.2.3. Prove that the absolute value function a : R → R given by a(x) = |x| preserves closeness
on R.

4.2.4. Suppose g : Rk → Rm preserves closeness. Prove that if C ⊆ Rk is connected, then its
image g(C) ⊆ Rm is connected.

4.2.5. Suppose D ⊆ Rk, c ∈ D, and f : D → Rm. Prove the following statements are equivalent:
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(i) f preserves closeness at c (Definition 4.2.5):

E ⊆ D with c aclE =⇒ f(c) acl f(E). (4.2.46)

(ii) f is sequentially continuous at c (Definition 4.4.5):

(xn) ⊆ D with lim
n→∞

xn = c =⇒ lim
n→∞

f(xn) = f(c). (4.2.47)

Hint: Use the fundamental connection between arbitrarily close and convergent sequences estab-
lished in Theorem 2.3.1. (Even more is true, see Theorem 4.4.7.)

4.2.6. Suppose f : Rk → Rm preserves closeness and K ⊆ Rk is compact. Prove the image
f(K) is compact. Hint: Use the result of Exercise 4.2.5 and sequential compactness from the
Heine-Borel Theorem 3.5.1.

4.2.7. Suppose f : R → R preserves closeness. Prove f−1([a, b]) is closed. (That is, for such f ,
the inverse image of a compact interval in the codomain is a closed set in the domain.)

4.2.8. Suppose g : Rk → Rm. Prove the following statements are equivalent:

(i) g preserves closeness (Definition 4.2.5): For all c ∈ Rk and E ⊆ Rk,

c aclE =⇒ g(c) acl g(E). (4.2.48)

(ii) g is topologically continuous in the following sense: If F is a closed subset of the codomain
Rm, the its inverse image g−1(F ) is a closed subset of the domain Rk. (That is, inverse
images of closed sets are closed.)

4.3 Continuity
This section is designed to face the challenge of understanding continuity by building on the
definition for preserving closeness (Definition 4.2.5). The classic “ε-δ” definitions of continuity and
functional limits are perhaps the most difficult concepts for new mathematicians to understand.
(See Definitions 4.3.2 and 5.1.2, respectively.) This perspective is corroborated in the works
[3–5,9, 11].

Remark 4.3.1: From preserving closeness to continuity

The scratch work and proofs showing the preservation of closeness in Examples 4.2.7 and
4.2.12 along with Theorem 4.2.10 preview the process of showing a function is continuous
via Definition 4.3.2. For both preserving closeness and continuity, the scratch work first
considers how close we would like outputs to be in the range, then work is done to find how
close their inputs should be in the domain to compensate. In the proofs, both consider a
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distance ε > 0 for the range first, then assert a choice of a distance δ for the domain based
on the scratch work. The proofs conclude by showing inputs within δ of each other in the
domain yield outputs within ε of each other in the range.

Time for the classic ε-δ definition of continuity in analysis.

Definition 4.3.2: Continuity

Let D ⊆ Rk, let f : D → Rm, and let c ∈ D. We say f is continuous at c if for every
distance ε > 0 there is a threshold δ > 0 providing a distance for the domain such that

x ∈ D with ‖x− c‖k < δ =⇒ ‖f(x)− f(c)‖m < ε. (4.3.1)

In other words, f is continuous at c if for every error ε > 0 there is some threshold δ > 0
where the δ-neighborhood of c in the domain maps into the ε-neighborhood of f(c) in the
range:

f(Vδ(c) ∩D) ⊆ Vε(f(c)). (4.3.2)

If f is continuous at every point in the domain D, we say f is continuous. If f is not
continuous at some point z, then we say f is discontinuous at z.

Remark 4.3.3: Thresholds

The word “threshold” appears in the definitions of limit and convergence for sequences
(Definition 2.2.1) as well as the definition of continuity (Definition 4.3.2). In both settings,
the threshold—either an index nε ∈ N or distance δ > 0—is determined in response to a
given but arbitrary distance ε > 0 for the range.

The scratch work and proofs showing f(x) = x/2 preserves closeness at c = 2 in Example
4.2.7, more generally that basic affine transformations preserve closeness as in Theorem 4.2.10,
and h(x) = x2 preserves closeness at c = 0 in Example 4.2.12 preview the process of showing a
function is continuous via Definition 4.3.2. Much like the guide for proving sequences converge in
Remark 2.2.4, here’s a guide for developing scratch work and proving “ε-δ” continuity by verifying
Definition 4.3.2.

Remark 4.3.4: Guide for continuity proofs

Scratch work for proving f is continuous at c:
• Consider the inequality you want to end up with, typically:

dm(f(x), f(c)) = ‖f(x)− f(c)‖m < ε. (4.3.3)

• Key step: Use the previous inequality to find a formula for a threshold δ > 0 as a
function of ε and c where x is in the domain and

dk(x, c) = ‖x− c‖k < δ. (4.3.4)
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(i) f(c) •

x

y

f

•

•

c

f(c) + ε

f(c)− ε

(ii) f(c) •

x

y

f

•

•
c

f(c) + ε

f(c)− ε

c− δ c+ δ

(iii)
f(x)

x

y

f

x
•
••

f(c) + ε

f(c)− ε

c− δ c+ δ

Figure 4.3.1: A three-step figure to accompany the scratch work and proof
that f(x) = x/2 is continuous at every c ∈ R as in the guide for continuity
proofs in Remark 4.3.4: (i) Start with an ε > 0 to give us a distance around
f(c) in the range; (ii) the key step, do scratch work to find a suitable threshold
δ > 0 giving us a distance around c in the domain; (iii) in the proof, show that
every x in the domain within δ of c yields an output f(x) within ε of f(c) in the
range. Also, use the QR code to play around the Desmos activity “Continuity”.
https://www.desmos.com/calculator/l12dxcm4ul

https://www.desmos.com/calculator/l12dxcm4ul
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(i) Let ε > 0. •
c

7→ •
f(c)

Vε(f(c))

ε

(ii) Choose δ > 0.
δ
•
c

Vδ(c) ∩D

7→ • f(c)

f(Vδ(c) ∩D)

(iii) Verify f(Vδ(c) ∩D) ⊆ Vε(f(c)). • f(c)

f(Vδ(c) ∩D)

Vε(f(c))

Figure 4.3.2: A visualization of the definition of continuity in the context of a
function f mapping R2 to R2. Steps (i), (ii), and (iii) play the same roles as in
Figure 4.3.1 to accompany Definition 4.3.2 and the guide for continuity proofs in
Remark 4.3.4.



274 CHAPTER 4. CONTINUITY

The triangle inequality as it appears in (1.2.32) and (1.2.34) is used quite often at this
step in scratch work and proofs involving “ε-δ” continuity.

• Include a figure with the function f , the point c in the domain, and the point f(c) in
the range, perhaps as a graph. You may also want to plot the domain and range on
their own.

Proving f is continuous at c:

• Early in the proof, perhaps the first step, write “Let ε > 0” or something similar,
indicating you are accounting for all positive distances in the range at the same time.

• Define a candidate for the threshold δ > 0 to give a distance in the domain based on
your scratch work, typically in terms of a function of ε and c.

• Verify δ is truly a threshold for the continuity of f at c by considering every point x
in the domain within δ of c, then showing

x ∈ D with ‖x− c‖k < δ =⇒ ‖f(x)− f(c)‖m < ε. (4.3.5)

In other words, verify the δ-neighborhood of c in the domain maps into the ε-
neighborhood of f(c) in the range:

f(Vδ(c) ∩D) ⊆ Vε(f(c)). (4.3.6)

See Figures 4.3.1 and 4.3.2.

The remainder of the section explores a few examples and a theorem to give us practice working
with the definition of continuity (Definition 4.3.2).

Once again, consider the function f from Examples 4.1.2, 4.2.2, and 4.2.7, which is shown to
preserve closeness at c = 2. This function is continuous at every real number.

Example 4.3.5: A continuous line

The function f : R→ R given by

f(x) = x/2 (4.3.7)

is continuous. See Figure 4.3.1.

Remark 4.3.6: Proving continuity

The scratch work, figures, and proofs showing f(x) = x/2 preserves closeness at c = 2 and
f is continuous are very similar. Both situations start by considering an arbitrary distance
ε > 0 for the range, then scratch work is done to find a suitable distance δ > 0 for the
domain, and finally the proofs show our choices for the δ thresholds lead to outputs within ε.
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Still, there are some differences. In Example 4.2.7 shows f preserves closeness at c = 2 only.
However, to show f is continuous in Example 4.3.5, we must consider every c ∈ R. Also,
when showing preservation of closeness, the scratch work and proofs consider every subset
of the domain which is arbitrarily close to the point c in question. But with continuity, we
eschew these subsets and consider all points in the domain within the suitable distance of
c. Compare Figures 4.2.5 and 4.3.1.

Scratch Work 4.3.7: Lines are continuous

Following the guide for proving continuity in Remark 4.3.4, start with an arbitrary distance
ε for the range and somehow determine a formula for a suitable threshold δ to give us

x ∈ R with |x− c| < δ =⇒ |f(x)− f(c)| < ε. (4.3.8)

Once we have a suitable δ, we can reorganize the information into a formal proof. See
Figures 4.3.1 and 4.3.2.

Since f(x) = x/2, sticking everything into inequality (4.3.8) yields

dR(f(x), f(c)) = |f(x)− f(c)| =
∣∣∣∣x2 − c

2

∣∣∣∣ = 1
2 |x− c| < ε. (4.3.9)

Note the lack of a variable δ in the expression (4.3.9). The role of δ is to control the
distance between inputs x and c in the domain, so we should solve for |x − c| and use the
resulting relationship to help us define δ.

This is a key step: We can find a suitable formula for δ by multiplying the inequality (4.3.9)
through by 2. (We did the same thing when proving f preserves closeness at c = 2 in
Example 4.2.7.) We get

|x− c| < 2ε = δ. (4.3.10)

With a choice for δ available, let’s see if it is truly a threshold for the continuity of f at c.

Proof for Example 4.3.5. Let f : R→ R be given by f(x) = x/2 and let ε > 0. Define

δ = 2ε. (4.3.11)

Note that δ = 2ε > 0 since ε > 0. Then for every real number x in the domain where

dR(x, c) = |x− c| < δ = 2ε, (4.3.12)

we have

|f(x)− f(c)| =
∣∣∣∣x2 − c

2

∣∣∣∣ = 1
2 |x− c| <

1
2(2ε) = ε. (4.3.13)

Therefore, δ = 2ε is a suitable threshold and f is continuous at c. Since c represents an arbitrary
real number in the domain, f is continuous by Definition 4.3.2.
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Figure 4.3.3: To explore the notion of discontinuity via the floor function
defined ahead in Exercise 4.5.3, play around the Desmos activity “Floor discon-
tinuity”. In particular, note that for c = 1 and ε = 1, no value of δ can be
found to serve as a threshold. Hence, the floor function is discontinous at c = 1.
https://www.desmos.com/calculator/acc6b5b36f.

Remark 4.3.8: Threshold depends on error

The scratch work and proofs showing f preserves closenesss c = 2 in Example 4.2.7 and
showing f is continuous at every real number c in Example 4.3.5 found and made use of
the same threshold, namely

δ = δε = 2ε. (4.3.14)

Note that this common choice for the threshold explicitly depends on the distance
(or error) ε > 0 for the range. In general, the threshold δ depends on ε, how the
function f is defined, and the point c in question. Since δ depends on so many things,
I decided to follow convention and leave out subscripts. Still, it is important to keep
in mind the threshold δ generally depends on f , c, and ε. See Figures 4.3.1, 4.3.2, and 4.3.4.

To contrast and explore discontinuity, play around with floor function using the Desmos
activity “Floor discontinuity” accessed through the QR code in Figure 4.3.3. See Exercise
4.5.3 for the definitions of the floor function and the related sawtooth function.

Next, consider basic affine transformations as in Definition 4.2.9.

Theorem 4.3.9: Continuity of basic affine transformations

If f : Rm → Rm is a basic affine transformation given by f(x) = αx + v where α ∈ R and
v ∈ Rm, then f is continuous.

https://www.desmos.com/calculator/acc6b5b36f
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Scratch Work 4.3.10: Building continuity from the preservation of closeness

Following the guide for proving continuity in Remark 4.3.4 and Scratch Work 4.2.11 which
supports the proof that basic affine transformations preserve closeness, let’s start at the
end. From the definitions of basic affine transformation and continuity (Definitions 4.2.9
and 4.3.2) and the homogeneity of the Euclidean norm (1.2.33), we want to end up with

dm(f(x), f(c)) = ‖f(x)− f(c)‖m (4.3.15)
= ‖αx + v− (αc + v)‖m (4.3.16)
= ‖α(x− c)‖m (4.3.17)
= |α|‖x− c‖m (4.3.18)
< ε. (4.3.19)

As in Scratch Work 4.2.11, dividing by |α| suggests a suitable choice for a distance δ to
constrain the domain is given by

δ = ε

|α|
. (4.3.20)

Once again, such a choice is only valid when |α| 6= 0. To compensate, the proof is broken
into two cases: α = 0 and α 6= 0. When α = 0, the proof becomes trivial in that any choice
for a threshold δ > 0 suffices.

Proof of Theorem 4.3.9. Throughout the proof, suppose c ∈ Rm and f : Rm → Rm is a basic
affine transformation of the form f(x) = αx + v for some α ∈ R and v ∈ Rm.

Case (i): Suppose α = 0, let ε > 0, and define δ = 42 > 0. Then for every x ∈ Rm we have
f(x) = v. Therefore,

‖x− c‖m < δ = 42 =⇒ ‖f(x)− f(c)‖m = ‖v− v‖m = 0 < ε. (4.3.21)

Since c is arbitrary, we have f is continuous when α = 0.
Case (ii): Now suppose α 6= 0 and let ε > 0. Since |α| 6= 0, define

δ = ε

|α|
(4.3.22)

to provide a constraint for the domain. Suppose

‖x− c‖m < δ = ε

|α|
. (4.3.23)

then by the homogeneity of the Euclidean norm (1.2.33), we have

‖f(x)− f(c)‖m = ‖αx + v− (αc + v)‖m (4.3.24)
= ‖α(x− c)‖m (4.3.25)
= |α|‖x− c‖m (4.3.26)

< |α| · ε
|α|

(4.3.27)

= ε. (4.3.28)
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Since c is arbitrary, we have f is continuous when α 6= 0.

The function from the real line to the real line given by taking the absolute value of the input
is a continuous function.

Example 4.3.11: Absolute value is continuous

The function g : R→ R given by g(x) = |x| is continuous.

Scratch Work 4.3.12: Reverse triangle inequality

The reverse triangle inequality (1.2.38) tells us that for any x, c ∈ R, we have

|g(x)− g(c)| = ||x| − |c|| ≤ |x− c|. (4.3.29)

So, choosing δ = ε yields the result.

Proof for Example 4.3.11. Suppose g : R→ R given by g(x) = |x| and suppose c ∈ R. Let ε > 0
and choose δ = ε. Then δ is a threshold for the continuity of g at c since

|x− c| < δ = ε (4.3.30)

immediately implies through the reverse triangle inequality (1.2.38) that

|g(x)− g(c)| = ||x| − |c|| ≤ |x− c| < δ = ε. (4.3.31)

Therefore, g is continuous.

The next two examples show how difficult it can be to find a suitable threshold δ when the
algebra defining a function is more complicated.

Example 4.3.13: Square root function is continuous

The square root function r : [0,∞)→ R where

r(x) =
√
x (4.3.32)

is continuous at every c ≥ 0. See Figure 4.3.4.

Scratch Work 4.3.14: Conjugates

We want the proof to end up with

dR(r(x), r(c)) = |
√
x−
√
c| < ε. (4.3.33)

To get there, we need a suitable threshold δ where

|x− c| < δ =⇒ |
√
x−
√
c| < ε. (4.3.34)
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graph
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2 −√
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2

Vε(
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2) ( )√
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2 + ε
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2

Vδ(2) ∩D ( )
2− δ 2 + δ

•
2
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√
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Figure 4.3.4: The graph of a function r : D → R given by D = [0,∞) and
r(x) =

√
x to accompany the definition of continuity in terms of neighborhoods

(Definition 4.3.2) and Example 4.3.13. Given a distance ε > 0 from r(2) =
√

2
in the range, there is a threshold δ > 0 providing a distance from c = 2 in the
domain ensuring r(Vδ(2) ∩D) ⊆ Vε(r(2)).
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An idea from calculus or perhaps precalculus can help us here: Conjugates. As long as we
consider c > 0 to ensure our denominators are never zero, since

√
x ≥ 0 we have

|
√
x−
√
c| = |

√
x−
√
c|
(
|
√
x+
√
c|

|
√
x+
√
c|

)
(4.3.35)

= |x− c|√
x+
√
c

(4.3.36)

≤ |x− c|√
c
. (4.3.37)

From here—and as long as c > 0—we can ensure

|
√
x−
√
c| ≤ |x− c|√

c
< ε (4.3.38)

by choosing

|x− c| < δ = ε
√
c. (4.3.39)

But what about when c = 0? In this case, we want to end up with

|x− 0| = x < δ =⇒ |
√
x−
√

0| =
√
x < ε (4.3.40)

Keeping in mind x ≥ 0 and 0 ≤ y < z implies y2 < z2, squaring both sides of the rightmost
inequality in 4.3.40 yields

|x− c| = x = (
√
x)2 < ε2. (4.3.41)

So, let’s try using δ = ε2 when c = 0.

Proof for Example 4.3.13. The proof is handled in two cases: c = 0 and c 6= 0.
Case (i): Let ε > 0, let c = 0, and define δ = ε2 > 0. Then for every nonnegative real number

x where

dR(x, c) = |x− 0| = x < δ = ε2, (4.3.42)

since 0 ≤ x < ε2 implies 0 ≤
√
x <
√
ε2 = ε, we have

dR(f(x), f(c)) = |
√
x− 0| =

√
x <
√
ε2 = ε. (4.3.43)

Hence, r(Vδ(0) ∩D) ⊆ Vε(r(0)) where D = [0,∞) is the domain. Therefore, δ = ε2 is a suitable
threshold and the square root function r is continuous at c = 0 by Definition 4.3.2.

Case (ii): Let ε > 0, let c > 0, and define δ = ε
√
c > 0. Then for every nonnegative real

number x where

dR(x, c) = |x− c| = x < δ = ε
√
c, (4.3.44)
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we have

|
√
x−
√
c| = |

√
x−
√
c|
(
|
√
x+
√
c|

|
√
x+
√
c|

)
(4.3.45)

= |x− c|√
x+
√
c

(4.3.46)

≤ |x− c|√
c

(4.3.47)

< ε. (4.3.48)
Hence, r(Vδ(c)∩D) ⊆ Vε(r(c)) where D = [0,∞) is the domain. Therefore, δ = ε

√
c is a suitable

threshold and the square root function r is continuous at c > 0 by Definition 4.3.2.

Example 4.3.15: Square function is continuous

The square function h : R→ R given by h(x) = x2 is continuous.

Scratch Work 4.3.16: Factor and control

We want to end up with

dR(h(x), h(c)) = |x2 − c2| < ε. (4.3.49)

Some algebra yields

|x2 − c2| = |x− c||x+ c|. (4.3.50)

Substituting δ0 for |x− c| in inequality (4.3.49) yields

dR(h(x), h(c)) = |x2 − c2| = |x− c||x+ c| < δ0|x+ c| < ε. (4.3.51)

A first, naive choice for a threshold δ0 might be

δ0 = ε

|x+ c|
. (4.3.52)

However, this δ0 is not an appropriate choice for a threshold. For instance, if x = −c, then
this δ0 would be undefined since the denominator would be zero.

More importantly, our choice for a threshold must not depend on the variable x. A
suitable threshold δ imposes a condition of the value of an input x in terms of how close
it should be to c in order to ensure their outputs are within ε of each other. We need to
control the size of |x+c| in some way, keeping in mind that we generally want x to be near c.

This may seem strange, but to get a handle on both |x− c| and |x+ c| we are free to choose
any positive real number as a preliminary version of δ and see what happens. After all, the
underlying idea is to find a constraint on how close x needs to be to c, not to find a nice
formula for δ.
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Let’s see what happens when we take |x − c| < 0.5. There’s nothing special about 0.5,
except that it is a positive number and gives us a baseline distance to build on, like this:
When x is within 0.5 of c, how large is |x + c|? By the reverse triangle inequality (1.2.37)
we have

|x| − |c| ≤ |x− c| < 0.5. (4.3.53)

Therefore, adding |c| yields

|x| < |c|+ 0.5. (4.3.54)

By the (regular) triangle inequality (1.2.35), we further have

|x+ c| ≤ |x|+ |c| < 2|c|+ 0.5. (4.3.55)

Under the preliminary assumption that |x− c| < 0.5, our scratch work looks like

|x2 − c2| = |x− c||x+ c| < |x− c|(2|c|+ 0.5) < ε. (4.3.56)

Hence, choosing a threshold so that

|x− c| < ε

2|c|+ 0.5 (4.3.57)

seems in order. However, inequality (4.3.57) is only valid when |x− c| < 0.5, so we need to
keep this constraint in mind. Hence, a suitable choice for a threshold δ may well be

δ = min
{

0.5, ε

2|c|+ 0.5

}
. (4.3.58)

Play around with the “Delta Tester - continuity” Desmos activity using the QR code in
Figure 4.3.5. On to the proof.

Proof for Example 4.3.15. Suppose c ∈ R and let ε > 0. Define a candidate for a threshold δ by

δ = min
{

0.5, ε

2|c|+ 0.5

}
. (4.3.59)

Note that δ > 0. Now suppose |x− c| < δ. Since

|x− c| < δ ≤ 0.5, (4.3.60)

by the reverse triangle inequality (1.2.37) we have

|x| − |c| ≤ |x− c| < 0.5 =⇒ |x| < |c|+ 0.5. (4.3.61)

Next, by the triangle inequality and inequality (4.3.61) we have

|x+ c| ≤ |x|+ |c| < 2|c|+ 0.5. (4.3.62)
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Figure 4.3.5: To accompany Example 4.3.15 and Scratch Work 4.3.16, play
around with the Desmos activity “Delta Tester - continuity” accessed through
the QR code. https://www.desmos.com/calculator/fgis71izbe

.

By our choice for δ given by (4.3.59) we also have

|x− c| < δ ≤ ε

2|c|+ 0.5 . (4.3.63)

Therefore, if |x− c| < δ, then

|x2 − c2| = |x− c||x+ c| <
(

ε

2|c|+ 0.5

)
(2|c|+ 0.5) = ε. (4.3.64)

Hence, h(x) = x2 is continuous on R.

The trigonometric function sine is continuous.

Example 4.3.17: Sine is continuous

The function f : R→ R given by f(x) = sin x is continuous.

Scratch Work 4.3.18: Use trigonometry

There are lots of ways to prove the continuity of the sine function, including identifying
sine as a particular power series. The approach taken here relies on some trigonometric
identities and inequalities, including a “sum-to-product” identity. This allows us to find a
suitable threshold δ for the continuity of sine without much more effort.

Here are the relevant trigonometric properties. Their proofs are omitted, but are pretty
cool nonetheless. For every x, c ∈ R, we have:

sin x− sin c = 2 cos
(
x+ c

2

)
sin

(
x− c

2

)
, (4.3.65)

| sin x| ≤ x, and (4.3.66)
| cosx| ≤ 1. (4.3.67)

https://www.desmos.com/calculator/fgis71izbe
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Now, let’s see where we’d like to end up. To show sine is continuous by Definition 4.3.2,
the concluding inequality would be

| sin x− sin c| < ε. (4.3.68)

We can convert this inequality into one involving the distance |x − c| in the domain using
the trigonometric properties above, in the order provided. We have

| sin x− sin c| =
∣∣∣∣2 cos

(
x+ c

2

)
sin

(
x− c

2

)∣∣∣∣ (4.3.69)

≤ 2
∣∣∣∣sin(x− c2

)∣∣∣∣ (4.3.70)

≤ 2
∣∣∣∣x− c2

∣∣∣∣ (4.3.71)

= |x− c|. (4.3.72)

So, a choice of δ = ε should work.

Proof for Example 4.3.17. Let ε > 0 and define δ = ε > 0. Suppose |x−c| < ε. Stringing together
the trigonometric properties from Scratch Work 4.3.18 yields

| sin x− sin c| =
∣∣∣∣2 cos

(
x+ c

2

)
sin

(
x− c

2

)∣∣∣∣ (4.3.73)

≤ 2
∣∣∣∣sin(x− c2

)∣∣∣∣ (4.3.74)

≤ 2
∣∣∣∣x− c2

∣∣∣∣ (4.3.75)

= |x− c| (4.3.76)
< ε. (4.3.77)

Therefore, sine is continuous by Definition 4.3.2.

As with the definition of limit and convergence for sequences (Definition 2.2.1), the threshold
δ from the definition of continuity (Definition 4.3.2) gives us a way to interpret rate of convergence
for continuity.

Remark 4.3.19: Continuity and rate of convergence

The relationship between the distances ε > 0 for the codomain and δ > 0 for the domain
D establishes a rate of convergence with the key implication

x ∈ D with ‖x− c‖k < δ =⇒ ‖f(x)− f(c)‖m < ε. (4.3.78)

Essentially, the rate of convergence tells us through the threshold δ how close inputs x
need to be the point c should be to ensure their outputs f(x) are within ε of the output
f(c). Typically, the smaller we take ε to be, the smaller δ needs to be.

Consider the scratch work involved with finding suitable thresholds for the functions f ,
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r, and h in Examples 4.3.5, 4.3.13, 4.3.15, and 4.3.17, along with the array of resulting
formulas. We have

δ = 2ε for f(x) = x/2 and every c ∈ R, (4.3.79)
δ = ε2 for r(x) =

√
x at c = 0, (4.3.80)

δ = ε
√
c for r(x) =

√
x at c > 0, (4.3.81)

δ = min
{

0.5, ε

2|c|+ 0.5

}
for h(x) = x2 and each c ∈ R, and (4.3.82)

δ = ε for f(x) = sin x and every c ∈ R. (4.3.83)

Each of these can be visualized using the “Delta Tester - continuity” Desmos activity from
Figure 4.3.5 by changing the formulas for the function and the threshold accordingly.

The next definition sets us up to prove continuous functions exhibit an interesting relationship
with boundedness: Continuous functions are locally bounded, but not necessarily bounded. The
definition of a bounded function generalizes the definition of a bounded set (Definition 1.5.20),
as follows: A function is bounded if its range is a bounded set. On the other hand, a function
is locally bounded at a point if its outputs are bounded when the inputs are restricted to a
neighborhood of the point.

Definition 4.3.20: Bounded function

Let D ⊆ Rk and f : D → Rm. The function f is bounded if its range f(D) is a bounded
set. That is, f is bounded if there exists some b ≥ 0 where

‖f(x)‖ ≤ b for all x ∈ D. (4.3.84)

Such a nonnegative real number b is called a bound for f and we say f is bounded by b. If
f is not bounded, we say f is unbounded.

Additionally, given a point c ∈ D, the function f is locally bounded at c if there exist a
distance δc > 0 and a local bound bc ≥ 0 where

‖f(x)‖ ≤ bc for all x ∈ D ∩ Vδc(c). (4.3.85)

The proof of the next theorem follows from the careful manipulation of the definition of
continuity (Definition 4.3.2). Here, continuity is assumed and the threshold we obtain for the
domain provides the neighborhood on which the function exhibits a “local” behavior.

Theorem 4.3.21: Continuous functions are locally bounded

Suppose D ⊆ Rk, c ∈ D, and f : D → Rm. If f is continuous at c, then f is locally bounded
at c.
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Scratch Work 4.3.22: Like boundedness of convergent sequences

The proof is very similar in spirit to the proof that convergent sequences are bounded
(Theorem 2.3.15). In that context, all but a finite number of terms are within a neighbor-
hood of the limit. So, either one of the terms outside such a neighbhorhood provides a
bound, or the neighborhood of the limit does.

Here, since we are dealing with local boundedness, we only need to consider inputs within a
neighborhood and bound their outputs. Continuity allows us to do just that. By picking any
positive distance (say 7) for the outputs, continuity ensures the existence of a threshold that
defines a distance—and therefore neighborhood—in the domain whose image is bounded.

Proof of Theorem 4.3.21. Suppose D ⊆ Rk, c ∈ D, f : D → Rm, and f is continuous at c.
Choose ε0 = 7 > 0 as a positive distance in the range. Since f is continuous at c, by Definition
4.3.2 there is a threshold δ > 0 giving us a distance for the domain where

x ∈ D with ‖x− c‖k < δ =⇒ ‖f(x)− f(c)‖m < 7. (4.3.86)

So, by the reverse triangle inequality (1.2.37), for every x ∈ D ∩ Vδ(c) we have

‖f(x)‖m − ‖f(c)‖m ≤ ‖f(x)− f(c)‖m < 7. (4.3.87)

By adding ‖f(c)‖m we also have

‖f(x)‖m < ‖f(c)‖m + 7. (4.3.88)

Therefore, bc = ‖c‖m+7 is a local bound and f is locally bounded at c (see Definition 4.3.20).

Theorem 4.3.21 gives us a glimpse look into the types of results we get with continuous func-
tions. The ability to control how close we want outputs to be by controlling inputs is a powerful
tool. However, even though continuous functions are locally bounded, they are not necessarily
bounded across the whole domain.

Example 4.3.23: Lines are not bounded

The function f : R→ R given by

f(x) = x/2 (4.3.89)

is continuous but not bounded. As shown in Example 4.3.5, f is continuous. To see that f
is not bounded, suppose y ≥ 0. By the Archimedean Property (Theorem 1.4.6), there is a
positive integer ny ∈ N such that y < ny. Hence,

f(y) = y

2 < y < ny. (4.3.90)

So, y is not a bound for f . Since y represents an arbitrary positive real number, f is not
bounded.
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In general, thresholds can be challenging to find, whether we choose to work with preserving
closeness (Definition 4.2.5), continuity (Definition 4.3.2), or limits of sequences (Definition 2.2.1).
The following section defines and explores yet another meaning for continuity and provides us
with alternative paths to proving and working with continuity. This time, the ideas are based on
preserving the convergence of sequences, allowing us to take advantage of the results in Chapter
2.

Exercises
4.3.1. Given a threshold for the continuity of a function, any smaller positive number is also a
threshold (see Definition 4.3.2). To prove this, suppose D ⊆ Rk, f : D → Rm, c ∈ D, and f is
continuous at c with threshold δ > 0 responding to the distance ε > 0. Prove that if 0 < σ ≤ δ,
then σ is also a threshold for the continuity of f at c in response to ε.

4.3.2. Suppose f : R→ R is the exponential function given by f(x) = ex. Assuming the algebraic
properties of the exponential function from calculus hold, prove f is continuous.

4.3.3. Suppose g : R→ R is the natural logarithm given by g(x) = ln x. Assuming the algebraic
properties of the natural logarithm from calculus hold, prove g is continuous.

4.3.4. Prove monomials are continuous. That is, the functions hn : R → R given by hn(x) = xn

for each n ∈ N are continuous.

4.3.5. Prove nth roots are continuous. That is, the functions rn : [0,∞)→ R given by rn(x) = n
√
x

for each n ∈ N are continuous.

4.3.6. Consider the function q : R→ R given by

q(x) =


x2 − 9
x− 3 , if x 6= 3,

6, if x = 3.
(4.3.91)

Prove q is continuous at c = 3.

4.3.7. Suppose h : R→ R is continuous and h(c) > 0 for some c ∈ R. Prove h is locally positive
at c in the sense that there is some δ > 0 such that

|x− c| < δ =⇒ f(x) > 0. (4.3.92)

In other words, h(x) is positive for all x in this δ-neighborhood of c.

4.3.8. The maximum of a finite number of real-valued continuous functions is continuous. Prove
this result by completing the following steps.

(i) Suppose a, b ∈ R. Prove

max{a, b} = 1
2[(a+ b) + |a− b|]. (4.3.93)
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(ii) Suppose D ⊆ R, f, g : D → R, and f and g are continuous. Define h : D → R by

h(x) = max{f(x), g(x)} for all x ∈ D. (4.3.94)

Prove h is continuous.

(iii) SupposeD ⊆ R, n ∈ N, f1, . . . , fn : D → R, and f1, . . . , fn are continuous. Define q : D → R
by

q(x) = max{f1(x), . . . , fn(x)} for all x ∈ D. (4.3.95)

Prove q is continuous.

4.3.9. Suppose f : R → R is continuous. Prove f−1((a, b)) is open. (That is, for such f , the
inverse image of an open interval in the codomain is a open set in the domain.)

4.4 Equivalent forms of continuity
So far, continuity has been motivated by the preservation of closeness in Section 4.2 and formally
defined in Section 4.3. Given the similarity of the techniques used in those sections, especially in
the examples and finding suitable thresholds, it may come as no surprise that the definitions for
the preservation of closeness and continuity are equivalent.

This section introduces a third version of continuity by way of convergent sequences called
sequential continuity (Definition 4.4.5). To me, this version connects formal mathematics to the
informal phrasing to describe continuity I heard in my calculus classes: x “approaches” c implies
f(x) “approaches” f(c). Hopefully the fundamental connection between arbitrarily close and
convergent sequences (Theorem 2.3.1) adds to your experience in your calculus classes and helps
you develop some intuition for sequential continuity.

Given our large set of results on convergent sequences in Chapter 2, sequential continuity
provides a useful and powerful perspective to build on. The key result in this section is The-
orem 4.4.7 which establishes the equivalence of continuity, preserving closeness, and sequential
continuity (Definitions 4.3.2, 4.2.5, and 4.4.5, respectively).

Before proving this big result, an exploration of how functions transform sequences is in order.
To help, consider the following trio of sequences and how they are transformed by the functions
f, g, and v originally from Examples 4.1.2, 4.1.3, and 4.2.4.

Example 4.4.1: Three sequences

Consider the following trio of sequences (xn), (yn), and (zn) defined for each positive integer
n by

xn = 2 + 2
n
, yn = 2− 2

n
, and zn = 2 + 2(−1)n

n
. (4.4.1)

See Figure 4.4.1.
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(xn) ◦...
432
••••

(yn) ◦...
210

• •••

(zn) ◦... ...
0 34/3 2
• •• •

Figure 4.4.1: The sequences (xn), (yn), and (zn) from Example 4.4.1 are con-
tained in the interval I = [0, 4] and each converges to 2.

Each of the sequences (xn), (yn), and (zn) converges to 2. I’ll prove the case for (zn) but skip
the scratch work for the threshold nε.

Proof for Example 4.4.1. Let ε > 0. By the Archimedean Property 1.4.6, we can choose nε ∈ N
large enough to ensure

nε >
2
ε

and therefore 2
nε

< ε. (4.4.2)

So, nε is a threshold since for all n ≥ nε since in this case we have

|zn − 2| =
∣∣∣∣∣2 + 2(−1)n

n
− 2

∣∣∣∣∣ =
∣∣∣∣∣2(−1)n

n

∣∣∣∣∣ = 2
n
≤ 2
nε

< ε. (4.4.3)

Hence, limn→∞ zn = 2.

Proofs showing limn→∞ xn = 2 and limn→∞ yn = 2 are nearly identical to the proof showing
limn→∞ zn = 2. In fact, we can use the same choice for a threshold in each case, namely nε ∈ N
large enough to ensure nε > 2/ε. Try it yourself. My guess is your scratch work will lead you to
the same choice for nε, but it’d be interest to see what you come up with.

Let’s see how the functions f, g, and v from Examples 4.1.2, 4.1.3, and 4.2.4 transform the
sequences (xn), (yn), and (zn) from Example 4.4.1.

Example 4.4.2: Images of three sequences under a line

As in Example 4.1.2, define f : R→ R by

f(x) = x/2, (4.4.4)

and define (xn), (yn), and (zn) as in Example 4.4.1. For each n ∈ N we have

f(xn) = 1 + 1
n
, f(yn) = 1− 1

n
, and f(zn) = 1 + 1(−1)n

n
. (4.4.5)
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graph
of f

2 −

1 •

0
x

y

f

• |

•

2 4

(xn) ◦...
432
••••

f(xn) ◦...
21
••

(yn) ◦...
210

• •••

f(yn) ◦...
10

• •

(zn) ◦... ...
0 34/3 2
• •• •

f(zn) ◦... ...
0 3/21
• •

Figure 4.4.2: The images of the sequences (xn), (yn), and (zn) from Example
4.4.1 under the function f . See Example 4.4.2. The sequences (f(xn)), (f(yn)),
and (f(zn)) each converge to f(2) = 1. Note f(2) = 1 is indicated with a • in
the graph of f but with a ◦ with the sequences (f(yn)) and (f(zn)) since it is not
a term. For (f(xn)), we happen to have f(x1) = f(4) = 2.
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See Figure 4.4.2. We have

lim
n→∞

xn = 2 while lim
n→∞

f(xn) = 1 = f(2), (4.4.6)

lim
n→∞

yn = 2 while lim
n→∞

f(yn) = 1 = f(2), and (4.4.7)

lim
n→∞

zn = 2 while lim
n→∞

f(zn) = 1 = f(2). (4.4.8)

In fact, if we wanted to prove these limits are all equal to 1, the same choice for the
threshold suffices in all three cases. Namely, any positive integer nε where nε > 1/ε
works. Plus, this inequality establishes the rates of convergence for the output sequences
f(xn), f(yn), and f(zn).

Also, the common rate of convergence for the sequences (xn), (yn), and (zn) is given by the
inequality for the threshold nε > 2/ε, twice that of the rate of convergence for their output
sequences.

Example 4.4.3: Images of three sequences under a piecewise defined function

As in Example 4.1.3, define g : R→ R by

g(x) =
x/2, if x < 2,

1 + (x/2), if x ≥ 2,
(4.4.9)

and define (xn), (yn), and (zn) as in Example 4.4.1. For each n ∈ N we have

g(xn) = 2 + 1
n
, (4.4.10)

g(yn) = 1− 1
n
, and (4.4.11)

g(zn) =


1− 1

n
, if n is odd,

2 + 1
n
, if n is even.

(4.4.12)

See Figure 4.4.3. We have

lim
n→∞

xn = 2 while lim
n→∞

g(xn) = 2 = g(2), (4.4.13)

lim
n→∞

yn = 2 while lim
n→∞

g(yn) = 1 6= g(2), and (4.4.14)

lim
n→∞

zn = 2 while lim
n→∞

g(zn) does not exist. (4.4.15)

Therefore, g does not preserve the convergence of sequences. Specifically, (zn) converges in
the domain, but g(zn) diverges in the range. Also, (yn) converges to c = 2 in the domain,
but g(yn) converges to 1 in the range while g(c) = g(2) = 2. Play around with the GeoGebra
activity “images of functions, g” found in Figure 4.4.4.
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graph
of g

3 −

2 •

1 −

0
x

y

g

• |

•

2 4

(xn) ◦...
432
••••

g(xn) ◦...
32
••

(yn) ◦...
210

• •••

g(yn) ◦◦...
210

• •

(zn) ◦... ...
0 34/3 2
• •• •

g(zn) ◦...•
0 1

◦...•
2 5/2

Figure 4.4.3: The images of the sequences (xn), (yn), and (zn) from Example
4.4.1 under the function g. See Example 4.4.3. The sequences (g(xn)), (g(yn)),
and (g(zn)) exhibit different limiting behavior. Note g(2) = 2 is indicated with a
• in the graph of g but with a ◦ with the sequences (g(xn)), (g(yn)), and (g(zn))
since it is not a term.
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Figure 4.4.4: To accompany Example 4.4.3 and Theorem 4.4.7, play around
with the GeoGebra activity “images of functions, g” accessed through this QR
code. https://www.geogebra.org/m/wtmkrzsz

.

Example 4.4.4: Images of three sequences under another
piecewise defined function

As in Example 4.2.4, define v : R→ R by

v(x) =


1

2− x, if x < 2,

1 + x

2 , if x ≥ 2.
(4.4.16)

and define (xn), (yn), and (zn) as in Example 4.4.1. For each n ∈ N we have

v(xn) = 2 + 1
n
, (4.4.17)

v(yn) = n

2 , and (4.4.18)

v(zn) =



n

2 , if n is odd,

2 + 1
n
, if n is even.

(4.4.19)

See Figure 4.4.5. We have
lim
n→∞

xn = 2 while lim
n→∞

v(xn) = 2 = h(2), (4.4.20)

lim
n→∞

yn = 2 while lim
n→∞

v(yn) =∞ 6= v(2), and (4.4.21)

lim
n→∞

zn = 2 while lim
n→∞

v(zn) does not exist. (4.4.22)

Therefore, v does not preserve the convergence of sequences. Specifically, (yn) and (zn)
converge in the domain, but v(yn) and v(zn) diverge in the range. You might recall that
limn→∞ v(yn) = ∞ means v(yn) diverges in a particular way: The terms v(yn) get larger
and larger without bound in the positive direction as the index n increases.

https://www.geogebra.org/m/wtmkrzsz
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graph
of v

3 −

2 •

1/2

0
x

y

v

• |

•

2 4

(xn) ◦...
432
••••

v(xn) ◦...
32
••

(yn) ◦...
210

• •••

v(yn) • • • • • • • • • ...
1/2 1 2 3 4

(zn) ◦... ...
0 34/3 2
• •• •

v(zn) • • • • •
1/2 3/2

◦...•
2 5/2 9/2

...

Figure 4.4.5: The images of the sequences (xn), (yn), and (zn) from Example
4.4.1 under the function v. See Example 4.4.4. The sequences (v(xn)), (v(yn)),
and (v(zn)) exhibit different limiting behavior. Note v(2) = 2 is indicated with a
• in the graph of v but with a ◦ with the sequences (v(xn)), (v(yn)), and (v(zn)).
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The functions g in Examples 4.1.3, 4.2.3, and 4.4.3, and v in 4.2.4 and 4.4.4 each take the point
c = 2 along with the set E4 = (7/4, 2) and sequence (yn) = (2−(2/n))—which are arbitrarily close
in the domain—and map them to images that are away from each other in the range. In other
words, the fact that g and v are discontinuous at c = 2 is captured by the lack of preservation of
closeness as well as the lack of the preservation of the convergence of sequences.

On the other hand, function f defined in Examples 4.1.2 and 4.2.2 is proven to preserve
closeness at c = 2 in Example 4.2.7. In Example 4.4.2, f preserves the convergence of (xn), (yn),
and (zn) to c = 2 in that their images (xn), (yn), and (zn) converge to f(c) = f(2) = 1. But more
is true: f preserves the convergence of every sequence that converges to c = 2.

The following definition for sequential continuity provides a formal notion for when a function
preserves the convergence and limits of sequences.

Definition 4.4.5: Sequential continuity

Suppose D ⊆ Rk, c ∈ D, and f : D → Rm. We say f is sequentially continuous at c if

(xn) ⊆ D with lim
n→∞

xn = c =⇒ lim
n→∞

f(xn) = f(c). (4.4.23)

If f is sequentially continuous at every point in the domain D, then f is sequentially
continuous.

Remark 4.4.6: Move limits in and out

We can think of sequential continuity symbolically as moving the limit notation from outside
f to inside:

lim
n→∞

f(xn) = f
(

lim
n→∞

xn
)

= f(c). (4.4.24)

Sequential continuity basically says that either way—whether we plug (xn) into f first then
take the limit of f(xn), or we take the limit of (xn) first then plug the limit c into f—we
end up with the same value f(c). See Figure 4.4.6.

The definitions of preserving closeness (Definition 4.2.5), sequential continuity (Definition
4.4.5), and “ε-δ” continuity (Definition 4.3.2) are equivalent. Each provides its own perspec-
tive on continuity along with its own benefits and drawbacks. Each can be used to check whether
the others hold. Ultimately, when I think of continuity in analysis, I have each of these equivalent
notions in mind knowing I can run with the one that seems to be the easiest to work with.

Theorem 4.4.7: Equivalent forms of continuity

Suppose D ⊆ Rk, c ∈ D, and f : D → Rm. Then the following statements are equivalent
forms of the continuity of f at c:

(i) f preserves closeness at c (Definition 4.2.5):

E ⊆ D with c aclE =⇒ f(c) acl f(E). (4.4.25)
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xn

f(xn)

lim
n→∞

xn = c

lim
n→∞

f(xn) = f
(

lim
n→∞

xn
)

= f(c)

n→∞

n→∞

plug
into f

plug
into f

Figure 4.4.6: As in Remark 4.4.6, this commutative diagram visualizes sequen-
tial continuity in that whether we take the limit as n tends to infinity or evaluate
f first, we end up with the same result f(c). Also, sequential continuity symbol-
ically amounts to moving the “lim” symbol in and out of the function f with no
effect on the resulting value.

(ii) f is sequentially continuous at c (Definition 4.4.5):

(xn) ⊆ D with lim
n→∞

xn = c =⇒ lim
n→∞

f(xn) = f(c). (4.4.26)

(iii) f is ε-δ continuous at c (Definition 4.3.2):

For every ε > 0, there is a threshold δ > 0 such that
x ∈ D with ‖x− c‖k < δ =⇒ ‖f(x)− f(c)‖m < ε. (4.4.27)

The reference to the definition of continuity as “ε-δ continuity” for Definition 4.3.2 distinguishes
it from sequential continuity in Definition 4.4.5. Also, play around with the GeoGebra activity
found in Figure 4.4.4.

Scratch Work 4.4.8: Contraposition

The proof argues via contraposition multiple times. So, along with the fundamental con-
nection between arbitrarily close and convergent sequences in Theorem 2.3.1, the negations
of the definitions for preserving closeness, sequential continuity, and ε-δ continuity are used
throughout the proof. Their definitions are provided directly in the statement of the theorem
for convenience, but you can also see Definitions 4.2.5, 4.4.5, and 4.3.2, respectively.

Proof of Theorem 4.4.7. Let’s show (i) =⇒ (ii), (ii) =⇒ (iii), and (iii) =⇒ (i), all by contraposi-
tion.

(i) =⇒ (ii): Suppose f is not sequentially continuous at a point c in D. Then there is a
sequence (xn) of points in D and a point c in D where

lim
n→∞

xn = c but lim
n→∞

f(xn) 6= f(c). (4.4.28)

Hence, there must be some ε0 > 0 such that no matter which positive integer N we consider,



4.4. EQUIVALENT FORMS OF CONTINUITY 297

there is a positive integer q ≥ N where xq is in D and

‖f(xq)− f(c)‖m ≥ ε0. (4.4.29)

We can use the previous statement to construct a suitable subsequence (xnj) of (xn) whose image
stays away from f(c). That is, let n1 ≥ 1 be a positive integer that satisfies the previous statement.
Proceeding inductively, for each positive integer j, there is a positive integer nj > nj−1 where

‖f(xnj)− f(c)‖m ≥ ε0. (4.4.30)

Now, since limn→∞ xn = c and (xnj) is a subsequence of (xn), we have

lim
j→∞

xnj = c (4.4.31)

as well. By Theorem 2.3.1, we have c acl(xnj). But we also have f(c) awf(f(xnj)). Therefore, f
does not preserve closeness at c. (See Definition 4.2.5.)

(ii) =⇒ (iii): Suppose f is not ε-δ continuous at a point c in D. Then there must be some
ε0 > 0 such that no matter which value we take for δ > 0, there is a point xδ in D with

‖xδ − c‖k < δ and ‖f(xδ)− f(c)‖m ≥ ε0. (4.4.32)

Much as in the proof of Theorem 2.3.1, we can use the previous statement to construct a suitable
sequence. For each positive integer n, there must be a point xn in D where

‖xn − c‖k < 1/n and ‖f(xn)− f(c)‖m ≥ ε0. (4.4.33)

(Note that 1/n plays the role of δ here). Hence, (xn) is a sequence of points in D where

lim
n→∞

xn = c but lim
n→∞

f(xn) 6= f(c). (4.4.34)

Therefore, f is not sequentially continuous at c. (See Definition 4.4.5.)
(iii) =⇒ (i): Finally, suppose f does not preserve closeness at a point c in D. Then there must

be some E ⊆ D where c aclE but f(c) awf f(E). So, there is some ε0 > 0 such that for every
point x in E we have

‖f(x)− f(c)‖m ≥ ε0. (4.4.35)

Now, let δ > 0. Since c aclE, there is a point yδ in E where we have both

‖yδ − c‖k < δ and ‖f(yδ)− f(c)‖m ≥ ε0. (4.4.36)

Therefore, f is not ε-δ continuous at c. (See Definition 4.3.2.)

Continuous functions have interesting effects on rates of convergence of sequences.
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Remark 4.4.9: Continuity transforms rates of convergence

The functions given by f(x) = x/2, h(x) = x2, and r(x) =
√
x from Examples 4.1.2,

4.1.4, and 4.3.13 transform the rates of change of their convergent input sequences in ways
that reflect the transformations of the inputs themselves. For instance, the input sequence
xn = 1/n has limit 0 determined by a threshold nε > 1ε which comes from solving the
following inequality for the index n:

|xn − 0| = 1
n
< ε =⇒ n >

1
ε
. (4.4.37)

The images (f(xn)) = 1/(2n), (h(xn)) = (1/n2), and (r(xn)) = (1/
√
n) have a common limit

0 as ensured by sequential continuity. A more detailed analysis of their rates of convergence
comes from solving the following inequalities for the index n:

|f(xn)− 0| = 1
2n < ε =⇒ n >

1
2ε, (4.4.38)

|h(xn)− 0| = 1
n2 < ε =⇒ n >

1√
ε
, and (4.4.39)

|r(xn)− 0| = 1√
n
< ε =⇒ n >

1
ε2 . (4.4.40)

Which output sequence converges to 0 the fastest?

The contrapositions of the implications in Theorem 4.4.7 are also useful for showing a function
is discontinuous at c. These results are summarized in Discontinuity Criteria (Corollary 4.6.13)
along with negations of other results proven later on.

For now, the following example shows us how the negation of sequential continuity allows to
prove the topologist’s sine curve is discontinuous at c = 0.

Example 4.4.10: Topologist’s sine curve

Consider the topologist’s sine curve t : R→ R given by

t(x) =
sin(1/x), if x 6= 0,

0, if x = 0.
(4.4.41)

The topologist’s sine curve t is discontinuous at c = 0. This one is tricky to graph, try it
yourself!

Scratch Work 4.4.11: Discontinuous via different sequential limits

The idea is to take advantage of the equivalence of ε-δ continuity and sequential continuity
as well as the periodic structure of the sine function. Our goal is to find a sequence (xn) of
real numbers in the domain which converge to 0 but whose image t(xn) does not converge
to 0. This will show t is not sequentially continuous at c = 0, so by Theorem 4.4.7, t is not
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continuous at c = 0.

The periodicity of the sine function tells us that for every index n ∈ N we have

θn = π

2 + 2πn =⇒ sin θn = sin
(
π

2 + 2πn
)

= sin π2 = 1. (4.4.42)

Now, motivated by the definition of t, if we take the reciprocals of the θn for each index n
we get the sequence (xn) where

xn = 1
π
2 + 2πn. (4.4.43)

In this case,

lim
n→∞

xn = lim
n→∞

(
1

π
2 + 2πn

)
= 0 while (4.4.44)

lim
n→∞

t(xn) = lim
n→∞

sin
(
π

2 + 2πn
)

= 1 6= 0 = t(0). (4.4.45)

The proof amounts to rearranging the scratch work.

Proof for Example 4.4.10. Define the sequence of real numbers (xn) by

xn = 1
π
2 + 2πn for each n ∈ N. (4.4.46)

We have

lim
n→∞

xn = lim
n→∞

(
1

π
2 + 2πn

)
= 0 while (4.4.47)

lim
n→∞

t(xn) = lim
n→∞

sin
(
π

2 + 2πn
)

= 1 6= 0 = t(0). (4.4.48)

Therefore, by the negation of Definition 4.4.5, t is not sequentially continuous at c = 0. Therefore,
by Theorem 4.4.7, t is discontinuous at c = 0.

A more general recap of methods we can use to prove a function is discontinuous is provided
by the result Discontinuity Criteria (Corollary 4.6.13) which incorporates some of the results in
the next section.

Now that we’ve established Theorem 4.4.7, we have a variety of equivalent forms of continuity
work with, namely the preservation of closeness, sequential continuity, and ε-δ continuity. In the
next section, we use this flexibility to prove some classic results on examples and properties of
continuous functions.
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Exercises
4.4.1. Given a function f : R→ R, a level set is a set of the form

Lk = {x ∈ R : f(x) = k} (4.4.49)

for some fixed real number k. Prove that if f is continuous, then its level sets are closed. (For the
special case where k = 0, the level set L0 is called the zero set of f and is sometimes denoted by
Z(f).)

4.4.2. Let h : R→ R be given by

h(x) =


|x− 2|
x− 2 , if x 6= 2,

0, if x = 2.
(4.4.50)

(i) Prove h is continuous at every c 6= 2.

(ii) Prove h is discontinuous at c = 2.

(iii) Prove that no matter how we redefine the output h(2), h is discontinuous at c = 2.

4.4.3. Suppose f : Rk → Rm is continuous and E ⊆ Rk.

(i) Prove f(E) ⊆ f(E).

(ii) Find an example of a function f : R→ R and a set A ⊆ R where the containment in (i) is
proper (that is, f(A) ( f(A)).

4.4.4. Recall Dirichlet’s function 1Q from Example 4.2.14 given by

1Q(x) =
1, if x ∈ Q,

0, if x ∈ R\Q.
(4.4.51)

Prove 1Q is discontinuous everywhere. That is, prove 1Q is discontinuous at every c ∈ R.

4.4.5. Consider the modification of Dirichlet’s function 1Q from Example 4.2.14 given by

f(x) = x1Q(x) =
x, if x ∈ Q,

0, if x ∈ R\Q.
(4.4.52)

Prove f is continuous at c = 0 but discontinuous everywhere else (c 6= 0).

4.4.6. Thomae’s function g : R → R is a subtle modification of Dirichlet’s function 1Q from
Example 4.2.14 given by

g(x) =


1, if x = 0,
1
n
, if x ∈ Q\{0} with reduced form x = m

n
,

0, if x ∈ R\Q.

(4.4.53)
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(i) Prove g is discontinuous at every c ∈ Q.

(ii) Prove g is continuous at every c ∈ R\Q.

Thomae’s function g is discontinuous on the rationals and continuous on the irrationals!

4.4.7. Suppose f, g : Rk → Rm and H is a dense subset of Rk. Prove that if f and g are
continuous, then

f(y) = g(y) for all y ∈ H =⇒ f(x) = g(x) for all x ∈ Rk. (4.4.54)

That is, continuous functions between Euclidean spaces are completely determined by their be-
havior on any dense subset of the domain.

4.4.8. Suppose g : Rk → Rm. Prove the following statements are equivalent:

(i) g is continuous (Definition 4.3.2).

(ii) g is topologically continuous in the following sense: If U is an open subset of the codomain
Rm, the its inverse image g−1(U) is an open subset of the domain Rk. (That is, inverse
images of open sets are open.)

4.5 Algebraic properties of continuity
Continuous functions exhibit a wealth of powerful properties, including linearity. To help motivate
the upcoming results on continuity and provide a family of functions which will be revisited
throughout the textbook, consider polynomials. Polynomials are defined along with monomials
in 1.6.8, but a copy is given here for convenience.

Definition 4.5.1: Polynomial

A polynomial is a function p : R→ R defined by a linear combination of monomials of the
form

p(x) =
n∑
j=0

ajx
j = a0 + a1x+ a2x

2 + · · ·+ an−1x
n−1 + anx

n (4.5.1)

where n ∈ N∪{0}, the coefficients a0, a1, a2, . . . , an−1, an are real numbers, and the conven-
tion x0 = 1 is used.

The proof of the next theorem is a culmination of results from this section and appears later.

Theorem 4.5.2: Polynomials are continuous

Polynomials are continuous on the real line R.
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Remark 4.5.3: Multiple perspectives on continuity

The proofs in this section make use of the three equivalent notions for continuity spelled out
in Theorem 4.4.7: preserving closeness, continuity, and sequential continuity (respectively
Definitions 4.2.5, 4.3.2, and 4.4.5). For proofs showing continuity based on the ε-δ form
in Definition 4.3.2, the work follows the guide in Remark 4.3.4. The numerous results on
convergent sequences in Chapter 2 can be paired with sequential continuity to prove the all
of the results in this section.

A special case of the continuity of basic affine transformations (Theorem 4.3.9) tells us lines
are continuous. The proof is omitted. Do you remember “slope-intercept form”?

Corollary 4.5.4: Lines are continuous

Suppose m and b are real numbers and let f : R→ R be given by

f(x) = mx+ b. (4.5.2)

Then f is continuous.

The next result and many that follow assume we are given continuous functions to work with
and show that certain combinations result in new continuous functions. As with the linearity of
limits for sequences (Theorem 2.3.9), continuity is linear.

Theorem 4.5.5: Linearity of continuity

Suppose D ⊆ Rk, c ∈ D, and f, g : D → Rm. If f and g are continuous at c, then

(i) f + g is continuous at c (additivity); and

(ii) αf is continuous at c for every scalar α ∈ R (homogeneity).

Scratch Work 4.5.6: A proof in three cases

The proof is broken down into three cases: f + g, α = 0, and α 6= 0. The α = 0 case ends
up being trivial, as in the α = 0 case for the continuity of basic affine transformations
(Theorem 4.3.9). The other two follow from the definition for continuity (Definition 4.3.2)
by adapting assumed thresholds for f and g to fit the needs of the new functions αf and
f + g, respectively. The approach reminds me of the proofs of the linearity of limits for
sequences (Theorem 2.3.9).

For the sum f + g in part (i), we want to end up

‖(f(x) + g(x))− (f(c) + g(c))‖m < ε. (4.5.3)

To leverage the individual continuity of f and g, we can split the distance ε in half to share
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between them. Each yields its own threshold (δf and δg) to ensure

‖x− c‖k < δf =⇒ ‖f(x)− f(c)‖m <
ε

2 and (4.5.4)

‖x− c‖k < δg =⇒ ‖g(x)− g(c)‖m <
ε

2 . (4.5.5)

We can get back to the goal inequality (4.5.3) from inequalities (4.5.4) and (4.5.5) using
the triangle inequality (1.2.32), but we need to ensure both (4.5.4) and (4.5.5) are valid
at the same time. To do this, we choose the threshold δ to be the smaller of individual
thresholds δf and δg.

For the case where α 6= 0 in part (ii), we want to end up with

‖αf(x)− αf(c)‖m = |α|‖f(x)− f(c)‖m < ε. (4.5.6)

We can leverage the continuity of f at c by dividing by |α| > 0 and consider

‖f(x)− f(c)‖m <
ε

|α|
. (4.5.7)

The continuity of f at c allows us to choose a threshold δ for the domain in response to the
distance ε/|α| for the range. The proof works this argument in reverse order and is similar
to the proof of the continuity of basic affine transformations (Theorem 4.3.9) in the case
where α 6= 0.

Proof of Theorem 4.5.5. Throughout the proof, suppose α ∈ R, D ⊆ Rk, c ∈ D, and f, g : D →
Rm where f and g are continuous at c.

Part (i): Suppose ε > 0. Since f and g are continuous at c, there are thresholds δf > 0 and
δg > 0 such that

‖x− c‖k < δf =⇒ ‖f(x)− f(c)‖m <
ε

2 and (4.5.8)

‖x− c‖k < δg =⇒ ‖g(x)− g(c)‖m <
ε

2 . (4.5.9)

Define δ to be the smaller of the thresholds δf and δg. That is, let

δ = min{δf , δg} (4.5.10)

and note δ > 0. Now suppose

‖x− c‖k < δ. (4.5.11)

Since δ ≤ δf and δ ≤ δg, both implications (4.5.8) and (4.5.9) hold. Hence, by the triangle
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inequality (1.2.32) we have

‖(f(x) + g(x))− (f(c) + g(c))‖m = ‖f(x)− f(c) + g(x)− g(c)‖m (4.5.12)
≤‖f(x)− f(c)‖m + ‖g(x)− g(c)‖m (4.5.13)

<
ε

2 + ε

2 (4.5.14)

= ε. (4.5.15)

Therefore, δ is a threshold and the sum f + g is continuous at c.
Part (ii): Suppose α = 0. Then αf(x) = 0 · f(x) = 0 for every x ∈ Rk. Define δ = 21 > 0.

Then for every x ∈ Rk we have

‖x− c‖k < δ = 21 =⇒ ‖αf(x)− αf(c)‖m = ‖0‖m = 0 < ε. (4.5.16)

Therefore, αf is continuous at c when α = 0.
Now suppose α 6= 0 and ε > 0. Since f is continuous at c, there is a threshold δ > 0 such that

for every x ∈ Rk we have

‖x− c‖k < δ =⇒ ‖f(x)− f(c)‖m <
ε

|α|
. (4.5.17)

Hence, by the relationship between absolute value and Pythagorean distance from Corollary 1.2.30,
we also have

‖αf(x)− αf(c)‖m = |α|‖f(x)− f(c)‖m < |α| · ε
|α|

= ε. (4.5.18)

Therefore, αf is continuous when α 6= 0.

Once again and as mentioned in Remark 1.6.18, a corollary of the linearity of continuity
holds for linear combinations. As with the proof Corollary 1.6.16 on arbitrarily close and linear
combinations of sets, the proof of Corollary 4.5.7 follows from induction on linearity. So, the proof
is left as an exercise.

Corollary 4.5.7: Continuity and linear combinations

Suppose A ⊆ R`, k ∈ N, and for each j = 1, . . . , k we have cj ∈ R and the functions
fj : A→ Rm are continuous. Then the linear combination f : A→ Rm given by

f(x) =
k∑
j=1

cjfj(x) = c1f1(x) + . . .+ ckfk(x) (4.5.19)

is continuous.

If we restrict the context to functions from the real line to the real line, then products of
continuous functions are continuous. That is, continuity is multiplicative.
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Theorem 4.5.8: Products of continuous functions are continuous

Suppose D ⊆ R, c ∈ D, and f, g : D → R where f and g are continuous at c. Then the
product fg is continuous at c.

Scratch Work 4.5.9: Perspective of sequential continuity

So far in this section, the proofs follow the guide in Remark 4.3.4 to directly address the
definition of continuity (Definition 4.3.2) and respond to an arbitrary distance ε > 0 for
the range with a threshold δ > 0 for the domain. The same approach could be made to
work here, but to showcase the equivalent forms of continuity in Theorem 4.4.7, we work
with sequential continuity (Definition 4.4.5) and the idea that for sequences, the limit of a
product is the product of the limits (Theorem 2.3.17).

Proof of Theorem 4.5.8. Suppose D ⊆ R, c ∈ D, and f, g : D → R where f and g are continuous
at c. By the implication (iii) =⇒ (ii) from the equivalent forms of continuity given by Theorem
4.4.7, both f and g are sequentially continuous at c. So, consider an arbitrary convergent sequence
of real numbers (xn) ⊆ D where

lim
n→∞

xn = c. (4.5.20)

By the definition of sequential continuity, we have

lim
n→∞

f(xn) = f(c) and lim
n→∞

g(xn) = g(c). (4.5.21)

For sequences of real numbers, the limit of a product is the product of the limits (Theorem 2.3.17),
so we have

lim
n→∞

f(xn)g(xn) =
(

lim
n→∞

f(xn)
)(

lim
n→∞

g(xn)
)

= f(c)g(c). (4.5.22)

Hence, the product fg is sequentially continuous at c. By the implication (ii) =⇒ (iii) in Theorem
4.4.7, fg is continuous at c.

Remark 4.5.10: Alternative proof

If you are interested in a proof of Theorem 4.5.8 based on the ε-δ definition for continuity
(Definition 4.3.2), take a look at the proof of Theorem 2.3.17 regarding the limit of a
sequence of products. That proof makes use of Theorem 2.3.15: Convergent sequences are
bounded.

Since continuous functions are locally bounded (Theorem 4.3.21), we can make a similar
argument for a pair of functions f, g : R → R which are continuous at c using a common
local bound bc > 0. Ultimately, given an arbitrary distance ε > 0 for the range, the distance

δ = ε

2bc
(4.5.23)

can be proven to serve as a threshold for the continuity of fg at c. If you like, give it a shot.

Products lead to monomials which are then continuous by induction.
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Corollary 4.5.11: Monomials are continuous

Suppose f : R→ R is a monomial given by

f(x) = xn (4.5.24)

for some n ∈ N. Then f is continuous.

Proof of Corollary 4.5.11. We argue by induction. Throughout this proof, the domain and range
of the functions are the real line R.

Base case: Suppose f1(x) = x. Then f1 is continuous by Corollary 4.5.4 where m = 1 and
b = 0.

Inductive case: Consider the polynomial fk(x) = xk where k ∈ N, and assume fk is continuous.
Also consider the polynomial

fk+1(x) = xk+1 = xk · x. (4.5.25)

Both fk(x) = xk and f1(x) = x are continuous, so we have fk+1(x) = xk+1 is continuous since it
is the product of continuous functions (Theorem 4.5.8).

Therefore, the monomial f(x) = xn is continuous for every n ∈ N.

At this point, we can combine the results in this section with another induction argument to
prove polynomials are continuous (Theorem 4.5.2).

Theorem 4.5.12: Polynomials are continuous (copy)

Polynomials are continuous on the real line R.

Proof of Theorem 4.5.2. We proceed by induction. Throughout this proof, the domain and range
of the functions are the real line R.

Base case: Suppose p1 is a polynomial of the form

p1(x) = a0 + a1x (4.5.26)

where a0, a1 ∈ R. Then p1 is continuous by Corollary 4.5.4 where m = a1 and b = a0.
Inductive case: Suppose pk is a polynomial of the form

pk(x) = a0 + a1x+ a2x
2 + · · ·+ ak−1x

k−1 + akx
k (4.5.27)

where k ∈ N and the coefficients a0, a1, . . . , ak−1, ak are real numbers. Assume pk is continuous.
Every polynomial fk+1 of the form

fk+1(x) = ak+1x
k+1 (4.5.28)

is continuous by part (ii) of the linearity of continuity (Theorem 4.5.5) and the continuity of
monomials (Corollary 4.5.11). By part (i) of the linearity of continuity (Theorem 4.5.5), the
polynomial pk+1 given by

pk+1(x) = pk(x) + fk+1(x) (4.5.29)
= a0 + a1x+ a2x

2 + · · ·+ akx
k + ak+1x

k+1 (4.5.30)
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is continuous since it is the sum of continuous functions.
With the induction completed, we conclude polynomials are continuous.

The next result follows immediately from preservation of closeness (Definition 4.2.5). The
hypotheses ensure the composition is well-defined.

Theorem 4.5.13: Compositions of continuous functions are continuous

Suppose D ⊆ Rk, E ⊆ Rj, f : D → Rj, and g : E → Rm where f(D) ⊆ E. Further suppose
f is continuous at c ∈ Rk and g is continuous at f(c). Then the composition g◦f : D → Rm

defined by

g ◦ f(x) = g(f(x)) for all x ∈ D (4.5.31)

is continuous at c.

Proof of Theorem 4.5.13. Suppose all the hypotheses as stated in Theorem 4.5.13 hold. Since
f and g are continuous at c and f(c), respectively, they preserve closeness as well by Theorem
4.4.7. Suppose B ⊆ D where c aclB. By the definition of preserving closeness (Definition 4.2.5)—
twice—we have

c aclB =⇒ f(c) acl f(B) =⇒ g(f(c)) acl g(f(B)). (4.5.32)

Therefore, the composition g ◦ f preserves closeness at c. By another application of Theorem
4.4.7, g ◦ f is continuous at c.

The combination of the previous theorem with the next result leads to a nice conclusion
regarding quotients of continuous functions.

Example 4.5.14: Continuity of the reciprocal

The function f : R\{0} → R given by

f(x) = 1
x

(4.5.33)

is continuous. See the Desmos activity “Continuity of reciprocal” in Figure 4.5.1.

Scratch Work 4.5.15: Careful algebra

Following the guide in Remark 4.3.4 for proofs using the ε-δ form of continuity in Definition
4.3.2, consider the expression ∣∣∣∣1x − 1

c

∣∣∣∣ < ε (4.5.34)

where x and c are nonzero. The goal is to figure out an expression for the distance |x− c|
in the domain and come up with a suitable threshold δ. Using the common denominator
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Figure 4.5.1: To accompany Example 4.5.14, play around with the
Desmos activity “Continuity of reciprocal” accessed through this QR code.
In particular, note that when we keep ε fixed but allow c to get
closer to 0, the value of the threshold δ must decrease to compensate.
https://www.desmos.com/calculator/clwvuzoenv

xc, we have the revised expression∣∣∣∣1x − 1
c

∣∣∣∣ =
∣∣∣∣c− xxc

∣∣∣∣ = 1
|xc|
|x− c| < ε. (4.5.35)

Note that when x and c are near zero, 1/|xc| could be so large that (4.5.35) may fail to
hold. Play around with the Desmos activity “Continuity of reciprocal” in Figure 4.5.1 to
see this in action. One way to compensate it to have both x and c more than a distance
|c|/2 > 0 away from zero to keep 1/|xc| under control. By the reverse triangle inequality
(1.2.37) we have

|c| − |x| ≤ |x− c| < |c|2 =⇒ |c|
2 < |x| =⇒ 2

|c|
>

1
|x|
. (4.5.36)

Hence, we also have

|x− c| < |c|2 =⇒ 2
c2 >

1
|x||c|

⇐⇒ 1
|xc|

<
2
c2 . (4.5.37)

Therefore, considering both the goal (4.5.35) and (4.5.37) leads to

|x− c| < |c|2 =⇒
∣∣∣∣1x − 1

c

∣∣∣∣ = 1
|xc|
|x− c| < 2

c2 |x− c| < ε. (4.5.38)

Similar to Example 4.3.15, the updated goal (4.5.38) is only valid when |x − c| < |c|/2, so
we need to keep this constraint in mind. For a threshold δ, setting

δ = min
{
|c|
2 ,

εc2

2

}
(4.5.39)

should work out. In fact, this can be visualized using the “Delta Tester - continuity” Desmos
activity from Figure 4.3.5 by changing the formulas for the function and the threshold
accordingly.

https://www.desmos.com/calculator/clwvuzoenv
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Proof for Example 4.5.14. Suppose ε > 0 and c 6= 0. Choose the distance

δ = min
{
|c|
2 ,

εc2

2

}
(4.5.40)

for the domain. Note δ > 0 and we have both

|x− c| < δ ≤ |c|2 and |x− c| < δ ≤ εc2

2 . (4.5.41)

So as in Scratch Work 4.5.15, by the reverse triangle inequality (1.2.37) for x 6= 0 we have

|c| − |x| ≤ |x− c| < |c|2 =⇒ |c|
2 < |x| =⇒ 2

c2 >
1
|xc|

⇐⇒ 1
|xc|

<
2
c2 . (4.5.42)

Hence, we have

|x− c| < δ =⇒
∣∣∣∣1x − 1

c

∣∣∣∣ = 1
|xc|
|x− c| <

( 2
c2

)(
εc2

2

)
= ε. (4.5.43)

Therefore, f is continuous on R\{c}.

To conclude the section, quotients of continuous functions are continuous, within reason.

Theorem 4.5.16: Quotients of continuous functions are continuous

Suppose D ⊆ R, c ∈ D, and f, g : D → R. If f and g are continuous at c and g(x) 6= 0 for
all x ∈ D, then the quotient f/g : D → R given by

f(x)
g(x) for all x ∈ D (4.5.44)

is continuous at c.

We can prove Theorem 4.5.16 by combining results proven in this section.

Proof of Theorem 4.5.16. Suppose the hypotheses stated in Theorem 4.5.16 hold. The function
f/g satisfies

f(x)
g(x) = f(x) 1

g(x) for all x ∈ D. (4.5.45)

Note that 1/g(x) is the composition of h(y) = 1/y and g(x) in that

h ◦ g(x) = h(g(x)) = 1
g(x) . (4.5.46)

Since g(x) 6= 0 on D, the composition h◦g = 1/g is well-defined. Furthermore, since h(y) = 1/y is
continuous on R\{0} by Example 4.5.14 and g is continuous at c by assumption, the composition
h ◦ g = 1/g is continuous by Theorem 4.5.13. Finally, f is continuous at c and products of
continuous functions are continuous by Theorem 4.5.8, we have f/g is continuous at c.

There is much more to do with continuous functions before moving on to limits and derivatives
in the next chapter.
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Exercises
4.5.1. For each statement below, find a pair of functions f, g : R→ R that satisfy the statement.

(i) f and g are discontinuous at 0, but their sum f + g is continuous at 0.

(ii) f and g are discontinuous at 0, but their product fg is continuous at 0.

(iii) f and g are discontinuous at 0, but their quotient f/g is continuous at 0.

(iv) f and g are discontinuous at 0, but both f + g and fg are continuous at 0.

4.5.2. Fix c ∈ R. For each n ∈ N, consider the function qn : R→ R given by

qn(x) =


xn − cn

x− c
, if x 6= c,

ncn−1, if x = c.
(4.5.47)

Prove qn is continuous at c.

4.5.3. Every real number x has unique decomposition into an integer part bxc and a fractional
part {x} where bxc is the integer satisfying

x ≤ bxc < x+ 1 and {x} = x− bxc. (4.5.48)

Let g, h : R→ R be floor and sawtooth functions given by

g(x) = bxc and h(x) = {x} = x− bxc, (4.5.49)

respectively. See the Desmos activity used to explore discontinuity in Figure 4.3.3.

(i) Draw the graphs of g and h. (Can you see how they got their names?)

(ii) Determine where g and h are discontinuous and prove your result.

(iii) Determine where g and h are continuous and prove your result.

4.5.4. Suppose a < p < b, f : [a, p] → R is continuous, g : [p, b] → R is continuous, and
f(p) = g(p). Consider the glued function h : [a, b]→ R given by

h(x) =
f(x), if x ∈ [a, p],
g(x), if x ∈ [p, b].

(4.5.50)

Prove h is continuous.

4.5.5. Suppose f : R → R is continuous. Prove there are nonnegative functions1 g, h : R → R
such that

f(x) = g(x)− h(x) for all x ∈ R. (4.5.51)
1g(x) ≥ 0 and h(x) ≥ 0 for all x ∈ R.
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4.5.6. A function g : R → R is even when g(−x) = g(x) for all x ∈ R. A function h : R → R is
odd when h(−x) = −h(x) for all x ∈ R. Prove that if f : R → R is continuous, then there is an
even function g and an odd function h where

f(x) = g(x) + h(x) for all x ∈ R. (4.5.52)

4.5.7. Let C[a, b] denote the set of real-valued continuous functions on [a, b]. Use Lemma 1.6.7
to prove C[a, b] is a vector space.

4.5.8. Suppose c, ` ∈ R and let C(c, `) denote the set of real-valued functions on R that are
continuous at c with output `. (Thus, for each f ∈ C(c, `) we have f(c) = `.) Use Lemma 1.6.7
to prove C(c, `) is a vector space if and only if ` = 0.

4.6 More properties of continuity
This section features a flurry of results on continuous functions. They preserve properties and
relationships between points, sequences, and sets. The equivalent forms of continuity established
with Theorem 4.4.7 provide flexibility in the way we decide to prove the results.

First, consider a result that came out of a discussion on Discord. One night, I posted a
conjecture that continuous functions preserve coupled sets. By the next day, John Rodriguez
provided the proof you see here.

Lemma 4.6.1: Continuous images of coupled sets are coupled

Suppose D ⊆ Rk, f : D → Rm, and G,H ⊆ D. If f is continuous and G and H are coupled,
then f(G) and f(H) are coupled.

Scratch Work 4.6.2: Definitions built on arbitrarily close

John takes advantage of the fact that the definitions for coupled sets and preserving closeness
(Definitions 3.3.1 and 4.2.5) are both stated in terms of arbitrarily close.

Proof of Lemma 4.6.1. Suppose f is continuous while G and H are coupled subsets of the domain.
By the definition of coupled (Definition 3.3.1) and without loss of generality, there is some x ∈ G
where x aclH. Since f is continuous, f preserves closeness at x by Theorem 4.4.7. By the
definitions of preserving closeness and image (respectively Definitions 4.2.5 and 1.2.14), we have

x aclH =⇒ f(x) acl f(H) and (4.6.1)
x ∈ G =⇒ f(x) ∈ f(G). (4.6.2)

Therefore, the images f(G) and f(H) are coupled.

The preservation of coupled sets by continuous functions leads directly to the preservation of
connectedness.
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Theorem 4.6.3: Continuous images of connected sets are connected

If f : D → Rm is continuous and D is connected, then the range f(D) is connected.

Scratch Work 4.6.4: Continuity as preservation of closeness

The following proof takes advantage of the equivalence of continuity and the preservation
of closeness in Theorem 4.4.7 as well as a key property of preimages: By Lemma 4.1.13,
preimages respect unions and intersections.

Proof of Theorem 4.6.3. Suppose f : D → Rm is continuous where D is connected. Let f(D) =
A ∪B where A and B are nonempty. By the definitions of domain and range (Definition 1.2.13),
every point in the domain is the preimage of a point in the range and every point in the range is
the image of a point in the domain, hence D = f−1(f(D)). So, by Lemma 4.1.13 we have

D = f−1(f(D)) = f−1(A ∪B) = f−1(A) ∪ f−1(B). (4.6.3)

Since A and B are nonempty, their preimages f−1(A) and f−1(B) are nonempty as well. SinceD is
connected (Definition 3.3.4), f−1(A) and f−1(B) are coupled sets in the domain. Since continuous
functions preserve coupled sets by Lemma 4.6.1, A and B are coupled sets in the range. Finally,
since A and B are arbitrary, the range f(D) is connected.

A corollary of Theorem 4.6.3 is the classic Intermediate Value Theorem: Continuous functions
from the real line to the real line map intervals to intervals. In this way, the range has no holes
or jumps. (Cf. [1, Theorem 4.5.1, p.136].)

Theorem 4.6.5: Intermediate Value Theorem

Suppose f : [a, b]→ R is continuous. If ` is a real number satisfying

f(a) < ` < f(b) or f(a) > ` > f(b), (4.6.4)

then there is some c ∈ (a, b) such that f(c) = `.

Scratch Work 4.6.6: Intervals are the connected sets in the real line

Intervals characterize the connected subsets of the real line (see Theorem 3.3.17), and in-
tervals themselves are characterized by inequalities like those in (4.6.4) (see Lemma 3.3.16).
Combining these results with Theorem 4.6.3 yield a proof of the Intermediate Value Theo-
rem 4.6.5.

Proof of the Intermediate Value Theorem 4.6.5. Suppose f : [a, b] → R is continuous and ` is a
real number satisfying

f(a) < ` < f(b) or f(a) > ` > f(b). (4.6.5)
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By Theorem 3.3.17, the domain [a, b] is connected. Since continuous images of connected sets are
connected (Theorem 4.6.3), the range f([a, b]) is connected. As a connected subset of the real
line, the f([a, b]) is an interval as well. Hence, we have either

[f(a), f(b)] ⊆ f([a, b]) or [f(b), f(a)] ⊆ f([a, b]). (4.6.6)

Either way, ` is in the range f([a, b]). Therefore, ` is the image of a point c ∈ [a, b] and f(c) = `.
Since ` is equal to neither f(a) nor f(b), we have c ∈ (a, b).

Continuous functions preserve compactness, too.

Theorem 4.6.7: Continuous images of compact sets are compact

If K ⊆ Rk and f : K → Rm where f is continuous and K is compact, then the range f(K)
is compact.

Scratch Work 4.6.8: Pair of sequential characterizations

The proof takes advantage of the sequential characterizations of both compactness and
continuity thanks to the Heine-Borel Theorem 3.5.1 and the equivalent forms of continuity
in Theorem 4.4.7, respectively.

Proof of Theorem 4.6.7. Suppose f : K → Rm is continuous and K is compact. By Theorem
4.4.7, f is sequentially continuous (Definition 4.4.5). By the Heine-Borel Theorem 3.5.1, K is
sequentially compact (Definition 3.5.11).

So, let (yn) be a sequence of points in the range f(K). (The goal is to show (yn) has a
convergent subsequence whose limit is in f(K).) By the definition of range (Definition 1.2.13),
for each index n ∈ N there is a point xn in the domain K where f(xn) = yn. Furthermore,
(yn) = (f(xn)). Since K is sequentially compact, there is a convergent subsequence (xnk) of the
sequence (xn) where

lim
k→∞

xnk = c and c ∈ K. (4.6.7)

Since f is sequentially continuous at every point in the domain K, we have

lim
k→∞

xnk = c ∈ K =⇒ lim
k→∞

f(xnk) = f(c) ∈ f(K). (4.6.8)

Hence, (f(xnk)) is a subsequence of (yn) = (f(xn)) that converges to f(c), and f(c) is in f(K).
Therefore, f(K) is sequentially compact and also compact by the Heine-Borel Theorem 3.5.1.

Theorem 4.6.7 immediately yields the classic Extreme Value Theorem: Continuous functions
attain their maximum and minimum values when they map compact subsets of the real line to
the real line.
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Corollary 4.6.9: Extreme Value Theorem

If K is a compact subset of the real line R and f : K → R is continuous, then f attains its
minimum and maximum values. That is, there are inputs s, t ∈ K where

f(s) = inf f(K) = min f(K) and f(t) = sup f(K) = max f(K). (4.6.9)

Scratch Work 4.6.10: Pervasiveness of arbitrarily close

The proof takes advantage of the way arbitrarily close pervades the definitions and charac-
terizations of supremum, infimum, continuity, and compactness (through closed).

Proof of the Extreme Value Theorem 4.6.9. Suppose f : K → R is continuous and K is compact.
By Theorem 4.6.7, f(K) is compact as well. By the Heine-Borel Theorem 3.5.1, f(K) is closed and
bounded. As a bounded set of real numbers, both sup f(K) and inf f(K) exist by the Axiom of
Completeness 1.3.8 and its mirror image for infima Theorem 1.4.1, respectively. By the definitions
of supremum and infimum (Definition 1.1.14), we have both

(sup f(K)) acl f(K) and (inf f(K)) acl f(K). (4.6.10)

Since f(K) is closed, by Definition 3.1.1 we have both

sup f(K) ∈ f(K) and inf f(K) ∈ f(K). (4.6.11)

Hence, there are inputs s, t ∈ K where

f(s) = inf f(K) and f(t) = sup f(K). (4.6.12)

Since sup f(K) is an upper bound for f(K), inf f(K) is a lower bound for f(K), and both are in
f(K), both max f(K) and min f(K) exist (see Definition 1.1.2).

Another result that builds on our work with sequences is a squeeze theorem for continuity.

Theorem 4.6.11: Squeeze Theorem for continuity

Suppose D ⊆ R, c ∈ D, and f, g, h : D → R. If

(i) f(c) = h(c),

(ii) f(x) ≤ g(x) ≤ h(x) for all x ∈ D, and

(iii) f and h are continuous at c,

then g is continuous at c as well.
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Scratch Work 4.6.12: Sequential continuity and
the Squeeze Theorem for sequences

We could prove the Squeeze Theorem for continuity 4.6.11 with an ε-δ argument by defining
a threshold for g as the minimum of the thresholds for f and h, but a combination of
sequential continuity via Theorem 4.4.7 and the Squeeze Theorem for sequences 2.4.3 makes
for a short proof.

Proof of the Squeeze Theorem for continuity 4.6.11. Suppose the hypotheses of Theorem 4.6.11
hold. Since f(c) = h(c) and f(c) ≤ g(c) ≤ h(c), we have

f(c) = g(c) = h(c). (4.6.13)

Now assume

(xn) ⊆ D such that lim
n→∞

xn = c. (4.6.14)

Since f and h are continuous at c, they are sequentially continuous at c by Theorem 4.4.7. Hence,

lim
n→∞

f(xn) = f(c) = h(c) = lim
n→∞

h(xn). (4.6.15)

Since f(xn) ≤ g(xn) ≤ h(xn) for every index n ∈ N, the conditions of the Squeeze Theorem for
Sequences 2.4.3 are met. So, since f(c) = g(c) = h(c), we have

lim
n→∞

g(xn) = g(c). (4.6.16)

Therefore, g is sequentially continuous at c and also continuous at c by Theorem 4.4.7.

The wealth of results developed in this chapter lead to a wide variety of criteria we can use to
show a function is discontinuous without working directly with the negation of the ε-δ definition
of continuity in Definition 4.3.2.

Corollary 4.6.13: Discontinuity Criteria

If D ⊆ Rk, c ∈ D, f : D → Rm, and f satisfies any of the following conditions, then f is
discontinuous at c:

(i) There is a set E ⊆ D where

c aclE but f(c) awf f(E). (4.6.17)

(ii) There is a sequence (xn) ⊆ D where

lim
n→∞

xn = c but lim
n→∞

f(xn) 6= f(c). (4.6.18)

(iii) f is not locally bounded at c.

Additionally, f is discontinuous (on D) if either of the following conditions is satisfied:
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(iv) There is a connected set C ⊆ D whose image f(C) is disconnected.

(v) There is a compact set K ⊆ D whose image f(K) is not compact.

Some of the functions explored in this chapter showcase the various notions of discontinuity
described in Discontinuity Criteria 4.6.13.

Example 4.6.14: A discontinuous function from the plane
to the real line

Consider the function w : R2 → R in Example 4.1.6 given by

w(x) =
‖x‖, if 0 ≤ ‖x‖ < 1,

2, if ‖x‖ ≥ 1.
(4.6.19)

See Figure 4.1.4. In the domain, the unit vector e1 is arbitrarily close to open unit disk
V1(0). However, we have

w(e1) = 2 while w(V1(0)) = [0, 1). (4.6.20)

Since 2 awf [0, 1), w does not preserve closeness at e1 since

e1 aclV1(0) but w(e1) awf w(V1(0)). (4.6.21)

By part (i) of the Discontinuity Criteria 4.6.13, w is discontinuous at c = e1.

Example 4.6.15: A discontinuous, piecewise defined function

For the function g : R→ R from Examples 4.1.3 and 4.2.3 given by

g(x) =
x/2, if x < 2,

1 + (x/2), if x ≥ 2,
(4.6.22)

See Figure 4.2.3. The interval E3 = (1, 3) is a connected subset of the domain by Theorem
3.3.17. Its image g(E3) = (1/2, 1) ∪ [2, 5/2) is disconnected since (1/2, 1) and [2, 5/2) form
a separation (see Definition 3.3.12). By part (iv) of the Discontinuity Criteria 4.6.13, g is
discontinuous.

Example 4.6.16: Another discontinuous, piecewise defined function

Consider the unbounded function v : R→ R given by

v(x) =


1

2− x, if x < 2,

1 + x

2 , if x ≥ 2.
(4.6.23)
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See Figure 4.2.4. To see that v is not locally bounded at c = 2, note that every δ-
neighborhood of c = 2 given by

Vδ(2) = (2− δ, 2 + δ) (4.6.24)

is bounded, but their images are the unbounded sets given by

v(Vδ(2)) =
(1
δ
,∞

)
∪
(

2, 2 + δ

2

)
. (4.6.25)

By part (iii) of the Discontinuity Criteria 4.6.13, v is discontinuous at c = 2.

Example 4.6.17: Dirichlet’s function is discontinuous everywhere

Consider Dirichlet’s function, the indicator function of the rationals 1Q : R→ R given by

1Q(x) =
1, if x ∈ Q,

0, if x ∈ R\Q.
(4.6.26)

In Example 4.2.14, it is shown that 1Q does not preserve closeness at any c ∈ R. By part
(i) of the Discontinuity Criteria 4.6.13, 1Q is discontinuous at every c ∈ R.

Example 4.6.18: Topologist’s sine curve is discontinuous at zero

Consider the topologist’s sine curve t : R→ R given by

t(x) =
sin(1/x), if x 6= 0,

0, if x = 0.
(4.6.27)

In Example 4.4.10, it is shown that for the sequence (xn) given by

xn = 1
π
2 + 2πn for each index n ∈ N, (4.6.28)

we have (xn) is in the domain where

lim
n→∞

xn = lim
n→∞

(
1

π
2 + 2πn

)
= 0, but (4.6.29)

lim
n→∞

t(xn) = lim
n→∞

sin
(
π

2 + 2πn
)

= 1 6= 0 = t(0). (4.6.30)

Hence, t is not sequentially continuous at c = 0. By part (ii) of the Discontinuity Criteria
4.6.13, t is discontinuous at c = 0. In fact, no matter how we redefine the output t(0), t
remains discontinuous at c = 0.

The next section closes the chapter with a strengthening of continuity to uniform continuity:
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The idea being that continuous functions which have a single threshold δ that suffices for every
point in the domain exhibit some additional nice properties. After that, the next chapter starts
of by softening continuity to define functional limits, allowing for us to get into derivatives.

Exercises
4.6.1. Prove there is a real number x such that x = cosx.

4.6.2. Suppose f : [a, b]→ R is continuous and one-to-one. Prove the inverse f−1 is continuous.

4.6.3. Suppose g : [0, 1]→ R where g is continuous and g(0) = g(1).

(i) Prove there exist x2, y2 ∈ [0, 1] such that

|x2 − y2| =
1
2 and g(x2) = g(y2). (4.6.31)

(ii) Generalize result (i) by proving that for each n ∈ N, there are xn, yn ∈ [0, 1] where

|xn − yn| =
1
n

and g(xn) = g(yn). (4.6.32)

4.6.4. Suppose f : [0, 1] → [0, 1] is continuous. Note that the codomain is the compact interval
[0, 1], not the real line R. Prove f has a fixed point x0 in that there is some x0 ∈ [0, 1] where

f(x0) = x0. (4.6.33)

4.6.5. Suppose h : [a, b]→ R is strictly increasing. Prove h has at most countably many discon-
tinuities.

4.6.6. Consider a squeezed version of the topologist’s sine curve from Example 4.4.10 defined by
s : R→ R where

s(x) =
x sin(1/x), if x 6= 0,

0, if x = 0.
(4.6.34)

Prove s is continuous at c = 0.

4.6.7. A real-valued g has the intermediate value property if for every a and b in the domain with
a < b and for every real number ` satisfying

g(a) < ` < g(b) or g(a) > ` > g(b), (4.6.35)

then there is some c ∈ (a, b) such that g(c) = `. This exercise directly shows that the topologist’s
sine curve t from Example 4.4.10 has the intermediate value property.

(i) Prove there are positive real numbers a and b where t(a) = −1 and t(b) = 1.
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(ii) Prove that for each y ∈ [−1, 1], there is a sequence of positive real numbers (xn) where

lim
n→∞

xn = 0 and lim
n→∞

t(xn) = y. (4.6.36)

(iii) Prove t(Vδ(0)) = [−1, 1] for every δ > 0, no matter how small we take δ to be.

Hence, the topologist’s sine curve t has the intermediate value property, despite being discontin-
uous at c = 0. Moreover, the set of points arbitrarily close to the image of every δ-neighborhood
of 0 under t is a full interval.

4.6.8. Consider the function h : R\{0} → R given by

h(x) = 1
x

sin
(1
x

)
. (4.6.37)

(i) Draw a figure for h.

(ii) Find sequences of positive numbers (xn), (yn), and (zn) where

lim
n→∞

xn = lim
n→∞

yn = lim
n→∞

zn = 0, but (4.6.38)

lim
n→∞

h(xn) = 0, lim
n→∞

h(yn) =∞, and lim
n→∞

h(zn) = −∞. (4.6.39)

(iii) Prove ⋂
δ>0

h(Vδ(0)\{0}) = R. (4.6.40)

Hence, the set of points arbitrarily close to the image of every δ-neighborhood of 0 (excluding 0)
under h is the whole real line R.

4.7 Uniform continuity
Uniform continuity is a strengthening of continuity where we have “Sauron’s δ”2:

One threshold to rule them all.

This section explores a number of nice results that stem from uniform continuity.

Definition 4.7.1: Uniform continuity

Let D ⊆ Rk and f : D → Rm. We say f is uniformly continuous if for every distance ε > 0
there is a uniform threshold δ > 0 such that

x, c ∈ D with ‖x− c‖k < δ =⇒ ‖f(x)− f(c)‖m < ε. (4.7.1)

2Yes, this is totally a reference to Lord of the Rings.
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Figure 4.7.1: To accompany Remark 4.7.2 and Example 4.7.8, explore
the difference between continuity and uniform continuity by playing around
with the Desmos activity “Continuity of reciprocal” accessed through this
QR code. In particular, note that when we keep ε fixed but allow c to
get closer to 0, the value of the threshold δ must decrease to compensate.
https://www.desmos.com/calculator/clwvuzoenv

Remark 4.7.2: Continuity versus uniform continuity

The definitions for continuity and uniform continuity are strikingly similar: Both start
with a distance ε > 0 for the range and respond with a threshold δ > 0 for the domain
that usually depends on ε. See Definitions 4.3.2 and 4.7.1. However, there is a subtle and
important difference: With continuity, a threshold δ generally depends on the point c. With
uniform continuity, a threshold δ is independent of c. So when we do scratch work to find
a suitable threshold for continuity at c to fit Definition 4.3.2, the formula we get for δ can
depend on both ε and a particular input c. But a suitable threshold δ for uniform continuity
fitting Definition 4.7.1 is independent of the inputs. To explore this contrast further, revisit
the reciprocal function f(x) = 1/x from Example 4.5.14 and play around with the Desmos
activity “Continuity of reciprocal” found in Figure 4.7.1.

The first case of uniform continuity requires no extra effort to prove.

Corollary 4.7.3: Lines are uniformly continuous

Suppose m and b are real numbers and let f : R→ R be given by

f(x) = mx+ b. (4.7.2)

Then f is uniformly continuous.

Remark 4.7.4: Exactly the same threshold

Corollaries and 4.5.4 and 4.7.3 follow immediately from the continuity of basic affine trans-
formations (Theorem 4.3.9). In particular, the same threshold δ suffices for both proofs.

https://www.desmos.com/calculator/clwvuzoenv
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For m 6= 0,

δ = ε

|m|
(4.7.3)

is a threshold for the continuity of f at every real number c. Since δ is independent of c, it
is also a uniform threshold and we have f is uniformly continuous.

Uniform continuity is linear.

Theorem 4.7.5: Linearity of uniform continuity

Suppose D ⊆ Rk and f, g : D → Rm. If f and g are uniformly continuous, then

(i) f + g is uniformly continuous (additivity); and

(ii) αf is uniformly continuous for every scalar α ∈ R (homogeneity).

Scratch Work 4.7.6: Nearly identical to the linearity of contintuity

A subtle modification of Scratch Work 4.5.6 for the linearity of continuity at some point c
suffices for the linearity of uniform continuity: Interpret thresholds as uniform thresholds.

Proof of Theorem 4.7.5. Throughout the proof, suppose α ∈ R, D ⊆ Rk, and f, g : D → Rm

where f and g are uniformly continuous.
Part (i): Suppose ε > 0. Since f and g are uniformly continuous, there are uniform thresholds

δf > 0 and δg > 0 such that for all x, c ∈ D we have

‖x− c‖k < δf =⇒ ‖f(x)− f(c)‖m <
ε

2 and (4.7.4)

‖x− c‖k < δg =⇒ ‖g(x)− g(c)‖m <
ε

2 . (4.7.5)

Define δ to be the smaller of the uniform thresholds δf and δg. That is, let

δ = min{δf , δg} (4.7.6)

and note δ > 0. Now suppose x, c ∈ D where

‖x− c‖k < δ. (4.7.7)

Since δ ≤ δf and δ ≤ δg, both implications (4.7.4) and (4.7.5) hold. Hence, by the triangle
inequality (1.2.32) we have

‖(f(x) + g(x))− (f(c) + g(c))‖m = ‖f(x)− f(c) + g(x)− g(c)‖m (4.7.8)
≤‖f(x)− f(c)‖m + ‖g(x)− g(c)‖m (4.7.9)

<
ε

2 + ε

2 (4.7.10)

= ε. (4.7.11)
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Therefore, δ is a uniform threshold and the sum f + g is uniformly continuous.
Part (ii): Suppose α = 0. Then αf is constant since

αf(x) = 0 · f(x) = 0 (4.7.12)

for every x ∈ Rk. Now let ε > 0. Then δ = 42 is a uniform threshold since for any x, c ∈ D we
have

‖x− c‖k < 42 =⇒ ‖αf(x)− αf(c)‖m = ‖0‖m = 0 < ε. (4.7.13)

Now suppose α 6= 0 and ε > 0. Since f is uniformly continuous, there is a uniform threshold
δ > 0 such that for every x, c ∈ D we have

‖x− c‖k < δ =⇒ ‖f(x)− f(c)‖m <
ε

|α|
. (4.7.14)

Hence, by the relationship between absolute value and Pythagorean distance from Corollary 1.2.30,
we also have

‖αf(x)− αf(c)‖m = |α|‖f(x)− f(c)‖m < |α| · ε
|α|

= ε. (4.7.15)

Therefore, αf is uniformly continuous.

Once again and as mentioned in Remark 1.6.18 and much like Corollary 4.5.7 on pointwise
continuity and linear combinations, a corollary of the linearity of uniform continuity holds for
linear combinations. As with the proofs of Corollaries 1.6.16 and 4.5.7, the proof of Corollary
4.7.7 follows from induction on linearity. So, the proof is left as an exercise.

Corollary 4.7.7: Uniform continuity and linear combinations

Suppose A ⊆ R`, k ∈ N, and for each j = 1, . . . , k the functions fj : A→ Rm are uniformly
continuous. Then the linear combination f : A→ Rm given by

f(x) =
k∑
j=1

cjfj(x) = c1f1(x) + . . .+ ckfk(x) (4.7.16)

is uniformly continuous.

In general, continuous functions are not necessarily uniformly continuous.

Example 4.7.8: Reciprocal is not uniformly continuous

The function f : R\{0} → R given by

f(x) = 1
x

(4.7.17)

is continuous but not uniformly continuous. The fact that f is continuous is proven in
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Example 4.5.14 using the threshold

δ = min
{
|c|
2 ,

εc2

2

}
. (4.7.18)

This δ depends on c as can be seen by playing around with the Desmos activity “Continuity
of reciprocal” from Figure 4.7.1. But to fully verify f is not uniformly continuous, we should
show there is no threshold δ that suffices for every c ∈ R\{0} at the same time. We can do
this with the negation of Definition 4.7.1 by showing that for some particular ε0 > 0 and
every δ > 0 there are real numbers x and c where

|x− c| < δ but |f(x)− f(c)| =
∣∣∣∣1x − 1

c

∣∣∣∣ ≥ ε0. (4.7.19)

Scratch Work 4.7.9: The issue is at zero

Considering positive x and c close enough to 0 will suffice. In fact, we can use the pair
x = 1/n and c = 1/(n + 1) where n ∈ N since their difference can be made as small as we
like (less than any δ > 0) while their outputs are always a distance 1 apart. In the domain
we have ∣∣∣∣ 1n − 1

n+ 1

∣∣∣∣ =
∣∣∣∣∣n+ 1− n
n(n+ 1)

∣∣∣∣∣ = 1
n(n+ 1) <

1
(n+ 1)2 , (4.7.20)

while in the range we have∣∣∣∣f ( 1
n

)
− f

( 1
n+ 1

)∣∣∣∣ =
∣∣∣∣∣ 1
1/n −

1
1/(n+ 1)

∣∣∣∣∣ = |n+ 1− n| = 1. (4.7.21)

Proof for Example 4.7.8. Consider the distance ε0 = 1/2 > 0 for the range and let δ > 0 represent
an arbitrary distance for the domain. Since

lim
n→∞

1
n(n+ 1) = 0 (4.7.22)

there is a threshold nδ ∈ N large enough so that
∣∣∣∣ 1
nδ
− 1
nδ + 1

∣∣∣∣ =
∣∣∣∣∣ 1
nδ(nδ + 1)

∣∣∣∣∣ < 1
(nδ + 1)2 < δ. (4.7.23)

(By the way, choosing nδ > 1/
√
δ suffices.) Then considering inputs x = 1/nδ and c = 1/(nδ + 1),

their outputs satisfy ∣∣∣∣∣ 1
1/nδ

− 1
1/(nδ + 1)

∣∣∣∣∣ = |nδ + 1− nδ| = 1 ≥ 1
2 . (4.7.24)

Therefore, f(x) = 1/x is not uniformly continuous on R\{0}.
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Remark 4.7.10: Continuity on a bounded domain does not imply bounded

In general, continuity on a bounded domain is not enough to ensure a function is bounded.
For instance, the function g : (0, 1]→ R given by g(x) = 1/x is not bounded since (1/n) ⊆
(0, 1] but g((1/n)) = N is unbounded. However, uniform continuity suffices.

Theorem 4.7.11: Uniform continuity on a bounded domain
ensures a function is bounded

If A ⊆ Rk is a bounded set and f : A→ Rm is uniformly continuous, then f is bounded.

Scratch Work 4.7.12: Bounded sets covered by
a finite number of δ-neighborhoods

Given any fixed δ > 0, every bounded subset of a Euclidean space can be covered a finite
number of δ-neighborhoods. Given any ε > 0, uniform continuity (Definition 4.7.1) on a
bounded domain supplies us with a uniform threshold δ > 0 which can then be used to
cover the domain and constrain the outputs of the function.

Proof of Theorem 4.7.11. Suppose A ⊆ Rk is a bounded set and f : A → Rm is uniformly
continuous. Let ε = 4. By the uniform continuity of f (Definition 4.7.1), there is a uniform
threshold δ > 0 such that

x, c ∈ A with ‖x− c‖k < δ =⇒ ‖f(x)− f(c)‖m < 4. (4.7.25)

Since A is bounded, a finite collection of δ-neighborhoods covers A. That is, for some nδ ∈ N
there are δ-neighborhoods Vδ(c1), . . . , Vδ(cnδ) with centers c1, . . . , cnδ ∈ A such that

A ⊆
nδ⋃
j=1

Vδ(cj). (4.7.26)

Set b = max{‖cj‖k + δ : j = 1, . . . , n}, which exists since finite sets of real numbers are bounded
(Theorem 3.4.1). Since A ⊆ ∪nδj=1Vδ(cj), each x ∈ A belongs to at least one of the δ-neighborhoods
Vδ(c1), . . . , Vδ(cnδ). Hence, for each x ∈ A there is some jx ∈ {1, . . . , nδ} where

x ∈ Vδ(cjx) ⇐⇒ ‖x− cjx‖k < δ. (4.7.27)

Therefore, by adding zero and applying the triangle inequality (1.2.35) we have

‖f(x)‖m = ‖f(x)−f(cjx) + f(cjx)︸ ︷︷ ︸
add 0

‖m (4.7.28)

≤ ‖f(x)− f(cjx)‖m + ‖f(cjx)‖m (4.7.29)
< 4 + b. (4.7.30)

Therefore, f is bounded.

Time for one more result before moving on to limits of functions and derivatives in the next
chapter. This theorem plays a key role in Part I of the Fundamental Theorem of Calculus 6.1.15.



4.7. UNIFORM CONTINUITY 325

Theorem 4.7.13: Continuity on a compact set is uniform continuity

Suppose K ⊆ Rk and f : K → Rm where K is compact and f is continuous. Then f is
uniformly continuous.

Scratch Work 4.7.14: Two challenging definitions

The proof makes direct use of two of the most challenging definitions in real analysis:
compactness and continuity, respectively their topological and ε-δ versions in Definitions
3.4.12 and 4.3.2. The idea is to consider an arbitrary distance ε > 0 for the range, then use
continuity to create a δ-neighborhood at each point in the domain. The resulting collection
of δ-neighborhoods creates an open cover for the domain, after some modification. Since
the domain is compact, every open cover has a finite subcover. This means a finite number
of the modified δ-neighborhoods covers the domain. We can use the smallest of these δ to
serve as “Sauron’s threshold”, a threshold that satisfies the definition for uniform continuity
(Definition 4.7.1).

This is a long and difficult proof with lots of notation to sift through. Hang in there.

Proof of Theorem 4.7.13. Suppose K ⊆ Rk and f : K → Rm where f is continuous and K is
compact. Let ε > 0. Since f is continuous, by Definition 4.3.2 we have for every point c ∈ K a
threshold δc > 0 where

x ∈ K with ‖x− c‖k < δc =⇒ ‖f(x)− f(c)‖m <
ε

2 . (4.7.31)

Also, note that for each c ∈ K, the (δc/2)-neighborhood of c given by

Vδc/2(c) =
{

x ∈ Rk : ‖x− c‖k <
δc

2

}
(4.7.32)

is an open set by Lemma 3.2.7. Since we also have

K ⊆
⋃

c∈K
Vδc/2(c), (4.7.33)

the collection of open sets

U =
{
Vδc/2(c) : c ∈ K

}
(4.7.34)

is an open cover for K. By Definition 3.4.12, since K is compact, U has a finite subcover U0. This
finite subcover is indexed by a finite number of points c1, . . . , cn0 ∈ K for some n0 ∈ N. We have

U0 =
{
Vδc1/2(c1), . . . , Vδcn0 /2

(cn0)
}

and K ⊆
n0⋃
j=1

Vδcj /2(cj). (4.7.35)

Define δ to be the smallest distance among δc1/2, . . . , δcn0
/2. That is, let

δ = min
{
δc1

2 , . . . ,
δcn0

2

}
(4.7.36)
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so that we are sure to have

δ ≤
δcj

2 for each j = 1, . . . , n0. (4.7.37)

To establish the uniform continuity of f , suppose

x,y ∈ K where ‖x− y‖k < δ. (4.7.38)

Since U0 covers K (meaning the containment in (4.7.35)), there is an index t among 1, . . . , n0
where

x ∈ Vδct/2(ct) ⇐⇒ ‖x− ct‖k <
δct

2 . (4.7.39)

Therefore, by adding zero and applying the triangle inequality ((1.2.34) and (1.2.32)), we also
have

‖y− ct‖k = ‖y−x + x︸ ︷︷ ︸
add zero

−ct‖k (4.7.40)

≤ ‖y− x‖k + ‖x− ct‖k (4.7.41)

< δ + δct

2 (4.7.42)

≤ δct , (4.7.43)

where the last inequality holds since δ ≤ δct/2 by (4.7.37). So, both x and y are within the
threshold δct of ct. Since δct is chosen in response to the distance ε/2 for the range as in (4.7.31),
and by adding zero again along with another application of the triangle inequality ((1.2.34) and
(1.2.32)), we have

‖f(x)− f(y)‖m = ‖f(x)−f(ct) + f(ct)︸ ︷︷ ︸
add zero

−f(y)‖m (4.7.44)

≤ ‖f(x)− f(ct)‖m + ‖f(ct)− f(y)‖m (4.7.45)

<
ε

2 + ε

2 (4.7.46)

= ε. (4.7.47)

Therefore, f is uniformly continuous.

The next couple of chapters dive into some of the biggest ideas in calculus: limits of functions,
derivatives, and integrals. Continuity and uniform continuity feature prominently.

Exercises
4.7.1. Prove h(x) = x2 is not uniformly continuous on R.
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4.7.2. Prove h(x) = x2 is uniformly continuous on every bounded interval.
4.7.3. Prove r(x) =

√
x is uniformly continuous on [0,∞).

4.7.4. Prove that a composition of uniformly continuous functions is uniformly continuous.
4.7.5. Prove uniform continuity is not multiplicative. That is, find uniformly continuous real-
valued functions f and g whose product fg is not uniformly continuous.
4.7.6. Despite the previous exercise, prove that if real-valued functions f and g are uniformly
continuous and bounded, then their product fg is uniformly continuous.
4.7.7. Suppose g : N → R (so g defines a sequence of real numbers, see Definition 2.1.1). Prove
g is uniformly continuous.
4.7.8. Suppose t : (0, 1)→ R is the topologist’s sine curve restricted to (0, 1) given by

t(x) = sin
(1
x

)
for all x ∈ (0, 1). (4.7.48)

Prove t is not uniformly continuous.
4.7.9. Suppose f : [a, b]→ R is continuous and f(x) > 0 for all x ∈ [a, b]. Prove f has a positive
lower bound in that there is some ` > 0 where

f(x) ≥ ` > 0 for all x ∈ [a, b]. (4.7.49)
4.7.10. Prove that if D ⊆ Rk, f : D → Rm is uniformly continuous, and (xn) ⊆ Rk is Cauchy,
then the image sequence (f(xn)) ⊆ Rm is Cauchy.
4.7.11. Find an example of a function showing the previous result does not hold when uniform
continuity is replaced with continuity.
4.7.12. A function f : D → Rm is Lipschitz on D ⊆ Rk if there is some b > 0 such that for all
x,y ∈ D we have

‖f(x)− f(y)‖m ≤ b‖x− y‖k. (4.7.50)
Prove Lipschitz functions are uniformly continuous.
4.7.13. A function f : Rm → Rm is a contraction if there is some real number r where 0 < r < 1
and for all x,y ∈ Rm we have

‖f(x)− f(y)‖m ≤ r‖x− y‖m. (4.7.51)
The goal of this exercise is to prove a version of the Banach Fixed-Point Theorem which is also
called the Contraction Mapping Principle: Every contraction has a unique fixed point.

To that end, suppose f : Rm → Rm is a contraction.
(i) Prove f is uniformly continuous.

(ii) Choose a point x1 ∈ Rm. Consider the recursively defined sequence (xn) ⊆ Rm given by
x2 = f(x1), x3 = f(x2) = f(f(x1)), . . . xn+1 = f(xn) = fn(x1). (4.7.52)

Prove (xn) converges using the Cauchy criterion for sequences (Theorem 2.6.5).

(iii) Suppose y = limn→∞ xn. Prove f(y) = y, so y is a fixed point of f .

(iv) Prove the fixed point of f is unique.
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Chapter 5

Limits and Derivatives

Limits are the central concept in calculus. They empower us to determine values sequences and
functions approach, whether or not the value is attained. The Fundamental Theorem of Calculus
features a connection between two concepts that stem from limits: derivatives and integrals.

This chapter builds limits for functions from continuity, then derivatives and eventually codas
from limits.

5.1 Limit of a function

If your experience in calculus was anything like mine, limits of functions were covered before
continuity. In this book, continuity is covered first because of the way it follows from arbitrarily
close and asking questions about preserving closeness. Limits of functions, also called functional
limits, follow from continuity by allowing ourselves to ignore a single output—f(c)—and asking,
how close is a function f to being continuous at c?

To help motivate a definition for limits based on continuity, let’s see what we get from older
techniques. Keep calculus in mind with the following example.

Example 5.1.1: A hole in the graph

Consider the rational function r : R\{3} → R given by

r(x) = x2 − 9
x− 3 . (5.1.1)

See Figure 5.1.1. The function r is acting exactly like the polynomial f(x) = x+ 3, except
when c = 3 where r is not defined. Have you ever computed a limit in a way that looks
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something like this?

lim
x→3

r(x) = lim
x→3

(
x2 − 9
x− 3

)
(5.1.2)

= lim
x→3

(x+ 3)(x− 3)
x− 3 (5.1.3)

= lim
x→3

(x+ 3) (5.1.4)

= 6. (5.1.5)

Assuming this looks familiar, note that we only “take the limit” in the last step (5.1.5)
where we conclude x+ 3 approaches 6 as x approaches c = 3.

Also, we get 6 by plugging in 3 for x in the expression x+ 3. This process is valid because
f(x) = x + 3 is continuous at c = 3, so the outputs f(x)—and therefore r(x)—really do
“approach” f(c) as the inputs “approach” c.

But what do we mean by “approach”, exactly? What kind of mathematics can we use to
codify our intuition? Well, for every number x 6= 3, we have

r(x) = x2 − 9
x− 3 = (x+ 3)(x− 3)

x− 3 = x+ 3. (5.1.6)

So the computation above actually starts by replacing r(x) with the continuous polynomial f(x) =
x + 3, then we compute the limit by evaluating f at c = 3 to get 6. From there, the ε-δ aspect
of the definition for continuity (Definition 4.3.2) captures the meaning of “approach”: δ tells us
how the inputs “approach” c while ε tells us how the outputs “approach” f(c).

Note that the rational function r is actually discontinuous at c = 3 since the output r(3) is not
defined. By Definition 4.3.2, continuity at c requires the function to be defined at c. Modifying
continuity to allow the functions to not be defined at c is accomplished by taking c to be an
accumulation point of the domain (see Definition 3.6.7). Doing so allows us to keep the way ε
and δ capture the values “approached” in the range and domain, giving us the formal definition
for the limit of a function.

Definition 5.1.2: Convergence, threshold, and limit of a function

Suppose D ⊆ Rk, f : D → Rm, and c aclD\{c}. A point y ∈ Rm is the limit of f at c, if
for every distance ε > 0 for the codomain there is a threshold δ > 0 providing a distance for
the domain such that

x ∈ D with 0 < ‖x− c‖k < δ =⇒ ‖f(x)− y‖m < ε. (5.1.7)

When y is the limit of f at c, we say f converges to y at c and we write

lim
x→c

f(x) = y or limx→c f(x) = y.

If f does not converge, we say f diverges at c and the limit of f at c does not exist.
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graph
of r 6 −

3
| x

y

◦
r(x) = x2 − 9

x− 3

Figure 5.1.1: The rational function r : R\{3} → R in Example 5.1.1 given by
r(x) = (x2−9)/(x+3) is almost the same function as the polynomial f(x) = x+3.
The only difference is r is not defined at c = 3, indicated by the hole in the graph.
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Definition 5.1.2 adapts continuity (Definition 4.3.2) to fit the idea of limits. The key is to
ignore the point c itself, whether or not it is in the domain D. To make sure our results are still
meaningful and to capture the behavior of a function near c, we consider domains where c is an
accumulation point, hence c aclD\{c}. To give the outputs a central value to stay near, a point
y in the codomain is used to fill the role left by f(c). The interplay between ε and δ from the
definition for continuity is kept because it provides the technical meaning for how the inputs x
“approaching” c lead to their outputs f(x) “approaching” the limit y.

Remark 5.1.3: Continuity versus limit

Here is a side-by-side comparison of the definitions of continuity and functional limits:

Definition 4.3.2, Definition 5.1.2,
continuity of f at c limx→c f(x) = y

f is continuous at c f converges to y at c
⇐⇒ ⇐⇒

c ∈ D and ∀ ε > 0 c aclD\{c} and ∀ ε > 0
∃ δ > 0 such that ∃ δ > 0 such that
x ∈ D with ‖x− c‖k < δ x ∈ D with 0 < ‖x− c‖k < δ

=⇒ =⇒
‖f(x)− f(c)‖m < ε. ‖f(x)− y‖m < ε.

Note that in the Euclidean space Rk, we have

x = c ⇐⇒ dk(x, c) = ‖x− c‖k = 0. (5.1.8)

Hence, in the definition for the limit of f at c, the point c is explicitly ignored since we only
consider c to be an accumulation point of the domain D and

x ∈ D with dk(x, c) = ‖x− c‖k > 0. (5.1.9)

This means with limits we consider inputs x ∈ D where x 6= c. Still, working with the defi-
nition for limits of functions (Definition 5.1.2) is very similar to working with the definition
of continuity (Definition 4.3.2).

Remark 5.1.4: Limit versus limit?

Limits have already come up in this book, specifically in Chapter 2 which deals with limits
of sequences and their properties. In this chapter, the focus is on limits of functions. These
concepts are deeply related with their relationship codified in Theorem 5.1.14.
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Example 5.1.5: Limit via continuity

For the rational function r : R\{3} → R in Example 5.1.1 given by

r(x) = x2 − 9
x− 3 , (5.1.10)

we have

lim
x→3

r(x) = lim
x→3

x2 − 9
x− 3 = lim

x→3
(x+ 3) = 6. (5.1.11)

Scratch Work 5.1.6: Similar to showing continuity of a line

The scratch work for showing the limit of r at c = 3 is like Scratch Work 4.3.7 where
we show f(x) = x/2 is continuous for Example 4.3.5. A key difference is that with the
definition for limits of functions (Definition 5.1.2), we begin by ignoring c = 3 since we only
consider inputs x where

0 < dR(x, c) = |x− c|, (5.1.12)

which implies x 6= c. This allows us to replace r—which is discontinuous at c = 3—with a
continuous polynomial, at least for this example.

From there, the scratch work is similar to dealing with continuity in Scratch Work 4.3.7, but
in general we may not know the value of the limit up front. To deal with this, we leverage
the fact that we consider only x 6= 3. So, we have

r(x) = x2 − 9
x− 3 = (x+ 3)(x− 3)

x− 3 = x+ 3 = f(x). (5.1.13)

For this kind of example, evaluating the continuous function f at c = 3 gives us a suitable
candidate for the limit of r, just like we do in calculus. Specifically, let

y = f(c) = f(3) = 3 + 3 = 6. (5.1.14)

So now we can start working with the concluding inequality in Definition 5.1.2, where we
want to end up with

|r(x)− 6| =
∣∣∣∣∣x2 − 9
x− 3 − 6

∣∣∣∣∣ = |(x+ 3)− 6| = |x− 3| < ε. (5.1.15)

So, δ = ε seems to be the right choice for a threshold.

Proof for Example 5.1.5. Let ε > 0 provide a distance for the codomain and suppose x 6= c = 3.
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We have

r(x) = x2 − 9
x− 3 = (x+ 3)(x− 3)

x− 3 = x+ 3. (5.1.16)

Choose the distance δ = ε for the domain and let y = 6 serve as a candidate for the limit. We
have

0 < |x− 3| < δ = ε (5.1.17)

implies

|r(x)− 6| =
∣∣∣∣∣x2 − 9
x− 3 − 6

∣∣∣∣∣ = |(x+ 3)− 6| = |x− 3| < ε. (5.1.18)

Therefore, δ = ε is a threshold for the convergence of r to 6 and we have

lim
x→3

r(x) = 6. (5.1.19)

The guide for working with the ε-δ definition of continuity in Remark 4.3.4 adapts nicely to
become a guide for working with the ε-δ definition for limits of functions (Definition 5.1.2). For
limits, we need to make sure we are only considering inputs that are not equal to c and we need
a candidate for the limit y to work with.

Remark 5.1.7: Guide for proofs of functional limits

Scratch work for proving lim
x→c

f(x) = y:

• If f(c) is defined, ignore it.

• Find a suitable candidate for the limit y. Consider replacing f with a function which
is continuous at c to help find a value for y.

• Consider the inequality you want to end up with, typically:

dm(f(x),y) = ‖f(x)− y‖m < ε. (5.1.20)

• Key step: Use the previous inequality to find a formula for a threshold δ > 0 as a
function of ε and c where x is in the domain and

0 < dk(x, c) = ‖x− c‖k < δ, (5.1.21)

keeping in mind we only consider x 6= c. The triangle inequality as it appears in
(1.2.32) and (1.2.34) is used quite often at this step in scratch work and proofs involv-
ing “ε-δ” argument for limits.

• Include a figure with the function f , the point c arbitrarily close to the domain,
perhaps as a graph. You may also want to plot the domain and range on their own.
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Proving for proving lim
x→c

f(x) = y:

• Early in the proof, perhaps the first step, write “Let ε > 0” or something similar,
indicating you are accounting for all positive distances in the range at the same time.

• Define or choose candidates for the limit y in the codomain and threshold δ > 0 for
a distance in the domain based on your scratch work.

• Verify δ is truly a threshold for the convergence of f to y at c by considering every
point x in the domain within δ of c but not equal c, then showing

x ∈ D with 0 < ‖x− c‖k < δ =⇒ ‖f(x)− y‖m < ε. (5.1.22)

In other words, verify the “deleted” δ-neighborhood of c in the domain maps into the
ε-neighborhood of y in the range:

f(Vδ(c) ∩ (D\{c}) ⊆ Vε(y). (5.1.23)

Although they refer to working with continuity, see Figures 4.3.1, 4.3.2, and 4.3.4. The
roles played by ε and δ are essentially the same for continuity and limits.

The convergence of a function is more general than continuity. The following theorem codifies
this relationship tells us we can determine the value of a functional limit by evaluating a continuous
function.

Theorem 5.1.8: Continuity implies convergence

Suppose D ⊆ Rk, c ∈ D, c aclD\{c}, and f : D → Rm. If f is continuous at c, then f
converges to f(c) at c and we have

lim
x→c

f(x) = f(c). (5.1.24)

Scratch Work 5.1.9: The output is the limit

The proof follows immediately from the definitions where we use f(c) to serve as a candidate
for the limit y.

Proof of Theorem 5.1.8. Suppose f is continuous at c which is also an accumulation point of the
domain. Let ε > 0 and let f(c) serve as a candidate for the limit. By the definition of continuity
(Definition 4.3.2), there is a threshold δ > 0 where

x ∈ D with ‖x− c‖k < δ (5.1.25)

implies both

0 < ‖x− c‖k < δ and ‖f(x)− f(c)‖m < ε. (5.1.26)
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Hence, δ is also a threshold for the convergence of f to f(c) at c (Definition 5.1.2) and

lim
x→c

f(x) = f(c). (5.1.27)

A formal definition for removable discontinuity seems in order. It can be used to explore and
take advantage of the relationship between continuity and limits of functions.

Definition 5.1.10: Removable discontinuity

Suppose D ⊆ Rk and c aclD\{c}. A function g : D → Rm has a removable discontinuity at
c if there is a function f : D ∪ {c} → Rm satisfying

f(x) = g(x) for all x ∈ D\{c}, (5.1.28)

where f is continuous at c.

Example 5.1.11: Revisiting a hole in a graph

For the rational function r : R\{3} → R in Examples 5.1.1 and (5.1.5) given by

r(x) = x2 − 9
x− 3 (5.1.29)

has a removable discontinuity at c = 3. To see this, take f : R → R to be the polynomial
f(x) = x + 3. This gives us a continuous function (by Theorem 4.5.2) which is equal to r
on R\{3} by the equations in (5.1.6). See Figure 5.1.1.

In the same way continuity can be modified to define functional limits, we can modify the
preservation of closeness to provide a similar condition suitable for limits. The definition of
preserving accumulation (Definition 5.1.12) follows suit by softening the requirement of having c
be a point in the domain to having c being an accumulation point and replacing the output f(c)
with a suitable point y in the codomain.

Definition 5.1.12: Preserve accumulation

Suppose D ⊆ Rk, f : D → Rm, and c aclD\{c}. We say f preserves accumulation at c if
there is a point y ∈ Rm such that for every E ⊆ D\{c} we have

c aclE =⇒ y acl f(E). (5.1.30)

In this case, we say y is the limit of f at c.

Remark 5.1.13: Preserving closeness versus preserving accumulation

Here is a side-by-side comparison of the definitions of preserving closeness and preserving
accumulation:
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Definition 4.2.5 Definition 5.1.12
f preserves closensess at c f preserves accumulation at c

For some y ∈ Rm and
For all E ⊆ D, for all E ⊆ D\{c},
c aclE =⇒ f(c) acl f(E). c aclE =⇒ y acl f(E).

The equivalence of the preservation of closeness, sequential continuity, and ε-δ continuity
in Theorem 4.4.7 along with the strong relationship between continuity and limits of functions
motivates the following theorem on equivalent forms of convergence for functions. This theorem
provides flexibility in the way we choose to prove results on convergence and limits of functions
throughout the rest of the book.

Theorem 5.1.14: Equivalent forms of convergence for functions

Suppose D ⊆ Rk, f : D → Rm, y ∈ Rm, and c aclD\{c}. Then the following are equivalent
forms of the convergence of f to y at c:

(i) f preserves accumulation at c with limit y (Definition 5.1.12):

E ⊆ D\{c} with c aclE =⇒ y acl f(E). (5.1.31)

(ii) f transforms sequential convergence to c in the domain into sequential convergence
to y in the codomain, specifically:

(xn) ⊆ D\{c} with lim
n→∞

xn = c =⇒ lim
n→∞

f(xn) = y. (5.1.32)

(iii) f converges to y at c, so lim
x→c

f(x) = y (Definition 5.1.2):

For every distance ε > 0 for the codomain, (5.1.33)
there is a distance δ > 0 for the domain such that (5.1.34)
x ∈ D with 0 < ‖x− c‖k < δ =⇒ ‖f(x)− y‖m < ε. (5.1.35)

Scratch Work 5.1.15: Modify the continuity equivalence

The proof of Theorem 5.1.14 follows from a modification of the proof of Theorem 4.4.7:
Replace the condition of having c in the domain with c being an accumulation point of the
domain, and replace the output f(c) with limit y.

Proof of Theorem 5.1.14. Let’s show (i) =⇒ (ii), (ii) =⇒ (iii), and (iii) =⇒ (i), all by contraposi-
tion.

(i) =⇒ (ii): Suppose there is a point c ∈ D\{c} and sequence (xn) of points in D\{c} (so
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xn 6= c) and where

lim
n→∞

xn = c but lim
n→∞

f(xn) 6= y. (5.1.36)

Hence, there must be some ε0 > 0 such that no matter which positive integer N we consider,
there is a positive integer q ≥ N where xq is in D and

‖f(xq)− y‖m ≥ ε0. (5.1.37)

We can use the previous statement to construct a suitable subsequence (xnj) of (xn) whose image
stays away from y. That is, let n1 ≥ 1 be a positive integer that satisfies the previous statement.
Proceeding inductively, for each positive integer j, there is a positive integer nj > nj−1 where

‖f(xnj)− y‖m ≥ ε0. (5.1.38)

That is, we have y awf(f(xnj)). Now, since limn→∞ xn = c and (xnj) is a subsequence of (xn),
we have limj→∞ xnj = c as well. By Theorem 2.3.1, we have c acl(xnj). Therefore, f does not
preserve closeness at c. (See Definition 5.1.12.)

(ii) =⇒ (iii): Suppose f does not converge to y at a point c where c aclD\{c}. Then there
must be some ε0 > 0 such that no matter which value we take for δ > 0, there is a point xδ in D
with

0 < ‖xδ − c‖k < δ and ‖f(xδ)− y‖m ≥ ε0. (5.1.39)

Much as in the proof of Theorem 2.3.1, we can use the previous statement to construct a suitable
sequence. For each positive integer n, there must be a point xn in D where

0 < ‖xn − c‖k < 1/n and ‖f(xn)− y‖m ≥ ε0. (5.1.40)

(Note that 1/n plays the role of δ here). Hence, (xn) is a sequence of points in D\{c} where

lim
n→∞

xn = c but lim
n→∞

f(xn) 6= y. (5.1.41)

(iii) =⇒ (i): Finally, suppose f does not preserve accumulation to y at a point c where
c aclD\{c}. Then there must be some E ⊆ D\{c} where c aclE but y awf f(E). So, there
is some ε0 > 0 such that for every point x in E we have

‖f(x)− y‖m ≥ ε0. (5.1.42)

Now, let δ > 0. Since c aclE, there is a point yδ in E where we have both

0 < ‖yδ − c‖k < δ and ‖f(yδ)− y‖m ≥ ε0. (5.1.43)

Therefore, f does not converge to y at c. (See Definition 5.1.2.)

The next theorem mirrors the local boundedness of continuity established with Theorem 4.3.21.
Here, convergence is assumed and the distance we obtain for the domain with a threshold provides
the neighborhood on which the function is bounded.
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Theorem 5.1.16: Convergence implies locally bounded

Suppose D ⊆ Rk, c aclD\{c}, and f : D → Rm. If f converges at c, then f is locally
bounded at c.

Scratch Work 5.1.17: Mirror local boundedness of continuity

The proof is very similar to the proof that continuous functions are locally bounded (Theo-
rem 4.3.21). In both situations we deal with local boundedness, so we only need to consider
inputs within a neighborhood and bound their outputs. Both continuity and convergence
allow us to do so by picking any positive distance (say 14 this time) for the outputs, then
convergence ensures the existence of a threshold that defines a neighborhood for the domain
whose image is bounded.

Proof of Theorem 5.1.16. Suppose D ⊆ Rk, c aclD\{c}, and f : D → Rm. Let ε0 = 14 > 0 stand
for a positive distance in the range. Since f converges at c, by Definition 4.3.2 there is limit y
and a threshold δ > 0 defining a distance for the domain where

x ∈ D with 0 < ‖x− c‖k < δ =⇒ ‖f(x)− y‖m < 14. (5.1.44)

So, by the reverse triangle inequality (1.2.37), for every x ∈ D ∩ Vδ(c) we have

‖f(x)‖m − ‖y‖m ≤ ‖f(x)− y‖m < 14. (5.1.45)

By adding ‖y‖m we also have

‖f(x)‖m < ‖y‖m + 14. (5.1.46)

To account for the possibility that c ∈ D so f(c) is defined and would need to bounded, define

bc =
‖y‖m + 14, if c ∈ D,
‖y‖m + 14 + ‖f(c)‖m, if c /∈ D.

(5.1.47)

Then bc is a local bound and f is locally bounded at c (see Definition 4.3.20).

Another result to highlight the usefulness of multiple perspectives we can take on functional
limits thanks to Theorem 5.1.14, consider order properties for sets, sequences, and functions of
real numbers. The relationship between order and arbitrarily close established by Lemma 1.5.23
yields the order properties for sequential limits in R (Corollary 2.3.22) via Theorem 2.3.1, the
fundamental connection between sequential limits and arbitrarily close. In turn, order properties
for functional limits in R stem from the results on sequential limits part (ii) of Theorem 5.1.14
and Corollary 2.3.22.

Corollary 5.1.18: Order properties for functional limits in R

Suppose D ⊆ R, f : D → R, c aclD\{c}, and f converges to ` at c.

(i) If f(x) ≤ b for every x ∈ D\{c}, then limx→c f(x) = ` ≤ b.
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(ii) If f(x) ≥ a for every x ∈ D\{c}, then limx→c f(x) = ` ≥ a.

Proof of Corollary 5.1.18. Throughout this proof, suppose D ⊆ R, f : D → R, c aclD\{c}, and
f converges to ` at c. The proofs of the two cases are quite similar.

Case (i): Suppose f(x) ≤ b for every x ∈ D\{c} and (xn) ⊆ D\{c} where we have limn→∞ xn =
c. Then f(xn) ≤ b for every index n ∈ N. So, by Theorem 5.1.14 and the order properties for
sequential limits in R (Corollary 2.3.22), we have

lim
n→∞

f(xn) = lim
x→c

f(x) = ` ≤ b. (5.1.48)

Case (ii): Suppose f(x) ≥ a for every x ∈ D\{c} and (xn) ⊆ D\{c} where we have limn→∞ xn =
c. Then f(xn) ≥ a for every index n ∈ N. So, by Theorem 5.1.14 and the order properties for
sequential limits in R (Corollary 2.3.22), we have

lim
n→∞

f(xn) = lim
x→c

f(x) = ` ≥ a. (5.1.49)

One more corollary to close out this section. The statements satisfy contrapositions of sequen-
tial convergence in Theorem 5.1.14 and local boundedness of convergence in Theorem 5.1.16. The
proof is omitted.

Corollary 5.1.19: Divergence Criteria for Functions

If D ⊆ Rk, c aclD\{c}, f : D → Rm, and f satisfies any of the following conditions, then
f diverges at c:

(i) There are convergent sequences (xn), (yn) ⊆ D\{c} where

lim
n→∞

xn = lim
n→∞

yn = c, but lim
n→∞

f(xn) 6= lim
n→∞

f(yn). (5.1.50)

(ii) f is not locally bounded at c.

The next section takes further advantage of the deep similarities between continuity and func-
tional limits explored to build properties of functional limits.

Exercises
5.1.1. Given a threshold for the convergence of a function, any smaller positive number is also
a threshold (see Definition 5.1.2). To prove this, suppose D ⊆ Rk, f : D → Rm, c acl(D\{c}),
and f converges to y at c with threshold δ > 0 responding to the distance ε > 0. Prove that if
0 < σ ≤ δ, then σ is also a threshold for the convergence of f to y at c in response to ε.
5.1.2. Prove limx→c ‖x‖m = ‖c‖m.
5.1.3. Prove the following limits are as stated.
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(i) lim
x→3

(x2 − 5x+ 6) = 0.

(ii) lim
x→3

x2 − 5x+ 6
x− 3 = 1.

(iii) lim
x→−4

(x3 + 64) = 0.

(iv) lim
x→−4

x3 + 64
x+ 4 = 48.

5.1.4. Prove that a function has a removable discontinuity at an accumulation point if and only
if the limit of the function exists at the accumulation point.
5.1.5. Prove lim

x→c
xn = cn for all c ∈ R.

5.1.6. Prove lim
x→c

n
√
x = n
√
c for all c ∈ [0,∞).

5.1.7. Prove lim
x→c

xn − cn

x− c
= ncn−1 for all c ∈ R. (Does this look familiar?)

5.1.8. Suppose c ∈ R and h : R→ R converges to ` at c where ` > 0. Prove h is locally positive
at c—except possibly for h(c)—in the sense that there is some δ > 0 such that

0 < |x− c| < δ =⇒ h(x) > 0. (5.1.51)

In other words, h(x) is positive for all x in a deleted δ-neighborhood of c.

5.2 Properties of limits
As done with the definition of continuity (Definition 4.3.2), the properties of continuity developed
throughout Chapter 4 can be adapted to the context of limits. This adaptation is facilitated by
replacing the condition of c being a point in a domain D with c being an accumulation point of
the domain, thus “c ∈ D” is replaced by “c aclD\{c}” throughout.

The final result of the section addresses a classic approach to defining continuity when limits
are discussed first. It is a partial converse of Theorem 5.1.8.

Theorem 5.2.1: Continuity from limits

Suppose D ⊆ Rk, f : D → Rm, and c aclD\{c}. If c ∈ D and lim
x→c

f(x) = f(c), then f is
continuous at c.

Scratch Work 5.2.2: Modify the definitions

The proof follows from the definition of functional limit (Definition 5.1.2) when we identify
the limit y as the output f(c), note ‖c−c‖k = 0, and take the threshold δ for the convergence
of f at c as the threshold for the continuity of f at c.

Proof of Theorem 5.2.1. Suppose D ⊆ Rk, f : D → Rm, both c aclD\{c} and c ∈ D, and f
converges to y = f(c) at c. Let ε > 0. Since c ∈ D, there is a threshold δ > 0 for the convergence
of f at c where we have

x ∈ D with ‖x− c‖k < δ =⇒ ‖f(x)− f(c)‖m < ε. (5.2.1)



342 CHAPTER 5. LIMITS AND DERIVATIVES

Therefore, f is continuous at c by Definition 4.3.2 since δ is also a threshold for the continuity of
f at c.

Remark 5.2.3: A checklist for continuity from limits

One way to interpret Theorem 5.2.1 is the following checklist: If

(i) f(c) is defined,

(ii) lim
x→c

f(x) exists, and

(iii) f(c) = lim
x→c

f(x) (the values of the output and the limit are the same),

then f is continuous at c.

The contrapositions of the statements in Remark 5.2.3 provide criteria for discontinuity in
addition to Discontinuity Criteria (Corollary 4.6.13).

Corollary 5.2.4: More Discontinuity Criteria

If D ⊆ Rk, c ∈ D, f : D → Rm, and f satisfies any of the following conditions, then f is
discontinuous at c:

(i) f(c) is not defined.

(ii) lim
x→c

f(x) does not exist.

(iii) f(c) is defined and lim
x→c

f(x) exists, but

f(c) 6= lim
x→c

f(x). (5.2.2)

Notation 5.2.5: Equivalent ways to describe the convergence of functions

Each of the following statements mean the same exact thing: Definition 5.1.2 holds.

(i) f converges to y at c.

(ii) The limit of f at c is y.

(iii) lim
x→c

f(x) = y.

When we do not refer to the limit explicitly, the following statements are identical.

(i) f converges at c.

(ii) The limit of f at c exists.

(iii) lim
x→c

f(x) exists.
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Next up is the linearity of limits for functions.

Theorem 5.2.6: Linearity of functional limits

Suppose D ⊆ Rk, α ∈ R, f, g : D → Rm, and c aclD\{c}. If f and g converge at c, then
f + g and αf converge at c with

(i) lim
x→c

(f(x) + g(x)) = lim
x→c

f(x) + lim
x→c

g(x) (additivity); and

(ii) lim
x→c

(αf(x)) = α lim
x→c

f(x) (homogeneity).

Scratch Work 5.2.7: Nearly identical to the linearity of contintuity

Subtle yet simple modifications of Scratch Work 4.5.6 for the linearity of continuity at some
point c suffice for the linearity of functional limits: Ignore c itself but consider it to be an
accumulation point of the domain, keep the thresholds, and replace outputs with suitable
limits.

Proof of Theorem 5.2.6. Throughout the proof, suppose α ∈ R, D ⊆ Rk, c aclD\{c}, and f, g :
D → Rm where f and g converge at c to y and z, respectively.

Part (i): Suppose ε > 0. Since f and g converge at c, there are thresholds δf > 0 and δg > 0
such that

0 < ‖x− c‖k < δf =⇒ ‖f(x)− y‖m <
ε

2 and (5.2.3)

0 < ‖x− c‖k < δg =⇒ ‖g(x)− z‖m <
ε

2 . (5.2.4)

Define δ to be the smaller of the thresholds δf and δg. That is, let

δ = min{δf , δg} (5.2.5)

and note δ > 0. Now suppose

0 < ‖x− c‖k < δ. (5.2.6)

Since δ ≤ δf and δ ≤ δg, both implications (5.2.3) and (5.2.4) hold. Hence, by the triangle
inequality (1.2.32) we have

‖(f(x) + g(x))− (y + z)‖m = ‖f(x)− y + g(x)− z‖m (5.2.7)
≤‖f(x)− y‖m + ‖g(x)− z‖m (5.2.8)

<
ε

2 + ε

2 (5.2.9)

= ε. (5.2.10)

Therefore, δ is a threshold for the convergence of the sum f + g at c and we have

lim
x→c

(f(x) + g(x)) = lim
x→c

f(x) + lim
x→c

g(x) = y + z. (5.2.11)
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Part (ii): Suppose α = 0. Then αf is constant since

αf(x) = 0 · f(x) = 0 (5.2.12)

for every x ∈ Rk. Now let ε > 0 and y = 0. Then δ = 19 is a threshold for the convergence of αf
at any c to 0 since

0 < ‖x− c‖k < 19 =⇒ ‖αf(x)− αy‖m = ‖0‖m = 0 < ε. (5.2.13)

Now suppose α 6= 0 and ε > 0. Since f convergences to y at c, there is a threshold δ > 0 such
that for every x ∈ Rm we have

0 < ‖x− c‖k < δ =⇒ ‖f(x)− y‖m <
ε

|α|
. (5.2.14)

Hence, by the relationship between absolute value and Pythagorean distance from Corollary 1.2.30,
we also have

‖αf(x)− αy‖m = |α|‖f(x)− y‖m < |α| · ε
|α|

= ε. (5.2.15)

Therefore, δ is a threshold for the convergence of αf at c and we have

lim
x→c

(αf(x)) = α lim
x→c

f(x) = αy. (5.2.16)

Once again and as mentioned in Remark 1.6.18, a corollary of the linearity of limits holds for
linear combinations. That is, the limit of a linear combination is the linear combination of limits.
As with the proofs of Corollaries 1.6.16, 4.5.7, and 4.7.7, the proof of Corollary 5.2.8 follows from
induction on linearity. So, the proof is left as an exercise.

Corollary 5.2.8: Linear combinations of functional limits

Suppose A ⊆ R`, k ∈ N, and for each j = 1, . . . , k we have cj ∈ R and the functions
fj : A→ Rm converge at c. Then the linear combination f given by

f(x) =
k∑
j=1

cjfj(x) = c1f1(x) + . . .+ ckfk(x) (5.2.17)

converges to c and we have

lim
x→c

f(x) = lim
x→c

 k∑
j=1

cjfj(x)
 =

k∑
j=1

(
cj lim

x→c
fj(x)

)
(5.2.18)

As with sequences, the limit of a function in a Euclidean space is unique.
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Theorem 5.2.9: Functional limits in Euclidean spaces are unique

Suppose D ⊆ Rk, f : D → Rm, and c aclD\{c}. If f converges at c, its limit is unique.

Scratch Work 5.2.10: Two points arbitrarily close are the same

The idea is the same as Scratch Work 2.3.6 designed to proof sequential limits are unique
in Theorem 2.3.5: Show any two limits y and z of f at c are arbitrarily close, so they must
be the same point (see Lemma 1.5.5).

We want to end up with

‖y− z‖m < ε, (5.2.19)

which we get from a combination of tried and true techniques: adding zero (1.2.34) and
applying the triangle inequality (1.2.32). By the definition of functional limit (Definition
5.1.2) applied to each limit y and z, for every distance ε > 0 there are thresholds δy > 0
and δz > 0 which produce inputs whose outputs are within ε of their respective limits. To
squeeze the limits together, we can find a single input xδ whose output f(xδ) is close enough
to both y and z. The trick is to split ε in half and define a suitable δ as the minimum of δy
and δz.

Proof of Theorem 5.2.9. Suppose D ⊆ Rk, f : D → Rm, c aclD\{c}, and y, z ∈ Rm both satisfy

y = lim
x→c

f(x) and z = lim
x→c

f(x). (5.2.20)

Let ε > 0. Then ε/2 > 0 and by the definition of functional limit (Definition 5.1.2), there are two
thresholds δy and δz where

0 < ‖x− c‖k < δy =⇒ ‖f(x)− y‖m <
ε

2 and (5.2.21)

0 < ‖x− c‖k < δz =⇒ ‖f(x)− z‖m <
ε

2 . (5.2.22)

Now define δ = min{δy, δz} and note δ > 0. We have both δ ≤ δy and δ ≤ δz. So for any xδ ∈ D
where 0 < ‖xδ − c‖k < δ, both (5.2.21) and (5.2.22) holds for x = xδ. Therefore, by adding zero
(1.2.34) and applying the triangle inequality (1.2.32), we have

‖y− z‖m = ‖y−f(xδ) + f(xδ)︸ ︷︷ ︸
add 0

−z‖m (5.2.23)

≤ ‖y− f(xδ)‖m + ‖f(xδ)− z‖m (5.2.24)

<
ε

2 + ε

2 (5.2.25)

= ε. (5.2.26)

Since ε > 0 is arbitrary, y acl{z}. Therefore, y = z by Lemma 1.5.5.
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The idea that the limit of a product is the product of the limits holds for both sequences and
functions. Again, in this context we only consider functions from the real line to the real line so
products make sense.

Theorem 5.2.11: Products of functional limits

Suppose D ⊆ R, c aclD\{c}, and f, g : D → R where f and g converge at c. Then the
product fg converges at c and we have

lim
x→c

f(x)g(x) =
(

lim
x→c

f(x)
)(

lim
x→c

g(x)
)
. (5.2.27)

Scratch Work 5.2.12: Perspective of sequential limits

The proof of Theorem 5.2.6 follows the guide in Remark 5.1.7 to directly address the defi-
nition of functional limit (Definition 5.1.2) where we respond to an arbitrary distance ε > 0
for the codomain with a threshold δ > 0 for the domain. The same approach could be
made to work here, but to showcase the equivalent forms of functional limits in Theorem
5.1.14, we work with sequential limits (Definition 2.2.1) and the idea that for sequences of
real numbers, the limit of a product is the product of the limits (Theorem 2.3.17).

Proof of Theorem 5.2.11. Suppose D ⊆ R, c aclD\{c}, and f, g : D → R where f and g converge
at c. To take advantage of the connection with sequential limits, suppose (xn) ⊆ D\{c} converges
to c. Then by the implication (iii) =⇒ (ii) in Theorem 5.1.14, the limit of a product is the product
of the limit for sequences (Theorem 2.3.17), and the implication (ii) =⇒ (iii) in Theorem 5.1.14,
we have

lim
x→c

(f(x)g(x)) = lim
n→∞

(f(xn)g(xn)) (5.2.28)

=
(

lim
n→∞

f(xn)
)(

lim
n→∞

g(xn)
)

(5.2.29)

=
(

lim
x→c

f(x)
)(

lim
x→c

g(x)
)
. (5.2.30)

As with sequences, the limit of a quotient is the quotient of limits for real-valued functions.

Theorem 5.2.13: Quotients of functional limits

Suppose D ⊆ R, c aclD\{c}, and f, g : D → R where f and g converge at c. If g(x) 6= 0
for all x ∈ D and limx→c g(x) 6= 0, then the quotient f/g converges at c and we have

lim
x→c

f(x)
g(x) =

lim
x→c

f(x)
lim
x→c

g(x) . (5.2.31)
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Scratch Work 5.2.14: Build on quotients of sequential limits

With a wealth of tools available, the proof follows from results on sequential limits through
the equivalent form of functional limits (Theorem 5.1.14) and quotients of sequential limits
(Theorem 2.3.21). It is very similar to the proof of Theorem 5.2.11.

Proof of Theorem 5.2.13. Suppose D ⊆ R, c aclD\{c}, f, g : D → R, g(x) 6= 0 for all x in
D, f and g converge at c, and limx→c g(x) 6= 0. To take advantage of the connection with
sequential limits, suppose (xn) ⊆ D\{c} converges to c. Then by the implication (iii) =⇒ (ii) in
Theorem 5.1.14, quotients of sequential limits (Theorem 2.3.21), and the implication (ii) =⇒ (iii)
in Theorem 5.1.14, we have

lim
x→c

f(x)
g(x) = lim

n→∞

f(xn)
g(xn) =

lim
n→∞

f(xn)
lim
n→∞

g(xn) =
lim
x→c

f(x)
lim
x→c

g(x) . (5.2.32)

There are Squeeze Theorems wherever we have a notion of convergence in the real line. We
already have a Squeeze Theorem for sequences 2.4.3 and a Squeeze Theorem for continuity 4.6.11,
and now we can get one for functional limits.

Theorem 5.2.15: Squeeze Theorem for functions

Suppose D ⊆ R, c aclD\{c}, f, g, h : D → R, and f and h converge at c. If

(i) lim
x→c

f(x) = lim
x→c

h(x) = ` and

(ii) f(x) ≤ g(x) ≤ h(x) for all x ∈ D\{c},

then g converges at c and lim
x→c

g(x) = `.

Scratch Work 5.2.16: Splitting absolute values

Thanks to the equivalent forms of convergence in Theorem 5.1.14, we could rely on the
Squeeze Theorem for sequences 2.4.3. However, the plan this time mirrors Scratch Work
2.4.4 and allows to get a proof directly from the assumptions and the definition of limit
and convergence for functions (Definition 5.1.2). The idea is to split the absolute values.

The convergence of f and h to ` at c means there are thresholds δf and δh where

0 < |x− c| < δf =⇒ |f(x)− `| < ε and (5.2.33)
0 < |x− c| < δh =⇒ |h(x)− `| < ε. (5.2.34)

Choosing δg = min{δf , δh} will work. But to achieve the goal of concluding

0 < |x− c| < δg =⇒ |g(x)− `| < ε, (5.2.35)

we can split the absolute values thanks to Lemma 1.5.10. Also, subtracting the common
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limit ` through the assumption

f(x) ≤ g(x) ≤ h(x) (5.2.36)

gives us

f(x)− ` ≤ g(x)− ` ≤ h(x)− `. (5.2.37)

Tacking on some absolute values gets us here:

−ε < −|f(x)− `| ≤ f(x)− ` ≤ g(x)− ` ≤ h(x)− ` ≤ |h(x)− `| < ε. (5.2.38)

Keeping the portions with g and ε yields

−ε < g(x)− ` < ε, (5.2.39)

which gives us the conclusion |g(x)− `| < ε with another application of Lemma 1.5.10.

Proof of the Squeeze Theorem for functions 5.2.15. Assume f(x) ≤ g(x) ≤ h(x) for each x ∈ D
and

lim
x→c

f(x) = lim
x→c

h(x) = `. (5.2.40)

Let ε > 0. Since f and h converge to ` at c, there are thresholds δf > 0 and δh > 0 where

0 < |x− c| < δf =⇒ |f(x)− `| < ε and (5.2.41)
0 < |x− c| < δh =⇒ |h(x)− `| < ε. (5.2.42)

Define δg = min{δf , δh} and note δg > 0. Now suppose

0 < |x− c| < δg. (5.2.43)

Since δg ≤ δf and δg ≤ δh, both (5.2.41) and (5.2.42) hold. Hence, by splitting inequalities as
in Lemma 1.5.10, subtracting ` from f(x) ≤ g(x) ≤ h(x), and including absolute values from
(5.2.41) and (5.2.42) gives us

−ε < −|f(x)− `| ≤ f(x)− ` ≤ g(x)− ` ≤ h(x)− ` ≤ |h(x)− `| < ε. (5.2.44)

In particular, we have −ε < g(x)− ` < ε. So by Lemma 1.5.10 again we have

|g(x)− `| < ε. (5.2.45)

Therefore, δg is a threshold for the convergence of g at c and limx→c g(x) = `.

The next section explores differentiation by building derivatives from limits.
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Exercises

5.2.1. Prove lim
x→2

|x− 2|
x− 2 does not exist.

5.2.2. Consider a modified version of the topologist’s sine curve from Example 4.4.10 defined by
t : R\{0} → R where

t(x) = sin
(1
x

)
. (5.2.46)

Prove limx→0 t(x) does not exist.

5.2.3. Consider a squeezed version of the topologist’s sine curve from Example 4.4.10 defined by
s : R\{0} → R where

s(x) = x sin
(1
x

)
. (5.2.47)

Prove limx→0 s(x) = 0.

5.2.4. Suppose f : [a, b]→ R is monotone. Prove limx→a f(x) and limx→b f(x) exist.

5.2.5. Recall Dirichlet’s function 1Q from Example 4.2.14 given by

1Q(x) =
1, if x ∈ Q,

0, if x ∈ R\Q.
(5.2.48)

Prove limx→c 1Q(x) does not exist at any c ∈ R.

5.2.6. Consider the modification of Dirichlet’s function 1Q from Example 4.2.14 given by

f(x) = x1Q(x) =
x, if x ∈ Q,

0, if x ∈ R\Q.
(5.2.49)

Prove limx→0 x1Q(x) = 0 but limx→c x1Q(x) does not exist for nonzero values of c.

5.2.7. Thomae’s function g : R→ R is given by

g(x) =


1, if x = 0,
1
n
, if x ∈ Q\{0} with reduced form x = m

n
,

0, if x ∈ R\Q.

(5.2.50)

(i) Prove limx→c g(x) = 0 at each c ∈ R\Q.

(ii) Prove limx→c g(x) = 0 at each c ∈ R.

5.2.8. Sided-limits are notions from calculus that help us explore properties of functions from
the real line to the real line. For instance, suppose D ⊆ R, c acl(D\{c}), and f : D → R. The
right-hand limit of f at c is a real number r such that for every ε > 0 there is a threshold δ > 0
where

x ∈ D with c < x < c+ δ =⇒ |f(x)− r| < ε. (5.2.51)
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(i) Carefully state a definition for the left-hand limit of f at c.

(ii) Give an example where both the left- and right-hand limits of f at c exist but the limit of
f at c does not.

(iii) Prove the limit of f at c exists if and only if both the left- and right-hand limits of f at c
exist.

5.2.9. Assuming concepts from trigonometry hold, show lim
x→0

sin x
x

= 1. Hint: Check a calculus
textbook.

5.2.10. Assuming concepts from trigonometry hold, show lim
x→0

cosx− 1
x

= 0. Hint: Check a
calculus textbook.

5.2.11. Suppose c, ` ∈ R and let L(c, `) denote the set of real-valued functions on R that converge
to ` at c. (Thus, for each f ∈ L(c, `) we have limx→c f(x) = `.) Use Lemma 1.6.7 to prove L(c, `)
is a vector space if and only if ` = 0.

5.3 Differentiation
Derivatives are a motivation for and a consequence of the definition of functional limit (Definition
5.1.2). They provide a technical interpretation of ideas from calculus like “instantaneous rate of
change” and “slope of the tangent line”, which are not defined until a suitable notion of limit is
available.

At the heart of the issue is defining the slope at a single point when slopes by their nature
are determined by two distinct points. The idea is to build on the slopes of secant lines through
distinct pairs of points on the graph of a function. The difference quotient defines the slopes of
all secant lines through a particular point on the graph, then the derivative defines the slope of
the tangent line as the limit of the slopes of secant lines. See Figure 5.3.1.

By the way, all of the functions considered in the development of derivatives, integrals, and
series in this textbook map a subset of the real line to the real line. At present, this allows us to
consider products and quotients of functions.

Definition 5.3.1: Derivative

Suppose I ⊆ R is an interval, f : I → R, and c ∈ I. The difference quotient of f at c is the
function qc : I\{c} → R given by

qc(x) = f(x)− f(c)
x− c

. (5.3.1)

The derivative of f at c is the limit of difference quotient qc at c given by

f ′(c) = lim
x→c

f(x)− f(c)
x− c

= lim
x→c

qc(x), (5.3.2)
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provided this limit exists. In this case, f is said to be differentiable at c. If f is differentiable
at every point in the domain I, we say f is differentiable and f ′ is called the derivative of
f .

The functions that define lines are the special cases of basic affine transformations (Definition
4.2.9) that map the real line to the real line. These functions are differentiable and the derivatives
are their slopes.

Lemma 5.3.2: Lines are differentiable

Suppose m, b ∈ R and f : R→ R is given by

f(x) = mx+ b. (5.3.3)

Then f is differentiable with

f ′(c) = m (5.3.4)

for every c ∈ R. In particular, if f is constant (i.e., m = 0), then f ′(c) = 0 for every c ∈ R.

Scratch Work 5.3.3: Simplify the difference quotient

A useful approach and starting point for developing proofs involving derivatives is to mess
around with the difference quotient. For lines given by f(x) = mx + b, the difference
quotient qc satisfies

qc(x) = mx+ b− (mc+ b)
x− c

= m(x− c)
x− c

= m. (5.3.5)

From here, constants are continuous by Theorem 4.3.9. An application of Theorem 5.1.8,
which gives us the value of a functional limit by evaluating a continuous function, yields
the conclusion.

The approach of this scratch work is typical for dealing with derivatives: Manipulate dif-
ference quotients and apply properties of limits and continuity.

Proof of Lemma 5.3.2. Suppose m, b, c ∈ R and f : R→ R is given by

f(x) = mx+ b. (5.3.6)

By the definition of derivative (Definition 5.3.1) and since constants are continuous by Theorem
4.3.9, applying Theorem 5.1.8 to the constant function g(x) = m yields

f ′(c) = lim
x→c

qc(x) = lim
x→c

mx+ b− (mc+ b)
x− c

= lim
x→c

m = m. (5.3.7)
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Figure 5.3.1: A differentiable function f with its tangent line t at c = 3π/2
and secant lines s1, s2, and s3. Also, to accompany Definition 5.3.1, play around
with the Desmos activity “Derivative and difference quotient” accessed through
the QR code. https://www.desmos.com/calculator/zadsgxkxca

https://www.desmos.com/calculator/zadsgxkxca
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Example 5.3.4: Derivative of the square function

The square function h : R → R given by h(x) = x2 is differentiable with h′(c) = 2c for all
c ∈ R.

Scratch Work 5.3.5: Again, simplify the difference quotient

The difference quotient qc of the square function h simplifies to a polynomial thanks to
thanks to the factorization of the difference of squares (1.2.39) in Lemma 1.2.32. From
there, h′(c) is determined by evaluating this continuous polynomial at c.

Proof for Example 5.3.4. Fix c ∈ R. The difference quotient qc for the square function h simplifies
thanks to the factorization of the difference of squares (1.2.39) in Lemma 1.2.32. For all x, c ∈ R
where x 6= c we have

qc(x) = h(x)− h(c)
x− c

= x2 − c2

x− c
= (x− c)(x+ c)

x− c
= x+ c. (5.3.8)

So qc(x) is a polynomial, at least for x ∈ R\{c}. Since polynomials are continuous (Theorem
4.5.2), the limit of qc(x) at c is found by evaluating the polynomial x + c at c (Theorem 5.1.8).
We have

h′(c) = lim
x→c

x2 − c2

x− c
= lim

x→c

(x− c)(x+ c)
x− c

= lim
x→c

(x+ c) = 2c. (5.3.9)

Since c is arbitrary, the square function h is differentiable.

Example 5.3.6: Derivative of the reciprocal

The reciprocal function f : R\{0} → R given by f(x) = 1/x is differentiable and for every
c ∈ R\{0} we have f ′(c) = −1/c2.

Scratch Work 5.3.7: Use limits of difference quotients

Once again, algebraic manipulation of the difference qc for the reciprocal function puts us
in position to apply properties of functional limits. Also, while the domain R\{0} is not an
interval itself, it is the disjoint union of two intervals since R\{0} = (−∞, 0)∪ (0,∞). This
is not addressed in the proof, but we could split the proof into cases where both c and x
are positive or negative, if preferred.

Proof for Example 5.3.6. Suppose f : R\{0} → R is given by f(x) = 1/x. For each c ∈ R\{0}
and all x ∈ R\{0, c} we have xc 6= 0. Hence, xc/(xc) = 1 and we have

qc(x) =
1
x
− 1
c

x− c
=
( 1
x− c

)(1
x
− 1
c

)(
xc

xc

)
=
( 1
x− c

)(
c− x
xc

)
= − 1

xc
. (5.3.10)
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Now fix c ∈ R\{0}. Then by quotients and linearity of functional limits (Theorems 5.2.13 and
5.2.6) we have

f ′(c) = lim
x→c

1
x
− 1
c

x− c
= lim

x→c

(
− 1
xc

)
= − 1

c lim
x→c

x
= − 1

c2 . (5.3.11)

Since c ∈ R\{0} is arbitrary, the reciprocal function f is differentiable.

The connection between lines and differentiable functions goes much deeper than Lemma 5.3.2:
They behave like lines on small scales. More specifically, differentiable functions are locally linear
because they are nicely approximated by their tangent lines on suitable neighborhoods. See Figure
5.3.1 and Lemma 5.3.10 below.

Definition 5.3.8: Tangent line

Suppose I ⊆ R is an interval, f : I → R, and f is differentiable at c ∈ I. The tangent line
to f at c is the line with point-slope form given by

y = f ′(c)(x− c) + f(c) (5.3.12)

for every x ∈ R.

To codify the idea that differentiable functions are locally linear, the definition of derivative
(Definition 5.3.1) can be rearranged to show tangent lines provide arbitrarily good approximations
of their functions, at least on a neighborhood.

Definition 5.3.9: Locally linear

Suppose I ⊆ R is an interval, f : I → R, and c ∈ I. Then function f is locally linear at c if
for every ε > 0, there is a threshold δ > 0 such that

|x− c| < δ with x ∈ I =⇒ |f(x)− (f ′(c)(x− c) + f(c))| < ε. (5.3.13)

Lemma 5.3.10: Differentiable implies locally linear

Suppose I ⊆ R is an interval, f : I → R, and f is differentiable at c ∈ I. Then f is locally
linear at c.

Scratch Work 5.3.11: Unpack the derivative as a limit

The proof of Lemma 5.3.10 pops out of unpacking the definition of derivative (Definition
5.3.1) by considering the ε-δ definition of limit for functions (Definition 5.1.2) with the
difference quotient qc in mind. If f is differentiable at c ∈ I, then for every ε > 0 there is a
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threshold δf > 0 such that

0 < |x− c| < δf with x ∈ I (5.3.14)

=⇒
∣∣∣∣∣f(x)− f(c)

x− c
− f ′(c)

∣∣∣∣∣ = |qc(x)− f ′(c)| < ε. (5.3.15)

Multiplying inequality (5.3.15) by |x− c| > 0 and rearranging a bit gives us

|f(x)− f(c)− f ′(c)(x− c)| = |f(x)− (f ′(c)(x− c) + f(c))| < ε|x− c|. (5.3.16)

This is almost what we want, but the factor |x − c| on the right-hand side needs to be
addressed. That is, our choice for a threshold δ in the proof should accommodate both ε
and |x− c|. This is accomplished by choosing

δ = min{δf , 1}, (5.3.17)

which means |x− c| < δ ensures both

|x− c| < δ ≤ δf and |x− c| < δ ≤ 1. (5.3.18)

Proof of Lemma 5.3.10. Suppose I ⊆ R is an interval, f : I → R, and f is differentiable at c ∈ I.
By the definitions of functional limit and derivative (Definitions 5.1.2 and 5.3.1), for every ε > 0
there is a threshold δf > 0 such that

0 < |x− c| < δf with x ∈ I (5.3.19)

=⇒
∣∣∣∣∣f(x)− f(c)

x− c
− f ′(c)

∣∣∣∣∣ < ε. (5.3.20)

Define δ = min{δf , 1} and note δ > 0. Then |x− c| < δ implies both

|x− c| < δ ≤ δf and |x− c| < δ ≤ 1. (5.3.21)

Hence, we have both (5.3.20) and

ε|x− c| ≤ ε. (5.3.22)

So, by multiplying inequality (5.3.20) by |x− c| > 0 and rearranging a bit we have

|f(x)− f(c)− f ′(c)(x− c)| = |f(x)− (f ′(c)(x− c) + f(c))| < ε|x− c| ≤ ε. (5.3.23)

Therefore, δ is a threshold for the local linearity of f at c.

Remark 5.3.12: Arbitrarily close to the tangent line

The local linearity of a differentiable function f as in the implication (5.3.13) from the
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Lemma 5.3.10 is equivalent to

x ∈ Vδc(c) ∩ I = (c− δc, c+ δc) ∩ I =⇒ |f(x)− y| < ε, (5.3.24)

where y is the tangent line to f at c (Definition 5.3.8):

y = f ′(c)(x− c) + f(c). (5.3.25)

So, in a sense, local linearity means a given function is arbitrarily close to its tangent line
on a neighborhood.

Remark 5.3.13: Results on derivatives from limits

The remaining results proven in this section as well as further results from calculus explored
in the exercises usually follow from algebraic manipulation of difference quotients and the
numerous properties of limits and continuity developed up to this point. So when working
on exercises involving derivatives, play around with difference quotients and keep properties
of limits and continuity in mind.

An analog of the equivalence of the preservation of closeness, sequential continuity, and ε-δ
continuity in Theorem 4.4.7 holds for derivatives as a corollary of the equivalence for functional
limits in Theorem 5.1.14. Since derivatives are limits of difference quotients, the proof is omitted.

Corollary 5.3.14: Equivalent forms of derivatives

Suppose I ⊆ R is an interval, f : I → R, c ∈ I, and qc is the difference quotient of f at c.
Then the following are equivalent forms to f ′(c) = y:

(i) The difference quotient qc preserves accumulation at c with y:

E ⊆ I\{c} with c aclE =⇒ y acl qc(E). (5.3.26)

(ii) The difference quotient qc transforms sequential convergence to c in the domain into
sequential convergence to y in the codomain, specifically:

(xn) ⊆ I\{c} with lim
n→∞

xn = c (5.3.27)

=⇒ lim
n→∞

qc(xn) = lim
n→∞

f(xn)− f(c)
xn − c

= y. (5.3.28)

(iii) f is differentiable at c with f ′(c) = y. That is, the difference quotient qc converges to
y at c and we have

lim
x→c

qc(x) = lim
x→c

f(x)− f(c)
x− c

= y. (5.3.29)

The next section begins the development of properties of differentiation and derivatives, start-
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ing with linearity.

Exercises
5.3.1. Let f : R→ R be the cubic function f(x) = x3. Prove f ′(c) = 3c2 for every c ∈ R.

5.3.2. Give an example of a function g : R → R where g is one-to-one and differentiable, but
g′(0) = 0.

5.3.3. Give an example of a function h : R→ R where h is continuous, one-to-one, and differen-
tiable everywhere except at c = 0.

5.3.4. Prove the Power Rule for integer powers in two parts.

(i) For each n ∈ N ∪ {0}, let hn : R → R be the monomial hn(x) = xn. Prove h′n(c) = ncn−1

for every c ∈ R.

(ii) For each z ∈ Z, let hz : R\{0} → R be given by hz(x) = xz. Prove h′z(c) = zcz−1 for every
c ∈ R\{0}.

5.3.5. Consider the following alternative definition for the derivative: Suppose I ⊆ R is an
interval, f : I → R, and c ∈ I. The alternative derivative of f at c, also denoted f ′(c), is the limit

f ′(c) = lim
h→0

f(c+ h)− f(c)
h

. (5.3.30)

Prove this alternative definition for the derivative is equivalent to Definition 5.3.1.

5.3.6. Suppose I ⊆ R is an open interval, f : I → R, c ∈ I, and f is differentiable at c. Prove

lim
h→0

f(c+ h)− f(c− h)
2h = f ′(c). (5.3.31)

Also, find an example of a function f where the above limit exists at c but f is not differentiable
at c.

5.3.7. Let r : [0,∞)→ R be the square root function r(x) =
√
x. Prove

r′(c) = − 1
2
√
c
. (5.3.32)
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5.4 Properties of derivatives

Differentiable functions and derivatives exhibit an interesting and sometimes surprising array of
properties. For instance, differentiable functions are continuous and derivatives are linear. On
the other hand, derivatives are not multiplicative. Instead, we get results like the Product Rule
5.4.6.

First up is the linearity of derivatives. This fact plays an important role in analysis and the
development of topics like differential equations.

Theorem 5.4.1: Linearity of differentiation

Suppose I ⊆ R is an interval, f, g : I → R, both f and g are differentiable at c ∈ I, and
α ∈ R. Then f + g and αf are differentiable at c with

(i) (f + g)′(c) = f ′(c) + g′(c) (additivity); and

(ii) (αf)′(c) = αf ′(c) (homogeneity).

Scratch Work 5.4.2: Linearity of differentiation from
linearity of functional limits

Since derivatives are defined as limits of functions, it may come as no surprise that the
linearity of differentiation follows from the linearity of functional limits (Theorem 5.2.6).
Algebraic manipulation of the difference quotients for f + g and αf yield the linear combi-
nations of the difference quotients for f and g, allowing us to take advantage of Theorem
5.2.6. To that end, for every x ∈ I where x 6= c we have

f(x) + g(x)− (f(c) + g(c))
x− c

= f(x)− f(c)
x− c

+ g(x)− g(c)
x− c

(5.4.1)

as well as

αf(x)− αf(c)
x− c

= α · f(x)− f(c)
x− c

. (5.4.2)

Taking the limit as x approaches c yields both the additivity and the homogeneity of dif-
ferentiation.

Proof of Theorem 5.4.1. Suppose I ⊆ R is an interval, f, g : I → R, both f and g are differentiable
at c ∈ I, and α ∈ R. By the definition of derivative (Definition 5.3.1), algebraic manipulation of
difference quotients as in Scratch Work 5.4.2, and linearity of functional limits (Theorem 5.2.6),
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we have both

(f + g)′(c) = lim
x→c

f(x) + g(x)− (f(c) + g(c))
x− c

(5.4.3)

= lim
x→c

(
f(x)− f(c)

x− c
+ g(x)− g(c)

x− c

)
(5.4.4)

= lim
x→c

f(x)− f(c)
x− c

+ lim
x→c

g(x)− g(c)
x− c

(5.4.5)

= f ′(c) + g′(c) (5.4.6)

as well as

(αf)′(c) = lim
x→c

αf(x)− αf(c)
x− c

(5.4.7)

= lim
x→c

(
α · f(x)− f(c)

x− c

)
(5.4.8)

= α lim
x→c

f(x)− f(c)
x− c

(5.4.9)

= αf ′(c). (5.4.10)

Therefore, differentiation is linear.

Once again and as mentioned in Remark 1.6.18, a corollary of the linearity of differentiation
holds for linear combinations. As with the proofs of Corollaries 1.6.16, 4.5.7, 4.7.7, and 5.2.8, the
proof of Corollary 5.4.3 follows from induction on linearity and is left as an exercise.

Corollary 5.4.3: Linear combinations of derivatives

Suppose I ⊆ R is an interval, c ∈ I, k ∈ N, and for each j = 1, . . . , k we have aj ∈ R and
the functions fj : I → R are differentiable at c. Then the linear combination f given by

f(x) =
k∑
j=1

ajfj(x) = a1f1(x) + . . .+ akfk(x) (5.4.11)

is differentiable at c and with derivative given by

f ′(c) =
k∑
j=1

ajf
′
j(c) = a1f

′
1(c) + . . .+ akf

′
k(c). (5.4.12)

Differentiable functions are continuous. However, the derivative of a function is not necessarily
continuous.

Theorem 5.4.4: Differentiable implies continuous

Suppose I ⊆ R is an interval, f : I → R, c ∈ I, and f is differentiable at c. Then f is
continuous at c.
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Scratch Work 5.4.5: Limits connect derivatives and continuity

The result follows the ideas that derivatives are limits and limits can yield continuity under
the conditions of Theorem 5.2.1. Also, these conditions hold when the function is assumed
to be differentiable.

We want to end up with

lim
x→c

f(x) = f(c). (5.4.13)

By subtracting f(c) from both sides, we have (5.4.13) is equivalent to

lim
x→c

(f(x)− f(c)) = 0 (5.4.14)

by the linearity of functional limits (Theorem 5.2.6). Equation (5.4.14) is a better fit for the
assumption that f is differentiable at c since f(x)− f(c) is the numerator of the difference
quotient qc. Also, for x 6= c we have

qc(x)(x− c) = f(x)− f(c)
x− c

(x− c) = f(x)− f(c). (5.4.15)

Pairing this equation with the notion that the limit of a product is the product of limits
(Theorem 5.2.11) gives us the equivalent goal (5.4.14).

Proof of Theorem 5.4.4. Suppose I ⊆ R is an interval, f : I → R, c ∈ I, and f is differentiable
at c. Then the output f(c) is defined, and for every input x ∈ I where x 6= c we have

f(x)− f(c) = f(x)− f(c)
x− c

(x− c). (5.4.16)

Since limx→c(x−c) = 0, the definition of derivative (Definition 5.3.1) and Theorem 5.2.11 combine
to yield

lim
x→c

(f(x)− f(c)) = lim
x→c

(
f(x)− f(c)

x− c
(x− c)

)
(5.4.17)

=
(

lim
x→c

f(x)− f(c)
x− c

)(
lim
x→c

(x− c)
)

(5.4.18)

= f ′(c) · 0 (5.4.19)
= 0. (5.4.20)

By adding f(c) and considering the linearity of functional limits (Theorem 5.2.6), we have

lim
x→c

(f(x)− f(c)) = 0 =⇒ lim
x→c

f(x) = f(c). (5.4.21)

Therefore, f is continuous at c by Theorem 5.2.1.

Unlike convergence and continuity, differentiation is not multiplicative. That is, distributing
the derivative across multiplication generally does not work out. Instead, the derivative of a
product of differentiable functions satisfies the product rule.
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Theorem 5.4.6: Product Rule

Suppose I ⊆ R is an interval, f, g : I → R, and f and g are differentiable at c ∈ I. Then
fg is differentiable at c with

(fg)′(c) = f(c)g′(c) + f ′(c)g(c). (5.4.22)

Scratch Work 5.4.7: Algebra and properties of limits

To take advantage of the differentiability of f and g separately, adding a nice version of
zero allows us to split the difference quotient qc of the product fg into a form involving the
difference quotients of f and g. Note that

−f(x)g(c) + f(x)g(c) = 0. (5.4.23)

So for x 6= c we have

qc(x) = f(x)g(x)− f(c)g(c)
x− c

(5.4.24)

= f(x)g(x)− f(x)g(c) + f(x)g(c)− f(c)g(c)
x− c

(5.4.25)

= f(x)(g(x)− g(c)) + g(c)(f(x)− f(c))
x− c

(5.4.26)

= f(x)g(x)− g(c)
x− c

+ g(c)f(x)− f(c)
x− c

. (5.4.27)

Properties of functional limits, continuity, and derivatives get us to the conclusion from
here.

Proof the Product Rule 5.4.6. Suppose I ⊆ R is an interval, f, g : I → R, and f and g are
differentiable at c ∈ I. Note that g(c) is constant and by Theorem 5.4.4 we have f is continuous
at c. So, by Theorem 5.2.1 we have

lim
x→c

f(x) = f(c) and lim
x→c

g(c) = g(c). (5.4.28)

By adding the version of zero given by −f(x)g(c) + f(x)g(c) = 0 along with the linearity and
products of functional limits (Theorems 5.2.6 and 5.2.11), we have

(fg)′(c) = lim
x→c

f(x)g(x)− f(c)g(c)
x− c

(5.4.29)

= lim
x→c

f(x)g(x)− f(x)g(c) + f(x)g(c)− f(c)g(c)
x− c

(5.4.30)

= lim
x→c

f(x)(g(x)− g(c)) + g(c)(f(x)− f(c))
x− c

(5.4.31)

= (lim
x→c

f(x))
(

lim
x→c

g(x)− g(c)
x− c

)
+ (lim

x→c
g(c))

(
lim
x→c

f(x)− f(c)
x− c

)
(5.4.32)

= f(c)g′(c) + g(c)f ′(c). (5.4.33)
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The chain rule tells us how derivatives handle compositions of functions.

Theorem 5.4.8: Chain Rule

Suppose A,B ⊆ R, f : A→ R, and g : B → R where f(A) ⊆ B so the composition g ◦ f is
defined. If f is differentiable at c and g is differentiable at f(c), then g ◦ f is differentiable
at c with

(g ◦ f)′(c) = g′(f(c)) · f ′(c). (5.4.34)

Scratch Work 5.4.9: Modify an inadequate approach

To split the difference quotient qc for the composition g ◦ f into difference quotients for g
and f separately, we can try multiplying qc by the version of 1 given by dividing f(x)−f(c)
by itself, like this:

qc(x) =
(
g(f(x))− g(f(c))

x− c

)(
f(x)− f(c)
f(x)− f(c)

)
(5.4.35)

=
(
g(f(x))− g(f(c))
f(x)− f(c)

)(
f(x)− f(c)

x− c

)
. (5.4.36)

However, these equations are only valid if the denominator f(x) − f(c) is nonzero when
f(x) 6= f(c). Since we do not want to impose the condition that f(x) 6= f(c), consider a
different difference quotient. Let h : B → R be the extended difference quotient of g at f(c)
defined by

h(y) =


g(y)− g(f(c))
y − f(c) , if y 6= f(c),

g′(f(c)), if y = f(c).
(5.4.37)

The differentiability of g at y = f(c) ∈ B ensures q is continuous at f(c), once we allow
limits to get involved. Additionally, for all y ∈ B including y = f(c) we have

h(y)(y − f(c)) = g(y)− g(f(c)). (5.4.38)

In turn, for all x ∈ A we have f(x) ∈ B and so

h(f(x))(f(x)− f(c)) = g(f(x))− g(f(c)). (5.4.39)

Ultimately, for x ∈ A where x 6= c, we also have

h(f(x)) · f(x)− f(c)
x− c

= g(f(x))− g(f(c))
x− c

. (5.4.40)

Properties of continuity, functional limits, and derivatives lead to the conclusion from here.
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Proof of Chain Rule 5.4.8. Suppose A,B ⊆ R, f : A → R, f(A) ⊆ B, g : B → R, f is differen-
tiable at c, and g is differentiable at f(c). Define h : B → R by

h(y) =


g(y)− g(f(c))
y − f(c) , if y 6= f(c),

g′(f(c)), if y = f(c).
(5.4.41)

Since g is differentiable at f(c), we have

h(f(c)) = g′(f(c)) (5.4.42)

= lim
y→f(c)

g(y)− g(f(c))
y − f(c) (5.4.43)

= lim
y→f(c)

h(y). (5.4.44)

By Theorem 5.2.1, h is continuous at f(c). Also, for x ∈ A where x 6= c, we have f(x) ∈ B and

h(f(x)) · f(x)− f(c)
x− c

= g(f(x))− g(f(c))
x− c

. (5.4.45)

Now, since f is differentiable at c, f is continuous at c by Theorem 5.4.4. Hence, the composition
h◦f is continuous at c by Theorem 4.5.13. Therefore, by Theorems 5.1.8 and 4.5.8, the composition
g ◦ f is differentiable at c and we have

(g ◦ f)′(c) = lim
x→c

g(f(x))− g(f(c))
x− c

(5.4.46)

= lim
x→c

(
h(f(x)) · f(x)− f(c)

x− c

)
(5.4.47)

=
(

lim
x→c

h(f(x))
)(

lim
x→c

f(x)− f(c)
x− c

)
(5.4.48)

= g′(f(c)) · f ′(c). (5.4.49)

The Quotient Rule 5.4.10 from calculus can be proven from the definition of derivative (Def-
inition 5.3.1) by manipulating the difference quotient directly and using properties of limits.
However, we show the quotient rule stems from the Product Rule 5.4.6 and Chain Rule 5.4.8 via
the differentiability of the reciprocal function as in Example 5.3.6.

Theorem 5.4.10: Quotient Rule

Suppose D ⊆ R, c ∈ D, and f, g : D → R. If f and g are differentiable at c and g(x) 6= 0
for all x ∈ D, then the quotient f/g : D → R given by

f(x)
g(x) for all x ∈ D (5.4.50)
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is differentiable at c and we have(
f

g

)′
(c) = g(c)f ′(c)− f(c)g′(c)

(g(c))2 . (5.4.51)

Proof of the Quotient Rule 5.4.10. Assume the hypotheses of the Quotient Rule 5.4.10 hold. Since
the reciprocal function h(x) = 1/x function is differentiable on R\{0} (Example 5.3.6) and g is
differentiable with g(x) 6= 0 for all x ∈ D, the Chain Rule 5.4.8 applies and tells us the reciprocal
of g given by h ◦ g(x) = 1/g(x) is differentiable at c with(

1
g

)′
(c) = − g′(c)

(g(c))2 . (5.4.52)

Now, since

f(x)
g(x) = f(x) 1

g(x) (5.4.53)

for every x ∈ D and f is differentiable on D, the Product Rule 5.4.6 applies and we have the
quotient f/g is differentiable at c with(

f

g

)′
(c) = f ′(c) 1

g(c) + f(c)
(
− g′(c)

(g(c))2

)
= g(c)f ′(c)− f(c)g′(c)

(g(c))2 . (5.4.54)

Even though differentiable functions are continuous (Theorem 5.4.4), it is not necessarily true
that a derivative is a continuous function.

Example 5.4.11: A discontinuous derivative

Consider the function g : R→ R given by the piecewise formula

g(x) =


0, if x = 0,
x2 sin

(1
x

)
, if x 6= 0.

(5.4.55)

See Figure 5.4.1. The function g is differentiable and we have a piecewise formula for the
derivative g′ valid for every x ∈ R given by

g′(x) =


0, if x = 0,
2x sin

(1
x

)
− cos

(1
x

)
, if x 6= 0.

(5.4.56)

Moreover, g is differentiable at c = 0 with g′(0) = 0, but the derivative g′ is discontinuous
at c = 0. (Try plotting this!)
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x

y

g

Figure 5.4.1: A differentiable function g whose derivative g′ exists but is not
continuous at c = 0.

Scratch Work 5.4.12: Combining results

There are three things to prove: g′(0) = 0; the formula for g′(x) where x 6= 0; and g′ is
discontinuous at 0.

The Squeeze Theorem for functions 5.2.15 shows the difference quotient of g at c = 0
converges to 0, and so g′(0) = 0. The formula for g′(x) for nonzero x follows from the
Product Rule 5.4.6, the Chain Rule 5.4.8, the derivative of the square function in Example
5.3.4 and derivative of the reciprocal function in Example 5.3.6 along with the fact that
the derivative of sine is cosine (whose proof is an exercise).

The fact that the derivative g′ has a discontinuity at c = 0 follows from Discontinuity
Criteria (Corollary 4.6.13) using a sequences of positive real numbers whose limit is 0 in the
domain but whose image converges to −1 6= g′(0) = 0 in the range. To that end, note that
for every n ∈ N we have

sin 2πn = 0 and cos 2πn = 1. (5.4.57)

So by choosing the sequence (xn) ⊆ R\{0} given by xn = 1/(2πn), we have

g′(xn) = 2xn sin
( 1
xn

)
− cos

( 1
xn

)
= 2

2πn sin (2πn)− cos (2πn) = 0− 1 = −1. (5.4.58)

On to the proof.

Proof for Example 5.4.11. First, to show g′(0) = 0 let q0 denote the difference quotient of g at
c = 0. Then for x 6= 0 we have

q0(x) = g(x)− g(0)
x− 0 = x2 sin (1/x)

x
= x sin

(1
x

)
. (5.4.59)

We also have

−1 ≤ sin
(1
x

)
≤ 1 =⇒ −|x| ≤ x sin

(1
x

)
≤ |x|. (5.4.60)
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Since limx→0(−|x|) = limx→0 |x| = 0, the Squeeze Theorem for functions 5.2.15 yields

g′(0) = lim
x→0

g(x)− g(0)
x− 0 = lim

x→0

x2 sin (1/x)
x

= lim
x→0

x sin
(1
x

)
= 0. (5.4.61)

Hence, g is differentiable at c = 0 with g′(0) = 0.
Now suppose c 6= 0. By Examples 5.3.4 and 5.3.6, the square function h(x) = x2 and the

reciprocal function f(x) = 1/x are differentiable at c. Also, the derivative of sine is cosine. So, by
the Product Rule 5.4.6 and the Chain Rule 5.4.8, the function g is differentiable at c and we have

g′(c) = 2c sin
(1
c

)
− cos

(1
c

)
. (5.4.62)

Therefore, g is differentiable at every c ∈ R.
Finally, to show the derivative g′ is discontinuous at c = 0, consider the sequence (xn) ⊆ R\{0}

given by xn = 1/(2πn). We have

g′(xn) = 2xn sin
( 1
xn

)
− cos

( 1
xn

)
= 2

2πn sin (2πn)− cos (2πn) = 0− 1 = −1. (5.4.63)

Hence,

lim
n→∞

xn = lim
n→∞

1
2πn = 0, but lim

n→∞
g′(xn) = lim

n→∞
−1 = −1 6= 0 = g′(0). (5.4.64)

Therefore, by Discontinuity Criteria (Corollary 4.6.13), g′ is discontinuous at c = 0.

The next section develops further properties of derivatives.

Exercises
5.4.1. The alternative definition of derivative in Exercise 5.3.5 along with and the results of
Exercises 5.2.9 and 5.2.10 help us find the derivatives of sine and cosine.

(i) Use the trigonometric identity

sin (x+ h) = sin x cosh+ cosx sin h (5.4.65)

to show d

dx
sin x = cosx.

(ii) Use the trigonometric identity

cos (x+ h) = cos x cosh− sin x sin h (5.4.66)

to show d

dx
cosx = − sin x.

5.4.2. Use the results of the previous exerise to justify the formulas of the other trigonometric
functions.
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(i) d

dx
tan x = sec2 x.

(ii) d

dx
secx = secx tan x.

(iii) d

dx
cotx = − csc2 x.

(iv) d

dx
cscx = − cscx cotx.

5.4.3. Assume the general form of the Power Rule holds in that for each p > 0, the function
hp : R → R given by hp(x) = xp is differentiable with h′p(c) = pcp−1 for each c ∈ R. Consider a
squeezed version of the topologist’s sine curve from Example 4.4.10 defined by gp : R→ R where

gp(x) =

x
p sin

(1
x

)
, if x 6= 0,

0, if x = 0.
(5.4.67)

(i) Find a value p > 0 where gp is differentiable on R but g′p is unbounded on every open interval
containing 0.

(ii) Find a value p > 0 where gp is differentiable on R, g′p is continuous on R, but g′p is not
differentiable at c = 0.

5.4.4. Suppose f : [a, b] → R is one-to-one and differentiable on [a, b] with f ′(x) 6= 0 for all x in
[a, b]. Prove f−1 is differentiable with

(f−1)′(y) = 1
f ′(x) when y = f(x). (5.4.68)

5.4.5. Prove the following Squeeze Theorem for derivatives1: Suppose I ⊆ R is an open interval,
c ∈ I, and f, g, h : I → R. Further suppose f and h are differentiable at c, f(c) = h(c), and

f(x) ≤ g(x) ≤ h(x) for all x ∈ I. (5.4.69)

Prove g is differentiable at c and

f ′(c) = g′(c) = h′(c). (5.4.70)

5.4.6. Suppose p : R → R is a polynomial. Prove that eventually (i.e., for large enough k ∈ N),
the kth derivative of p is identically 0.

5.4.7. Suppose I ⊆ R is an open interval, g is differentiable on I, and there is a bound b > 0 such
that

|g′(x)| ≤ b for all x ∈ I. (5.4.71)

(i) Prove g is uniformly continuous on I.

(ii) Find an example of a function f : (0, 1)→ R which is uniformly continuous and differentiable
on (0, 1) but the derivative f ′ is unbounded.

1In [7], this problem is attributed to Clyde Dubbs at New Mexico Institute of Mining and Technology.
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5.4.8. Consider the modification of Dirichlet’s function 1Q from Example 4.2.14 given by

f(x) = x21Q(x) =
x2, if x ∈ Q,

0, if x ∈ R\Q.
(5.4.72)

Prove f is differentiable at c = 0 but not at nonzero values of c.

5.4.9. Let D[a, b] denote the set of real-valued functions that are differentiable on [a, b]. Use
Lemma 1.6.7 to prove D[a, b] is a vector space.

5.4.10. Suppose c, ` ∈ R and let D(c, `) denote the set of real-valued functions on R that are
differentiable at c with derivative `. (Thus, for each f ∈ D(c, `) we have f ′(c) = `.) Use Lemma
1.6.7 to prove D(c, `) is a vector space if and only if ` = 0.

5.5 Mean Value Theorem
Derivatives have a variety of interesting results when it comes to the values they can attain and
what they say about the behavior of functions. As seen in the previous sections, manipulation of
difference quotients and properties of limits play a central role in the proofs.

First up are definitions for more local properties of functions.

Definition 5.5.1: Local maximum and local minimum

Suppose D ⊆ R and f : D → R. Then f has a local maximum at c ∈ D if there is a
threshold δ > 0 such that

|x− c| < δ with x ∈ D =⇒ f(x) ≤ f(c). (5.5.1)

Similarly, f has a local minimum at c ∈ D if there is a threshold δ > 0 such that

|x− c| < δ with x ∈ D =⇒ f(c) ≤ f(x). (5.5.2)

Also, f has a local extremum at c when f has either a local maximum or local minimum at
c.

Remark 5.5.2: The output is the extreme value

To clarify the terminology and notation a bit, if f has a local extremum at c, then the
output f(c) is the extreme value, not c. That is:

(i) If f has a local maximum at c ∈ D with threshold δ,
then f(c) = max f(Vδ(c) ∩D).

(ii) If f has a local minimum at c ∈ D with threshold δ,
then f(c) = min f(Vδ(c) ∩D).
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Figure 5.5.1: The sine function f(x) = sin x with its tangent line t at c = π/2
where it attains its maximum f(π/2) = max{f([0, 2π])}. This tangent line has
slope f ′(π/2) = cos π/2 = 0 as ensured by the Interior Extremum Theorem 5.5.3
as well as Rolle’s Theorem 5.5.7 since sin 0 = sin 2π = 0.

The Interior Extremum Theorem 5.5.3 is the kernel of this section. It follows from the definition
of derivative as a limit of difference quotients (Definition 5.3.1) and the idea that 0 is the only
real number arbitrarily close to the sets of positive and negative numbers.

Theorem 5.5.3: Interior Extremum Theorem

Suppose f : (a, b) → R, f is differentiable at every point in the open interval (a, b), and f
attains its local maximum or local minimum at some point c in (a, b). Then f ′(c) = 0.

Scratch Work 5.5.4: Arbitrarily close to positive and negative

The approach will be to show that the derivative f ′(c) is arbitrarily close to positive and
negative numbers, or rather nonnegative and nonpositive numbers, through a manipulation
of difference quotients and inequalities.

In the case where f(c) is a local maximum, we have f(x) ≤ f(c) for any input x within the
threshold of c. Hence, by subtracting f(c), we have that the numerator of the difference
quotient is always nonpositive since it satisfies

f(x)− f(c) ≤ 0. (5.5.3)

The hypothesis of having the domain be an open interval (a, b) ensures any point within it
can be approached from the left and the right. By choosing inputs x and y on either side
of c so that

x < c < y, (5.5.4)

we can subtract c to ensure

x− c < 0 < y − c. (5.5.5)
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This guarantees denominators of difference quotients are either positive or negative,
respectively. Combining these denominators with our nonpositive numerator allows our
difference quotients, and therefore the derivative, to be arbitrarily close to both nonnegative
and nonpositive real numbers. This forces the derivative to be zero by Lemma 1.5.14.

Also, only the local maximum case is proven here. The local minimum case follows from a
similar argument and is left as an exercise.

Proof of the Interior Extremum Theorem 5.5.3. Suppose the hypotheses of the Interior Extremum
Theorem 5.5.3 hold in the case where f(c) is a local maximum with threshold δ > 0. Suppose
x, y ∈ Vδ(c) = (c− δ, c+ δ) where δ is small enough to ensure

a < c− δ < x < c < y < c+ δ < b. (5.5.6)

Note that by Lemma 1.5.10, we have both |x − c| < δ and |y − c| < δ. Also, note we have
f(c) = max f(Vδ(c)). So

f(x) ≤ f(c) and f(y) ≤ f(c). (5.5.7)

Subtracting c from (5.5.6) and f(c) from (5.5.7) yields

x− c < 0 < y − c, f(x)− f(c) ≤ 0, and f(y)− f(c) ≤ 0. (5.5.8)

Let qc denote the difference quotient of f at c. Since division by a negative number flips inequalities
but division by a positive real number does not, we have

qc(y) = f(y)− f(c)
y − c

≤ 0 ≤ f(x)− f(c)
x− c

= qc(x). (5.5.9)

Therefore, by the equivalent forms of derivatives in Corollary 5.3.14, f ′(c) is arbitrarily close to
both the set of nonnegative real numbers and the set of nonpositive real numbers. By a slight
modification of Lemma 1.5.14, we have f ′(c) = 0.

Like continuous functions, derivatives satisfy an intermediate value property. The formal
statement of this result is know as Darboux’s Theorem.

Theorem 5.5.5: Darboux’s Theorem

Suppose f : [a, b]→ R is differentiable and α ∈ R where either

f ′(a) < α < f ′(b) or f ′(b) < α < f ′(a). (5.5.10)

Then there exists c ∈ (a, b) such that

f ′(c) = α. (5.5.11)
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Scratch Work 5.5.6: Shift to fit a previous result

Without loss of generality, consider the case where f ′(a) < α < f ′(b). The other case is
handled in a very similar manner. The goal is to find c ∈ (a, b) where f ′(c) = α. The
Interior Extremum Theorem 5.5.3 requires c to be where an extreme value is attained, but
it yields the existence of some c ∈ (a, b) that gives us a derivative at c equal to zero. So,
our f may not apply.

Even so, we can shift the given function f to get a similar function g that will fit the
hypotheses of the Interior Extremum Theorem 5.5.3. In particular, by the linearity of
differentiation (Theorem 5.4.1) and the derivative of a line (Lemma 5.3.2) we have

g(x) = f(x)− αx =⇒ g′(x) = f ′(x)− α. (5.5.12)

So if we can show g′(c) = f ′(c)− α = 0, we will have f ′(c) = α.

To ensure g(c) is an extreme value attained with c ∈ (a, b), we can show that neither g(a)
nor g(b) is a local extremum by comparing the derivatives at a and b to bounds on the
difference quotients.

Proof of Darboux’s Theorem 5.5.5. Without loss of generality, suppose f : [a, b] → R is differen-
tiable and α ∈ R where

f ′(a) < α < f ′(b). (5.5.13)

Define g : [a, b]→ R by

g(x) = f(x)− αx. (5.5.14)

By the linearity of differentiation (Theorem 5.4.1) and the derivative of a line (Lemma 5.3.2), we
have g is differentiable on [a, b] with

g′(x) = f ′(x)− α (5.5.15)

for all x ∈ [a, b]. Since differentiable functions are continuous (Theorem 5.4.4), g is continuous.
Since we also have [a, b] is compact, the Extreme Value Theorem 4.6.9 ensures g attains both a
maximum and a minimum on [a, b]. In particular, for some c ∈ [a, b], we have g(c) = min g([a, b]).

To ensure c ∈ (a, b), a couple of contradiction arguments show that neither g(a) nor g(b) is
the minimum. To that end, subtracting α across (5.5.13) yields

g′(a) = f ′(a)− α < 0 < f ′(b)− α = g′(b). (5.5.16)

For the first contradiction, suppose g(a) = min g([a, b]). Then for every x ∈ (a, b] we have
both

g(x) ≥ g(a) =⇒ g(x)− g(a) ≥ 0 and (5.5.17)
x > a =⇒ x− a > 0. (5.5.18)
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Hence, the difference quotient of g at a is nonnegative since

qa(x) = g(x)− g(a)
x− a

≥ 0. (5.5.19)

Thus, 0 is a lower bound for the image qa((a, b]) and by the definition of derivative as a limit
(Definition 5.3.1) and the order properties of functional limits Corollary 5.1.18, we have

g′(a) = lim
x→a

qa(x) = lim
x→a

g(x)− g(a)
x− a

≥ 0. (5.5.20)

This contradicts the assertion that g′(a) < 0, so g(a) is not the minimum of g on [a, b].
For the second contradiction, suppose g(b) = min g([a, b]). Then for every x ∈ [a, b) we have

both
g(x) ≥ g(b) =⇒ g(x)− g(b) ≥ 0 and (5.5.21)

x < b =⇒ x− b < 0. (5.5.22)
Hence, the difference quotient of g at a is nonpositive since

qb(x) = g(x)− g(b)
x− b

≤ 0. (5.5.23)

Thus, 0 is an upper bound for the image qa((a, b]) and by the definition of derivative as a limit
(Definition 5.3.1) and the order properties of functional limits Corollary 5.1.18, we have

g′(b) = lim
x→b

qa(x) = lim
x→b

g(x)− g(b)
x− b

≤ 0. (5.5.24)

This contradicts the assertion that g′(b) > 0, so g(b) is not the minimum of g on [a, b].
Since the minimum of g is attained at neither a nor b, the minimum must be attained at some

c ∈ (a, b). As a minimum over the entire interval [a, b], the output g(c) is also a local minimum
(Definition 5.5.1) with threshold given by δ = min{|a − c|, |b − c|} > 0, the shorter of the two
distances from c to a or b. In this case we have

x ∈ Vδ(c) = (c− δ, c+ δ) ⊆ [a, b]. (5.5.25)
Since c ∈ (a, b) and g(c) is a local minimum, the Interior Extremum Theorem 5.5.3 yields

g′(c) = 0. (5.5.26)
Finally, plugging in c for x in (5.5.15) tells us

g′(c) = f ′(c)− α = 0. (5.5.27)
Adding α yields the desired result,

f ′(c) = α. (5.5.28)

The next two theorems, Rolle’s Theorem 5.5.7 and the Mean Value Theorem 5.5.9, highlight
another relationship between the slopes of secant lines and tangent lines through properties of
derivatives. Basically, they tell us that the slope of the secant line (a difference quotient) defined
over a compact interval is equal to the slope of the tangent line (a derivative) at some point within
the interval. In other words, the average rate of change is attained as an instantaneous rate of
change.
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Theorem 5.5.7: Rolle’s Theorem

Suppose f : [a, b]→ R where

(i) f is continuous on the compact interval [a, b],

(ii) f is differentiable on the open interval (a, b), and

(iii) f(a) = f(b).

Then there is a point c ∈ (a, b) where f ′(c) = 0.

Scratch Work 5.5.8: Apply the Interior Extremum Theorem

The conclusion of Rolle’s Theorem is the same as that of the Interior Extremum Theorem
5.5.3: there is an interior point of the domain where the derivative is zero. To take advantage
of this, we should again verify that f attains local extrema. The proof is broken down into
a couple of cases, the first ensures f is constant and so must have derivative zero at every
input, and the second allows us to apply the Interior Extremum Theorem 5.5.3.

Proof of Rolle’s Theorem 5.5.7. Suppose f : [a, b] → R where f is continuous on [a, b], f is
differentiable on (a, b), and f(a) = f(b). Since f is continuous on the compact interval [a, b], f
attains its maximum and minimum by the Extreme Value Theorem 4.6.9.

Case (i) Suppose both the maximum and minimum are attained at both of the endpoints.
That is, assume

f(a) = f(b) = max f([a, b]) = min f([a, b]). (5.5.29)

Then f is constant since we have

max f([a, b]) = min f([a, b]) ≤ f(x) ≤ max f([a, b]) (5.5.30)
=⇒ f(x) = max f([a, b]) = min f([a, b]) (5.5.31)

for every x ∈ [a, b]. By the derivative of lines (Lemma 5.3.2), f ′(c) = 0 for every c ∈ (a, b).
Case (ii) Suppose either max f([a, b]) or min f([a, b]) is attained at some c ∈ (a, b). Then by

the Interior Extremum Theorem 5.5.3, f ′(c) = 0.

The Mean Value Theorem 5.5.9 generalizes Rolle’s Theorem 5.5.7 tell us that the slope of any
secant line over a compact interval is equal to the slope of the tangent line at some point within
the interval. Hence, the slope of a secant line is the slope of a related tangent line.

Theorem 5.5.9: Mean Value Theorem

Suppose f : [a, b]→ R where

(i) f is continuous on the compact interval [a, b] and

(ii) f is differentiable on the open interval (a, b).
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Figure 5.5.2: The differentiable function f(x) = x/2+sin x exhibiting the Mean
Value Theorem 5.5.9 with its tangent line t at c = 3π/2 and secant line s passing
through the origin and (2π, π), each with slope 1/2.

Then there is a point c ∈ (a, b) where

f ′(c) = f(b)− f(a)
b− a

. (5.5.32)

Scratch Work 5.5.10: Reduce to a special case

The only difference between the hypotheses for Rolle’s Theorem 5.5.7 and the Mean Value
Theorem 5.5.9 is the condition that f(a) = f(b). While this condition does not hold in
general under the hypotheses of the Mean Value Theorem 5.5.9, we can shift such an f in
as we did in the Scratch Work 5.5.6 for proof of Darboux’s Theorem 5.5.5: Subtract a line
from f to define a new function g satisfying the same conditions as f as well as g(a) = g(b).

The secant line through the points (a, f(a)) and (b, f(b)) gives us the shift we’re looking
for. It is given by

s(x) =
(
f(b)− f(a)

b− a

)
(x− a) + f(a). (5.5.33)
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Then we have

s(a) =
(
f(b)− f(a)

b− a

)
(a− a) + f(a) = f(a) and (5.5.34)

s(b) =
(
f(b)− f(a)

b− a

)
(b− a) + f(a) = f(b)− f(a) + f(a) = f(b). (5.5.35)

So, choosing g(x) = f(x)− s(x) yields

g(a) = f(a)− s(a) = 0 = f(b)− s(b) = g(b). (5.5.36)

From here, Rolle’s Theorem produces an interior point c ∈ (a, b) where

g′(c) = 0, and so f ′(c) = s′(c) = f(b)− f(a)
b− a

. (5.5.37)

Proof of the Mean Value Theorem 5.5.9. Suppose f : [a, b] → R where f is continuous on [a, b]
and f is differentiable on (a, b). Define the secant line s : [a, b]→ R by

s(x) =
(
f(b)− f(a)

b− a

)
(x− a) + f(a). (5.5.38)

By the continuity and derivatives of lines from Theorem 4.3.9 and Lemma 5.3.2, we have s is
continuous on [a, b], s is differentiable on (a, b),

s(a) = f(a), s(b) = f(b), and s′(c) = f(b)− f(a)
b− a

. (5.5.39)

Next, define g : [a, b]→ R by

g(x) = f(x)− s(x). (5.5.40)

Then we have

g(a) = f(a)− s(a) = 0 = f(b)− s(b) = g(b). (5.5.41)

Furthermore, by the linearity of continuity and differentiation (Theorems 4.5.5 and 5.4.1), we
have g is continuous on [a, b] and differentiable on (a, b). So by Rolle’s Theorem 5.5.7 applied to
g, there is an interior point c ∈ (a, b) where we have

g′(c) = 0 = f ′(c)− s′(c) = f ′(c)− f(b)− f(a)
b− a

. (5.5.42)

Therefore,

f ′(c) = f(b)− f(a)
b− a

. (5.5.43)
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The Mean Value Theorem 5.5.9 plays a central role in calculus. In particular, it provides a
key step in the proof of the Fundamental Theorem of Calculus I (Theorem 6.1.15) which tells
us how evaluate integrals when we have a nice antiderivative. The Mean Value Theorem 5.5.9
also justifies some rules from calculus about antiderivatives, including the pair of corollaries that
round out the section.

Definition 5.5.11: Antiderivative

Suppose I ⊆ R is an interval and f, F : I → R. The function F is an antiderivative of f if

F ′(x) = f(x) for all x ∈ I. (5.5.44)

An identically zero derivative implies the original function is constant. In other words, con-
stants are the antiderivatives of the zero derivative.

Corollary 5.5.12: Zero derivative implies constant

Suppose I ⊆ R is an interval, f : I → R is differentiable, and f ′(x) = 0 for all x ∈ I. Then
f is constant.

Proof of Corollary 5.5.12. Suppose I ⊆ R is an interval, f : I → R is differentiable, and f ′(x) = 0
for all x ∈ I. Without loss of generality, also suppose a, b ∈ I where a < b. Then [a, b] ⊆ I is a
compact interval and f is differentiable on [a, b]. By the Mean Value Theorem 5.5.9, there is a
point c ∈ (a, b) where

f ′(c) = 0 = f(b)− f(a)
b− a

. (5.5.45)

Multiplying by b− a yields

0 = f(b)− f(a) ⇐⇒ f(a) = f(b). (5.5.46)

Since a and b are arbitrary, f is constant.

Antiderivatives are not unique since any pair of functions with the same derivative across an
interval are within a constant of each other on that interval. This idea justifies the need to include
“+C” when we compute antiderivatives.

Corollary 5.5.13: Antiderivatives of a function differ by constants

Suppose I ⊆ R is an interval, f, g : I → R are differentiable, and f ′(x) = g′(x) for all x ∈ I.
Then for some constant C ∈ R we have

f(x) = g(x) + C (5.5.47)

for all x ∈ I.
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Proof of Corollary 5.5.13. Suppose I ⊆ R is an interval, f, g : I → R are differentiable, and
f ′(x) = g′(x) for all x ∈ I. Define h : I → R by h(x) = f(x) − g(x). Then by the linearity of
differentiation (Theorem 5.4.1), h is differentiable and we have

h′(x) = f ′(x)− g′(x) = 0 (5.5.48)

for all x ∈ I. So by Corollary 5.5.12, there is some constant C ∈ R where we have

h(x) = f(x)− g(x) = C (5.5.49)

for all x ∈ I. Adding C yields the desired expression f(x) = g(x) + C.

The next result solidifies even more notions from calculus regarding increasing, decreasing,
and monotone functions.

Definition 5.5.14: Increasing, decreasing, and monotone functions

Suppose I ⊆ R is an interval and f : I → R.

(i) f is increasing if x, y ∈ I with x < y implies f(x) ≤ f(y).

(ii) f is decreasing if x, y ∈ I with x < y implies f(x) ≥ f(y).

(iii) f is strictly increasing if x, y ∈ I with x < y implies f(x) < f(y).

(iv) f is strictly decreasing if x, y ∈ I with x < y implies f(x) > f(y).

A function is (strictly) monotone if it is (strictly) increasing or (strictly) decreasing.

Corollary 5.5.15: Positive derivative implies increasing,
negative derivative implies decreasing

Suppose I ⊆ R is an interval and f : I → R is differentiable.

(i) If f ′(c) ≥ 0 for every c ∈ I, then f is increasing.

(ii) If f ′(c) ≤ 0 for every c ∈ I, then f is decreasing.

(iii) If f ′(c) > 0 for every c ∈ I, then f is strictly increasing.

(iv) If f ′(c) < 0 for every c ∈ I, then f is strictly decreasing.

Scratch Work 5.5.16: Get to difference quotients

Proofs of all four cases in Corollary 5.5.15 are similar to each other. Once we have one, we
can modify its proof to get the others. With this in mind, the focus of this scratch work
and the following proof is on the increasing case.
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We would like to end up with the implication

x < y =⇒ f(x) ≤ f(y), (5.5.50)

by somehow making use of difference quotients like

f(y)− f(x)
y − x

(5.5.51)

which will connect us to the values of the derivative of f across I. Since x < y if and only if
y − x > 0, knowing the sign (positive/negative) of the difference quotient (5.5.51) will tell
us the sign of the numerator f(y)− f(x). For instance, we have

f(y)− f(x)
y − x

≥ 0 ⇐⇒ f(y)− f(x) ≥ 0. (5.5.52)

Now for the subtle part: The Mean Value Theorem 5.5.9 applied to the compact interval
[x, y] tells us that for some c0 ∈ (x, y), we have

f ′(c0) = f(y)− f(x)
y − x

. (5.5.53)

So, by assuming f ′(c) ≥ 0 for all c ∈ I and reversing the discussion here, we can show f is
increasing.

Proof of Corollary 5.5.15. This proof only addresses the increasing case (i) in Corollary 5.5.15.
Suppose I ⊆ R is an interval, f : I → R is differentiable, and f ′(c) ≥ 0 for every c ∈ I. Also,

suppose x, y ∈ I where x < y, and so y − x > 0. By the Mean Value Theorem 5.5.9 applied to
the compact interval [x, y], there is some c0 ∈ (x, y) where

f ′(c0) = f(y)− f(x)
y − x

≥ 0. (5.5.54)

Since y − x > 0, multiplying both sides by y − x yields

f(y)− f(x) ≥ 0 ⇐⇒ f(x) ≤ f(y). (5.5.55)

Therefore, f is increasing.

The next chapter tackles the next big idea from calculus: integrals.

Exercises
5.5.1. Suppose f : [0, 3] → R is given by f(x) =

√
x2 − 3x. Prove f satisfies the conditions of

Rolle’s Theorem 5.5.7 and find c ∈ (0, 3) where g′(c) = 0.
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5.5.2. For each n ∈ N, suppose gn : R→ R is given by

gn(x) = 1
1 + x2n . (5.5.56)

Prove gn attains its maximum and determine both the maximum value and where the maximum
is attained.

5.5.3. Suppose h : [0, 4]→ R is differentiable with h(0) = 1, h(1) = 3, and h(4) = 3. Prove:

(i) there is some c1 ∈ (0, 4) where h′(c1) = 0;

(ii) there is some c2 ∈ (0, 4) where h′(c2) = 1/2; and

(iii) there is some c3 ∈ (0, 4) where h′(c3) = 1/3.

5.5.4. Suppose n ∈ N and 0 ≤ x ≤ y. Use the Mean Value Theorem 5.5.9 to show

nxn−1(y − x) ≤ yn − xn ≤ nyn−1(y − x). (5.5.57)

5.5.5. Suppose x > 0. Use the Mean Value Theorem 5.5.9 to show
√

1 + x < 1 + x

2 . (5.5.58)

5.5.6. Consider the function g : R→ R given by

g(x) =


x

2 + x2 sin
(1
x

)
, if x 6= 0,

0, if x = 0.
(5.5.59)

(i) Prove g is differentiable at c = 0 and g′(0) > 0.

(ii) Prove g is differentiable on R and find a piecewise defined formula for g′.

(iii) In contrast to Corollary 5.5.15, prove g is not monotone on any open interval containing 0.

5.5.7. Suppose f : (a, b) → R is differentiable and f ′(c) > 0 at some c ∈ (a, b). Prove there is
some x0 where

c < x0 < b and f(x0) > f(c). (5.5.60)

Also, state and prove a similar result in the case where f ′(c) < 0.

5.5.8. Use the Product Rule 5.4.6 to formally state and derive Integration by Parts for antideriva-
tives denoted by the “ultra-violet voodoo” formula from calculus:∫

u dv = uv −
∫
v du. (5.5.61)

5.5.9. Use the Chain Rule 5.4.8 to formally state and derive the Substitution formula from calculus:
If g is differentiable and u = g(x), then∫

f(g(x))g′(x) dx =
∫
f(u) du. (5.5.62)
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5.5.10. Prove the following version of the Cauchy Mean Value Theorem: Suppose f and g are
continuous on the compact interval [a, b] and differentiable on the open interval (a, b). Then there
is some c ∈ (a, b) where

(f(b)− f(a))g′(c) = (g(b)− g(a))f ′(c). (5.5.63)

Additionally, if g′(x) 6= 0 for any x ∈ [a, b], then

f(b)− f(a)
g(b)− g(a) = f ′(c)

g′(c) . (5.5.64)

Hint: Apply the Mean Value Theorem 5.5.9 to the function

h(x) = (f(b)− f(a))g(x)− (g(b)− g(a))f(x). (5.5.65)

5.5.11. Prove the following version of the 0/0 case of L’Hospital’s Rule: Suppose I ⊆ R is an
interval, c ∈ I, and f, g : I → R are differentiable on I except possibly at c. Further suppose
f(c) = g(c) = 0 and g′(x) 6= 0 for all x ∈ I\{c}. Then

lim
x→c

f ′(x)
g′(x) = ` =⇒ lim

x→c

f(x)
g(x) = `. (5.5.66)



Chapter 6

Integration

Integrals allow us to formalize the notion of cumulative or net change, visualized by and defining
“the area under a curve”. Integration is another concept from calculus which can be defined using
points arbitrarily close to sets.

The goal of this section is to develop a formal definition for integration based on families
of linear combinations that approximate net change as closely as we like. Visually, the linear
combinations represent sums of areas of rectangles which are versatile enough to be arbitrarily
close to areas of more arbitrary shapes.

6.1 Defining and evaluating integrals
The formal definition for integrals (Definition 6.1.6) takes a while to build up. We need to
carefully choose the terms and notation. The notion from calculus of “area under a curve” gives
us a substantial visual and intuitive idea to build on, but integrals describe far more than just
area.

The approach we take to defining the integral is like a squeeze theorem. At the core are
approximations given by linear combinations roughly of the form

estimate for an integral =
n∑
k=1

(kth height)(kth width)︸ ︷︷ ︸
area of kth rectangle

, (6.1.1)

where the “heights” depend on choices we make regarding outputs of a function and the “widths”
depend on how we split up the domain. The value of the integral is attained by squeezing
the linear combination estimates from above and below by choosing heights as upper and lower
bounds on the outputs. The integral is the real number arbitrarily close to both the set of upper
approximations and the set of lower approximations.

To get a more concrete idea of the approach, let’s start with a rough approximation of the area
of a triangle using two sets of three rectangles providing upper and lower approximations. The
example itself may simple, but it is difficult and time-consuming to precisely describe the process
we use to create our approximations. My hope is that by spending time working through a simple

381
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graph
of f

1 −

2/3 −

1/3 −

0 1/3
|

2/3
|

1
| x

y

f(x) = x

area
= 1/2

P

Figure 6.1.1: The triangle defined by f(x) = x over the domain [0, 1] has area
1/2. See Example 6.1.1. The partition P = {0, 1/3, 2/3, 1} splits the domain into
three compact subintervals of length 1/3 providing widths for approximations by
rectangles.

example, the massive amount of notation and terminology used to define and prove results about
integrals will make more sense.

Example 6.1.1: Three rectangles

Consider the function f : [0, 1]→ R given by

f(x) = x. (6.1.2)

Geometry tells us the triangle created by the graph of f and the compact interval [0, 1] on
the x-axis has area 1/2 (half the base times the height). See Figure 6.1.1.

To start building rectangles for our approximations, consider the set of endpoints

P = {0, 1/3, 2/3, 1} ⊆ [0, 1]. (6.1.3)

The endpoints in P split the domain [0, 1] into three subintervals of length 1/3, namely

[0, 1/3], [1/3, 2/3], and [2/3, 1]. (6.1.4)

These lengths to provide widths for two approximations of the area of the triangle, one from above
and another from below.

To approximate from above, we can use the supremum of the image of each subinterval to
provide the heights of the rectangles. By Definition 1.1.14, these suprema are arbitrarily close
to the outputs of f and are upper bounds over their subintervals. (See Figure 6.1.2.) So, the
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x

y

u3 = 1 −

u2 = 2/3 −

u1 = 1/3 −

0 1/3
|

2/3
|

1
|

f(x) = x

area
= 2/3

P

Figure 6.1.2: As in Example 6.1.1, the red rectangles use the suprema u1, u2,
and u3 as heights over the subintervals [0, 1], [1/3, 2/3], and [2/3, 1]. The total
area 2/3 is an upper estimate for the area of the triangle as well as the integral
of f over [0, 1].

suprema ensure the resulting approximation is at least pretty close to—but still an upper estimate
for—the area of the triangle. We have

u1 = sup f([0, 1/3]) = f(1/3) = 1/3, (6.1.5)
u2 = sup f([1/3, 2/3]) = f(2/3) = 2/3, and (6.1.6)
u3 = sup f([2/3, 1]) = f(1) = 1. (6.1.7)

Note that the supremum of the image of each subinterval is attained at the right endpoint
since f is increasing. Combining these upper heights with the common width 1/3 yields a total
area given by the linear combination

3∑
k=1

uk(1/3) = (1/3)(1/3 + 2/3 + 1) = 2/3. (6.1.8)

See Figure 6.1.2 where three red rectangles give us an upper estimate of 2/3 for the area of the
triangle.

Next, to approximate from below, we use the same endpoints and widths determined by the
partition P , but this time we use the infimum of the image of each subinterval to provide the
heights. (See Figure 6.1.3.) By Definition 1.1.14, these infima are arbitrarily close to the outputs
of f and are lower bounds over their subintervals. We have

`1 = inf f([0, 1/3]) = f(0) = 0, (6.1.9)
`2 = inf f([1/3, 2/3]) = f(1/3) = 1/3, and (6.1.10)
`3 = inf f([2/3, 1]) = f(2/3) = 2/3. (6.1.11)
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x

y

1 −

`3 = 2/3 −

`2 = 1/3 −

`1 = 0 1/3
|

2/3
|

1
|

f(x) = x

area
= 1/3

P

Figure 6.1.3: As in Example 6.1.1, the blue rectangles use the infima `1, `2,
and `3 as heights over the subintervals [0, 1/3], [1/3, 2/3], and [2/3, 1]. The total
area 1/3 is a lower estimate for the area of the triangle as well as the integral of
f over [0, 1].

Here, the infimum of the image of each subinterval is attained at the left endpoint. Combining
these lower heights with the common width 1/3 yields a total area given by the linear combination

3∑
k=1

`k(1/3) = (1/3)(0 + 1/3 + 2/3) = 1/3. (6.1.12)

The three blue rectangles—well, two rectangles and one line segment—in Figure 6.1.3 show us
the lower estimate of 1/3 for the area of the triangle.

Remark 6.1.2: We can do better

In the follow-up to Example 6.1.1, we created two estimates for the area of a triangle using
trios of rectangles. We ended up with an overestimate 2/3 and an underestimate 1/3 for
the actual area 1/2. We can do better by refining our process using more rectangles with
smaller widths.

This refinement leads to a definition of the integral: Consider all upper and lower estimates
defined in the same way as those in Example 6.1.1. There are lots of pieces to define before
we put them together and nail down the integral.

Definition 6.1.3: Partitions and subintervals

For real numbers a, b ∈ R with a < b, a partition of the compact interval [a, b] is a finite
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subset P given by

P = {x0, x1, . . . , xn} where a = x0 < x1 < · · · < xn = b (6.1.13)

for some n ∈ N. Each partition of [a, b] defines a finite collection of n compact subintervals
given by

[xk−1, xk] for each k = 1, . . . , n. (6.1.14)

Remark 6.1.4: Integrate over full intervals

Throughout this book, whenever we consider compact intervals of the form [a, b] for the
purposes of partitions and integrals, we work under the additional but unstated assumption
that a, b ∈ R with a < b.

Note that each partition P = {x0, x1, . . . , xn} of a compact interval [a, b] contains the endpoints
since x0 = a and xn = b. Each partition also produces a set of widths of its subintervals given by

|xk − xk−1| = xk − xk−1 for each k = 1, . . . , n. (6.1.15)

We can drop the absolute values since the endpoints defined by the partition are taken to be
increasing by default: xk−1 < xk for each k = 1, . . . , n.

The next step is to build rectangles on these widths using upper and lower heights defined
by suprema and infima. The resulting upper and lower sums are the linear combinations which
represent the total areas of these rectangles:

estimate = total area =
n∑
k=1

(kth height)(kth width)︸ ︷︷ ︸
area of kth rectangle

. (6.1.16)

Each upper and lower sum provides an estimate for the integral.
To ensure the suprema and infima are there for us to work with, we only consider bounded

functions. See Definition 4.3.20.

Definition 6.1.5: Upper and lower sums

Let f : [a, b]→ R be a bounded function and let

P = {x0, x1, . . . , xn} (6.1.17)

be a partition of the domain [a, b]. For each k = 1, . . . , n, the upper and lower heights,
respectively uk and `k, are defined by

uk = sup f([xk−1, xk]) = sup{f(x) : x ∈ [xk−1, xk]} and (6.1.18)
`k = inf f([xk−1, xk]) = inf{f(x) : x ∈ [xk−1, xk]}. (6.1.19)
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Figure 6.1.4: To accompany Definitions 6.1.5 and 6.1.6, play around with the
GeoGebra activity “Copy of upper and lower Riemann Sums” accessed through
the QR code. Note that the color scheme in the GeoGebra activity differs from
the figures in this section. https://www.geogebra.org/m/nz84uerx

From there, define the upper and lower sums by the linear combinations

u(f, P ) =
n∑
k=1

uk(xk − xk−1) and (6.1.20)

`(f, P ) =
n∑
k=1

`k(xk − xk−1), respectively. (6.1.21)

The sets of upper and lower sums over all partitions of [a, b] are denoted by U and L,
respectively. We have

U = {u(f, P ) : P is a partition of [a, b]} and (6.1.22)
L = {`(f, P ) : P is a partition of [a, b]}. (6.1.23)

See Figure 6.1.4.

When it exists, the integral of f over [a, b] is the real number which can be estimated as closely
as we like by both upper and lower sums.

Definition 6.1.6: Integral

A function f : [a, b]→ R is integrable if f is bounded and there is a real number denoted by∫ b
a f arbitrarily close to both the set of upper sums U and the set of lower sums L. In this
case,

∫ b
a f is called the integral of f over [a, b], f is called the integrand, and we have both∫ b

a f aclU and
∫ b
a f aclL.

See Figure 6.1.4.

https://www.geogebra.org/m/nz84uerx
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Remark 6.1.7: Integral notation and terminology

We will also denote the integral of f over [a, b] using a dummy variable x and its “differential”
dx, as follows: ∫ b

a
f =

∫ b

a
f(x) dx. (6.1.24)

By the way, the elongated “s” symbols
∫
and

∫
both represent the integral as a type of

infinite sum. There is no need to formally define the “differential” dx. Still, the notation∫ b
a f(x) dx can roughly be thought of as an aggregate of the products of heights f(x) and
infinitesimally small widths dx over the interval [a, b], as long as we do not rely on this
analogy too much.

Since the outputs f(x) can be negative, it’s somewhat of a misnomer to interpret integrals
as areas. On the other hand, the visualization of sums of products of real numbers as signed
areas can lead to interesting insights and interplay: Since the product of velocity and time
yields distance, we can think of distance as area.

The following definition is here for convenience.

Definition 6.1.8: Integral over a singleton, swap limits of integration

Let f : [a, b]→ R be an integrable function. Define∫ a

b
f = −

∫ b

a
f and

∫ c

c
f = 0 for c ∈ [a, b]. (6.1.25)

Let’s revisit Example 6.1.1 and see if our definition for the integral (Definition 6.1.6) correctly
reproduces the area 1/2 for the triangle defined by f(x) = x over [0, 1].

Example 6.1.9: Recover the area of a triangle

Let f : [0, 1]→ R be defined by f(x) = x as in Example 6.1.1. We have∫ 1

0
f =

∫ 1

0
x dx = 1

2 . (6.1.26)

To prove this, it suffices to show 1/2 is arbitrarily close to both the set of upper sums U
and the set of lower sums L. We can refine the estimates following Example 6.1.1 to help
us build enough upper and lower sums to show both

1
2 aclU and 1

2 aclL. (6.1.27)

The partition P = {0, 1/3, 2/3, 1} produces upper and lower sums

u(f, P ) =
3∑

k=1
uk

(1
3

)
= 2

3 and `(f, P ) =
3∑

k=1
`k

(1
3

)
= 1

3 . (6.1.28)
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Both of these estimates differ from the true area 1/2 by 1/6. So, in order to find upper
and lower sums as close as we like (arbitrarily close) to 1/2, we can create more, smaller
rectangles by considering a sequence of finer and finer partitions.

The proof is long.

Proof for Example 6.1.9. Consider the partitions Pn of [0, 1] given by

Pn =
{

0, 1
n
,

2
n
, . . . ,

n− 1
n

, 1
}

for each n ∈ N. (6.1.29)

The subintervals defined by each partition Pn are given by

[xk−1, xk] =
[
k − 1
n

,
k

n

]
for each k = 1, . . . , n. (6.1.30)

Each of these subintervals has the same width, specifically

xk − xk−1 = k

n
− k − 1

n
= 1
n
. (6.1.31)

From here, we can construct new sequences of upper and lower heights and sums. For now, let’s
focus on the lower heights and sums. The upper heights and sums are developed in a similar way.

Since f(x) = x is increasing, for each k = 1, . . . , n, the lower height `k is the output of the left
endpoint:

`k = inf f([xk−1, xk]) = f(xk−1) = k − 1
n

. (6.1.32)

Hence, the lower sum `(f, Pn) is given by

`(f, Pn) =
n∑
k=1

`k(xk − xk−1) (6.1.33)

=
n∑
k=1

(
k − 1
n

)( 1
n

)
(6.1.34)

= 1
n2

n∑
k=1

(k − 1) (6.1.35)

= 1
n2 (0 + 1 + · · ·+ (n− 1)). (6.1.36)

Some classic mathematics helps us here: Carl Gauss’ formula for the sum of the first n consecutive
positive integers gives us a nice closed form. We have

n∑
k=1

k = 1 + 2 + · · ·+ n = n(n+ 1)
2 . (6.1.37)

See Figure 6.1.5 for a visual justification of this formula in the case where n = 3. For the lower
sum `(f, Pn), the sum of integers stops at n− 1. Therefore,

`(f, Pn) = 1
n2 (1 + · · ·+ (n− 1)) = (n− 1)n

2n2 = 1
2 −

1
2n. (6.1.38)
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1

+2

+3

n = 3

n+ 1 = 4

Figure 6.1.5: A visual justification of Gauss’ formula for the sum of the first
n = 3 positive integers. Two copies of the sum make up half of a rectangle whose
sides are n = 3 and n+ 1 = 4. So, each sum is equal to n(n+ 1)/2 = 6.

Also, since `(f, Pn) ∈ L for every index n ∈ N and

lim
n→∞

`(f, Pn) = lim
n→∞

(1
2 −

1
2n

)
= 1

2 , (6.1.39)

the fundamental connection between arbitrarily close and limits of sequences (Theorem 2.3.1) tells
us (1/2) aclL.

The argument to show (1/2) aclU uses the same partitions

Pn =
{

0, 1
n
,

2
n
, . . . ,

n− 1
n

, 1
}

for each n ∈ N, (6.1.40)

yielding the same common width

xk − xk−1 = k

n
− k − 1

n
= 1
n

for each k = 1, . . . , n. (6.1.41)

Now, since f(x) = x is increasing, the upper height uk is the output of the right endpoint:

uk = sup f([xk−1, xk]) = f(xk) = k

n
. (6.1.42)

Hence, the upper sum u(f, Pn) is given by

u(f, Pn) =
n∑
k=1

uk(xk − xk−1) (6.1.43)

=
n∑
k=1

(
k

n

)( 1
n

)
(6.1.44)

= 1
n2

n∑
k=1

k (6.1.45)

= 1
n2 (1 + · · ·+ n). (6.1.46)

A direct application of Carl Gauss’ formula (6.1.37) for the sum of the first n consecutive positive
integers gives us

u(f, Pn) = 1
n2 (1 + · · ·+ n) = n(n+ 1)

2n2 = 1
2 + 1

2n. (6.1.47)
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Also, since u(f, Pn) ∈ U for every index n ∈ N and

lim
n→∞

u(f, Pn) = lim
n→∞

(1
2 + 1

2n

)
= 1

2 , (6.1.48)

the fundamental connection between arbitrarily close and limits of sequences (Theorem 2.3.1) tells
us (1/2) aclU .

Finally, since we have shown both (1/2) aclU and (1/2) aclL, by the definition of the integral
(Definition 6.1.6) we finally have

∫ 1

0
f =

∫ 1

0
x dx = 1

2 . (6.1.49)

Working directly with the definition of the integral (Definition 6.1.6) is a tremendous challenge,
even when the function under consideration is constant. The following lemma tells us the integral
of a constant is the (signed) area of a rectangle.

Lemma 6.1.10: Integral of a constant

Let f(x) = c on [a, b] for some c ∈ R. Then∫ b

a
f =

∫ b

a
c dx = c(b− a). (6.1.50)

Scratch Work 6.1.11: Draw stuff

The idea for the proof follows pretty quickly from drawing a figure, which you are encouraged
to do. Since f is constant, the upper and lower heights are exactly the same regardless of
which partition we choose for the domain [a, b]. This means all upper and lower sums are
the same as well.

Proof of Lemma 6.1.10. Let f(x) = c on [a, b] for some c ∈ R and let P be a partition of [a, b] be
given by

P = {x0, x1, . . . , xn} (6.1.51)

where n ∈ N, x0 = a, and xn = b. For each k = 1, . . . , n, the upper height uk and lower height `k
are both equal to c since we have

uk = sup f([xk−1, xk]) = sup{c} = c and `k = inf f([xk−1, xk]) = inf{c} = c. (6.1.52)
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Hence, the upper sum u(f, P ) is given by

u(f, P ) =
n∑
k=1

uk(xk − xk−1) (6.1.53)

= c
n∑
k=1

(xk − xk−1) (6.1.54)

= c((x1 − x0) + (x2 − x1) + · · · (6.1.55)
+ (xn−1 − xn−2) + (xn − xn−1)) (6.1.56)

= c(xn − x0) (6.1.57)
= c(b− a), (6.1.58)

after cancellation of numerous terms between lines (6.1.55) and (6.1.56). (Sums with cancellation
like this are referred to as telescoping sums, see Remark 6.1.12.) Following a nearly identical
argument, we also have

`(f, P ) =
n∑
k=1

`k(xk − xk−1) = c(b− a). (6.1.59)

Hence, for any partition P of the domain [a, b], we have U and L are the same singleton given by

U = L = {c(b− a)}. (6.1.60)

By Lemma 1.5.4, we have both c(b − a) aclU and c(b − a) aclL. Therefore, by the definition of
the integral (Definition 6.1.6) we have∫ b

a
f =

∫ b

a
c dx = c(b− a). (6.1.61)

Remark 6.1.12: Telescoping sums

Telescoping sums are linear combinations whose summands mostly cancel out as in lines
(6.1.55) and (6.1.56) of the proof of Lemma 6.1.10. For linear combinations of vectors in
Euclidean spaces, telescoping sums behave like this:

n∑
k=1

(xk − xk−1) = (x1 − x0) + (x2 − x1) + (x3 − x2) + · · · (6.1.62)

+ (xn−2 − xn−3) + (xn−1 − xn−2) + (xn − xn−1) (6.1.63)
= xn − x0. (6.1.64)

Can you see how most terms cancel?

Telescoping sums occur frequently in the development of results on integration and series.
In addition to Lemma 6.1.10 and Example 6.2.1, telescoping sums play a central role in the
evaluation half of the Fundamental Theorem of Calculus 6.1.15 which tells us how to compute
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integrals with antiderivatives. This role is highlighted in the proof of Corollary 6.1.13, where
the Mean Value Theorem 5.5.9 applies to an antiderivative and yields telescoping sums whose
common value always lies between to the upper and lower sums.

Corollary 6.1.13: Bounds for the difference of an antiderivative

Suppose f : [a, b] → R is bounded and F is an antiderivative of f where F ′(x) = f(x) for
all x ∈ [a, b]. Then for any partition P of the domain [a, b] we have

`(f, P ) ≤ F (b)− F (a) ≤ u(f, P ). (6.1.65)

Scratch Work 6.1.14: Mean Value Theorem yields a telescoping sum

The conclusion of the Mean Value Theorem 5.5.9 tells us

f(c) = F ′(c) = F (b)− F (a)
b− a

, (6.1.66)

which we can rearrange to get

f(c)(b− a) = F ′(c)(b− a) = F (b)− F (a). (6.1.67)

The difference F (b)−F (a) is the bound we’re looking for. The product f(c)(b−a) is of the
“height times width” form which we can think of as an area, like the summands in an upper
sum u(f, P ) or lower sums `(f, P ). The subtle step of applying the Mean Value Theorem
5.5.9 to each subinterval defined by the partition P produces a telescoping sum for the areas
f(ck)(xk − xk−1), like this

3∑
k=1

f(ck)(xk − xk−1) =
3∑

k=1
F (xk)− F (xk−1) (6.1.68)

= F (x1)− F (x0) + F (x2)− F (x1) + F (x3)− F (x2) (6.1.69)
= F (x3)− F (x0) (6.1.70)
= F (b)− F (a). (6.1.71)

See Figure 6.1.6.

Proof of Corollary 6.1.13. Suppose F ′(x) = f(x) for all x ∈ [a, b] and let P be a partition of [a, b]
given by P = {x0, x1, . . . , xn} where n ∈ N and

a = x0 < x1 < . . . < xn−1 < xn = b. (6.1.72)

Then for each k = 1, . . . , n, the Mean Value Theorem 5.5.9 applied to the antiderivative F on the
subinterval [xk−1, xk] ⊆ [a, b] produces an input ck ∈ [xk−1, xk] such that

f(ck)(xk − xk−1) = F ′(ck)(xk − xk−1) = F (xk)− F (xk−1). (6.1.73)

Each product f(ck)(xk − xk−1) can be visualized as the area of a rectangle. See Figure 6.1.6.
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||
a = x0

|
x1

|
x2

|
x3 = b

|
c1

f(c1)

0 |
c2

f(c2)

|
c3

f(c3)

Figure 6.1.6: Three rectangles with areas given by f(ck)(xk − xk−1) for k =
1, 2, 3. The input ck is provided by an application of the Mean Value Theorem
5.5.9 to an antiderivative F on each subinterval [xk−1, xk] ⊆ [a, b], as in the
scratch work and proof for Corollary 6.1.13. The area f(ck)(xk−xk−1) of the kth
rectangle seems to be exactly the area under f between xk−1 and xk. Their sum
telescopes and equals F (b)− F (a).

|
a = x0

|
x1

|
x2

|
x3 = b

0

f(c1)

u1

`1

f(c2)

u2

`2

f(c3)

u3

`3

Figure 6.1.7: To accompany Corollary 6.1.13, here is a visual comparison of
an upper sum, a lower sum, and a telescoping sum provided by applications of
the Mean Value Theorem 5.5.9 to an antiderivative F . Since `k ≤ f(ck) ≤ uk on
each subinterval [xk−1, xk], the areas satisfy `k(xk − xk−1) ≤ f(ck)(xk − xk−1) ≤
uk(xk − xk−1) and their sums give us `(f, P ) ≤ F (b)− F (a) ≤ u(f, P ).
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Since f is bounded, the upper height uk = sup f([xk−1, xk]) and lower height `k = inf f([xk−1, xk])
exist for each k = 1, . . . , n. Also, the supremum is an upper bound and the infimum is a lower
bound, so we have

`k ≤ f(ck) ≤ uk. (6.1.74)

Since xk − xk−1 > 0, combining (6.1.73) and (6.1.74) gives us

`k(xk − xk−1) ≤ f(ck)(xk − xk−1) = F (xk)− F (xk−1) ≤ uk(xk − xk−1). (6.1.75)

See Figure 6.1.7 for a visual comparison as areas of rectangles. By the definition of upper and
lower sums (Definition 6.1.5), taking the sum from k = 1 to n yields

`(f, P ) =
n∑
k=1

`k(xk − xk−1) (6.1.76)

≤
n∑
k=1

f(ck)(xk − xk−1) (6.1.77)

=
n∑
k=1

(F (xk)− F (xk−1)) (6.1.78)

≤
n∑
k=1

uk(xk − xk−1) (6.1.79)

= u(f, P ). (6.1.80)

Again, see Figure 6.1.7. Since the sum (6.1.78) telescopes, x0 = a, and xn = b, we have

n∑
k=1

f(ck)(xk − xk−1) =
n∑
k=1

(F (xk)− F (xk−1)) (6.1.81)

=F (x1)− F (x0) + F (x2)− F (x1) + · · · (6.1.82)
+ F (xn−1)− F (xn−2) + F (xn)− F (xn−1) (6.1.83)

=F (xn)− F (x0) (6.1.84)
=F (b)− F (a). (6.1.85)

Therefore,

`(f, P ) ≤ F (b)− F (a) ≤ u(f, P ). (6.1.86)

The Fundamental Theorem of Calculus tells us that derivatives and integrals are (roughly)
inverses of each other. In this book, the theorem is stated in two parts. The Fundamental Theorem
of Calculus I (Theorem 6.1.15) tells us how evaluate integrals when we have a nice antiderivative
to work with. The Fundamental Theorem of Calculus II (Theorem 6.4.16) tells us that functions
defined as indefinite integrals have derivatives given by the integrands, but this is proven later
after establishing more results about integrals.
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Theorem 6.1.15: Fundamental Theorem of Calculus I

If f : [a, b] → R is integrable and F is an antiderivative of f where we have F ′(x) = f(x)
for all x ∈ [a, b], then ∫ b

a
f = F (b)− F (a). (6.1.87)

Scratch Work 6.1.16: A satisfying result

The proof of this half of the Fundamental Theorem of Calculus is a consequence of the
definition of the integral in terms of arbitrarily close (Definition 6.1.6), properties of points
arbitrarily close to sets, and the Mean Value Theorem 5.5.9 through Corollary 6.1.13. On
a personal note, this proof was a very satisfying discovery!

Proof of the Fundamental Theorem of Calculus I (Theorem 6.1.15). Suppose f is integrable over
[a, b], F is an antiderivative of f on [a, b], and P is a partition of [a, b]. By the definition of the
integral (Definition 6.1.6), f is bounded on [a, b] and we have both∫ b

a f aclU and
∫ b
a f aclL.

Since f is bounded, Corollary 6.1.13 yields

`(f, P ) ≤ F (b)− F (a) ≤ u(f, P ). (6.1.88)

In particular, F (b) − F (a) ≤ u(f, P ) for every upper sum u(f, P ) ∈ U and
∫ b
a f aclU while

`(f, P ) ≤ F (b) − F (a) for every lower sum `(f, P ) ∈ L and
∫ b
a f aclL. Since real numbers

arbitrarily close to sets respect lower and upper bounds (Lemma 1.5.23), we have∫ b

a
f ≤ F (b)− F (a) ≤

∫ b

a
f. (6.1.89)

Therefore, ∫ b

a
f = F (b)− F (a). (6.1.90)

The next section develops various equivalent criteria for integrability.

Exercises
6.1.1. Suppose f : [a, b]→ R is bounded. Prove f is integrable over [a, b] if and only if there is a
real number r and sequences (Pn) and (Qn) of partitions of [a, b] where

lim
n→∞

u(f, Pn) = r = lim
n→∞

`(f,Qn). (6.1.91)

In this case,
∫ b

a
f = r.
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6.1.2. Use Definition 6.1.6 and the sum of squares formula
n∑
k=1

k2 = 12 + 22 + · · ·+ n2 = n(n+ 1)(2n+ 1)
6 (6.1.92)

to directly prove
∫ 1

0
x2 dx = 1

3.

6.1.3. Suppose g : [0, 1]→ R is integrable. Define the sequence of averages (an) by

an = 1
n

n∑
k=1

g

(
k

n

)
for each n ∈ N. (6.1.93)

Prove lim
n→∞

an =
∫ 1

0
g. Hint: Use Exercise 6.1.1 along with the Squeeze Thereom for sequences

2.4.3.

6.1.4. A function g : R → R is even when g(−x) = g(x) for all x ∈ R. A function h : R → R
is odd when h(−x) = −h(x) for all x ∈ R. Even and odd functions have special properties with
integrals.

Suppose f : [−a, a]→ R is integrable.

(i) Prove that if f is odd, then
∫ a

−a
f = 0.

(ii) Prove that if f is even, then
∫ a

−a
f = 2

∫ a

0
f .

6.1.5. A function f : R→ R is periodic with period p > 0 if

f(x+ p) = f(x) for all x ∈ R. (6.1.94)

Suppose f is periodic and integrable over every compact interval. Prove∫ p

0
f =

∫ a+p

a
f for all a ∈ R. (6.1.95)

6.1.6. Integration was nearly chosen to be the first topic explored in this book after defining
arbitrarily close in the real line (Definition 1.1.8). This exercise shows that our integral can be
defined without supremum and infimum.

Revise the definitions of upper and lower heights and sums in Definition 6.1.5 as follows: Let
f : [a, b]→ R be a bounded function and let

P = {x0, x1, . . . , xn} (6.1.96)

be a partition of the domain [a, b]. For each k = 1, . . . , n, an upper* height is an upper bound
u∗k on the subinterval [xk−1, xk]. Similarly, a lower* height is a lower bound `∗k on the subinterval
[xk−1, xk]. So, for each k = 1, . . . , n and any x ∈ [xk−1, xk] we have

`∗k ≤ f(x) ≤ u∗k. (6.1.97)
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From there, define the upper* and lower* sums by the linear combinations

u∗(f, P ) =
n∑
k=1

u∗k(xk − xk−1) and (6.1.98)

`∗(f, P ) =
n∑
k=1

`∗k(xk − xk−1), respectively. (6.1.99)

The sets of upper* and lower* sums over all partitions of [a, b] are denoted by U∗ and L∗, respec-
tively. We have

U∗ = {u∗(f, P ) : P is a partition of [a, b]} and (6.1.100)
L∗ = {`∗(f, P ) : P is a partition of [a, b]}. (6.1.101)

Finally, replace Definition 6.1.6 as follows: A function f : [a, b] → R is *-integrable if f is
bounded and there is a real number denoted by ∗

∫ b
a f arbitrarily close to both the set of upper

sums U and the set of lower sums L. In this case, ∗
∫ b
a f is called the *-integral of f over [a, b],

and we have both

∗
∫ b

a
f aclU and ∗

∫ b

a
f aclL. (6.1.102)

Suppose f : [a, b]→ R is bounded. Prove the following statements are equivalent.

(i) f is integrable over [a, b] as in Definition 6.1.6.

(ii) f is *-integrable over [a, b] as in the above definition.

(iii) There is a real number r and sequences (Pn) and (Qn) of partitions of [a, b] where

lim
n→∞

u(f, Pn) = r = lim
n→∞

`(f,Qn). (6.1.103)

(See Exercise 6.1.1.)

(iv) There is a real number r and sequences (P ∗n) and (Q∗n) of partitions of [a, b] where

lim
n→∞

u∗(f, P ∗n) = r = lim
n→∞

`∗(f,Q∗n). (6.1.104)

In this case,
∫ b

a
f = ∗

∫ b

a
f = r.

6.2 Criteria for integrability
When are functions integrable, exactly? This section develops equivalent criteria for integrability
after building some more tools suitable for the partitions, upper sums, and lower sums that define
integrals.

First, not all functions are integrable.
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Example 6.2.1: Dirichlet’s function is not integrable

Consider Dirichlet’s function 1Q from Example 4.2.14 given by

1Q(x) =
1, if x ∈ Q,

0, if x ∈ R\Q.
(6.2.1)

Dirichlet’s function is not integrable over [0, 2].

Scratch Work 6.2.2: Upper and lower sums are away from each other

The proof follows from the density of both the rationals and the irrationals in the real line
(Theorem 1.4.10 and Corollary 1.4.13). Since every interval contains rational numbers, the
upper heights of 1Q are all equal to 1. On the other hand, since every interval contains
irrational numbers, the lower heights are all 0. This forces the sets of upper and lower sums
U and L to be away from each other.

Proof for Example 6.2.1. Suppose P is a partition of [0, 2] given by

P = {x0, x1, . . . , xn} (6.2.2)

where n ∈ N, x0 = 0, and xn = 2. Since every interval contains rational numbers (Theorem
1.4.10), for each k = 1, . . . , n the upper height uk is given by

uk = sup1Q([xk−1xk]) = 1. (6.2.3)

Since all the upper heights are the same, the upper sum u(1Q, P ) telescopes and we have

u(1Q, P ) =
n∑
k=1

uk(xk − xk−1) (6.2.4)

=
n∑
k=1

1(xk − xk−1) (6.2.5)

= (x1 − x0) + (x2 − x1) + · · · (6.2.6)
+ (xn−1 + xn−2) + (xn − xn−1) (6.2.7)

= xn − x0 (6.2.8)
= 2. (6.2.9)

Hence, the set of upper sums is the singleton U = {2}.
Similarly, every interval contains irrational numbers (Corollary 1.4.13), so for each k = 1, . . . , n

the lower height `k is given by

`k = inf 1Q([xk−1xk]) = 0. (6.2.10)

Since all the lower heights are 0, the lower sum `(1Q, P ) is also 0. We have

`(1Q, P ) =
n∑
k=1

`k(xk − xk−1) =
n∑
k=1

0(xk − xk−1) = 0. (6.2.11)
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Hence, the set of lower sums is the singleton L = {0}. So we have both

0 awf U and 2 awf L. (6.2.12)

By Lemma 1.5.5, no real number is arbitrarily close to both U and L. Therefore, Dirichlet’s
function 1Q is not integrable over [0, 2].

To establish criteria for integrability from various perspectives, an exploration of partitions,
upper sums, and lower sums will help.

Partitions of intervals are a new concept in this chapter requiring techniques that go beyond
what we have seen elsewhere in the textbook. Refinements of partitions decompose the domain
in a way we can control, allowing us to bring the linear combinations that define upper and lower
sums arbitrarily close together to get the integral.

Definition 6.2.3: Refinements of partitions

Given a partition P of a compact interval [a, b], a refinement of P is a partition Q of [a, b]
where

P ⊆ Q. (6.2.13)

Given an pair of partitions P1 and P2 of [a, b], a common refinement of P1 and P2 is a
partition R of [a, b] where

P1 ∪ P2 ⊆ R. (6.2.14)

Remark 6.2.4: A perspective on refinements

Loosely speaking, refinements split our domains into more and finer subintervals by adding
endpoints, improving the estimates given by linear combinations of “heights” and “widths”
that define upper and lower sums in the definition of the integral (Definition 6.1.6). Re-
finements also pave the way to proving a number of results on integrals from calculus in
a systematic way. In particular, refinements increase lower sums and decrease upper sums
(Definition 6.1.5), and brings their upper and lower estimates closer together. Compare
Figures 6.2.1 and 6.2.2 which consider the same bounded function over a partition P and a
refinement Q.

Lemma 6.2.5: Refinements of upper and lower sums

Suppose f : [a, b] → R is bounded, P is a partition of [a, b], and Q is a refinement of P .
Then

`(f, P ) ≤ `(f,Q) and u(f,Q) ≤ u(f, P ). (6.2.15)
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|
a = x0

|
x1

|
x2 = b

0

u1

`1

u2

`2

Figure 6.2.1: A bounded function on [a, b] with partition P = {x0, x1, x2} along
with upper and lower heights u1, u2, `1, and `2. This sets up a comparison with
a refinement of P given by Q in Figure 6.2.2.

|
a = x0

|
z

|
x1

|
x2 = b

0

u′1

`′1

u′′1

`′′1

u2

`2

Figure 6.2.2: The same continuous function on [a, b] from Figure 6.2.1, but with
refinement Q = {x0, z, x1, x2} of partition P = {x0, x1, x2} along with the new
upper and lower heights u′1, u′′1, u2, `

′
1, `
′′
1, and `2. This exemplifies a comparison

of the upper and lower sums over P and Q as in Lemma 6.2.5. Since u1 > u′′1,
we have u(f, P ) > u(f,Q). On the other hand, `(f, P ) = `(f,Q).
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Scratch Work 6.2.6: Suprema and infima are the key

The order properties of suprema and infima in Corollary 1.4.4 play a key role in the proof.
By adding points to get a refinement, we split our interval into smaller subintervals, meaning
infima increase while suprema decrease. As a result, lower sums move up and upper sums
move down. The proof concludes with an application of induction where the details are
omitted.

Proof of Lemma 6.2.5. Suppose f : [a, b]→ R is bounded and P is a partition of [a, b] given by

P = {x0, . . . , xn}. (6.2.16)

As an initial case, suppose Q is a refinement of P which adds a single point z where

xk−1 < z < xk (6.2.17)

for some k ∈ {1, . . . , n}. So Q = P ∪ {z} and we have

[xk−1, z] ⊆ [xk−1, xk] and [z, xk] ⊆ [xk−1, xk]. (6.2.18)

Since images under f respect containment, we also have

f([xk−1, z]) ⊆ f([xk−1, xk]) and f([z, xk]) ⊆ f([xk−1, xk]). (6.2.19)

By the order properties of suprema and infima (Corollary 1.4.4), it follows that

u′k = sup f([xk−1, z]) ≤ sup f([xk−1, xk]) = uk, (6.2.20)
u′′k = sup f([z, xk]) ≤ sup f([xk−1, xk]) = uk, (6.2.21)
`′k = inf f([xk−1, z]) ≥ inf f([xk−1, xk]) = `k, and (6.2.22)
`′′k = inf f([z, xk]) ≥ inf f([xk−1, xk]) = `k. (6.2.23)

Since xk − xk−1 = (xk − z) + (z − xk−1) > 0, we have

u′k(z − xk−1) + u′′k(xk − z) ≤ uk(z − xk−1) + uk(xk − z) = uk(xk−1 − xk) (6.2.24)
=⇒ u′k(z − xk−1) + u′′k(xk − z)− uk(xk−1 − xk) ≤ 0, (6.2.25)

as well as

`′k(z − xk−1) + `′′k(xk − z) ≥ `k(z − xk−1) + `k(xk − z) = `k(xk−1 − xk) (6.2.26)
=⇒ `′k(z − xk−1) + `′′k(xk − z)− `k(xk−1 − xk) ≥ 0. (6.2.27)

Hence, replacing the kth term in the upper sum with the nonpositive value (6.2.25) yields

u(f, P ) =
n∑
j=1

uj(xj − xj−1) (6.2.28)

≥
n∑
j=1

uj(xj − xj−1) (6.2.29)

+ u′k(z − xk−1) + u′′k(xk − z)− uk(xk−1 − xk) (6.2.30)
=u(f,Q). (6.2.31)
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Similarly, replacing the kth term in the lower sum with the nonnegative value (6.2.27) yields

`(f, P ) =
n∑
j=1

`j(xj − xj−1) (6.2.32)

≤
n∑
j=1

`j(xj − xj−1) (6.2.33)

+ `′k(z − xk−1) + `′′k(xk − z)− `k(xk−1 − xk) (6.2.34)
= `(f,Q). (6.2.35)

Therefore, the desired result (6.2.15) holds in the case where Q refines P by including a single new
point. Since refinements are partitions themselves, they only add a finite number of new points
to consider. Hence, the general case follows from an induction argument.

More tools regarding upper and lower sums will prove to be helpful. Recall from Definition
6.1.5 that L represents the set of lower sums and U represents the set of upper sums.

Theorem 6.2.7: Lower sums are always below upper sums

Suppose P1 and P2 are partitions of [a, b] and f : [a, b]→ R is bounded. Then

`(f, P1) ≤ u(f, P2). (6.2.36)

Furthermore, we have

`(f, P1) ≤ supL ≤ inf U ≤ u(f, P2). (6.2.37)

Scratch Work 6.2.8: Make a common refinement

The common refinement of two partitions orders the upper and lower sums thanks to
Lemma 6.2.5 to generate the desired result. It helps to consider the case where P1 = P2
first, then build the general result from there.

Once inequality (6.2.36) is established in the general case, the last three inequalities hold
since an infimum is the greatest lower bound and a supremum is the least upper bound.
See Theorems 1.4.3 and 1.3.10, respectively. Also, the Axiom of Completeness 1.3.8 and
Theorem 1.4.1 ensure supL and inf U exist.

Proof of Theorem 6.2.7. Suppose f : [a, b] → R is bounded P1 and P2 are the same partition P
of [a, b] where

P1 = P2 = {x0, . . . , xn} = P. (6.2.38)

Since infima are lower bounds and suprema are upper bounds (Definition 1.1.14), for each k =
1, . . . , n and each x ∈ [xk−1, xk] we have

`k = inf f([xk−1, xk]) ≤ f(x) ≤ sup f([xk−1, xk]) = uk. (6.2.39)



6.2. CRITERIA FOR INTEGRABILITY 403

So, comparing upper and lower sums (Definition 6.1.5) gives us

`(f, P ) =
n∑
k=1

`k(xk − xk−1) ≤
n∑
k=1

uk(xk − xk−1) = u(f, P ). (6.2.40)

Now suppose P1 and P2 are distinct partitions of [a, b], so P1 6= P2. Let Q be their common
refinement given by Q = P1 ∪ P2. Since P1 ⊆ Q and P2 ⊆ Q, by Lemma 6.2.5 and inequality
(6.2.40) we have

`(f, P1) ≤ `(f,Q) ≤ u(f,Q) ≤ u(f, P2). (6.2.41)

Therefore, inequality (6.2.36) holds for any pair of partitions P1 and P2 of [a, b].
Next, by temporarily fixing P1, ignoring Q, and allowing P2 to stand for any partition of [a, b],

inequality (6.2.41) tells us `(f, P1) is a lower bound for U , the set of upper sums of f over [a, b].
By Theorem 1.4.1, inf U exists. Since an infimum is the greatest lower bound by Theorem 1.4.3,
we have

`(f, P1) ≤ inf U = inf {u(f, P2) : P2 is a partition of [a, b]} . (6.2.42)

Similarly, by temporarily fixing P2, ignoring Q, and allowing P1 to stand for any partition of [a, b],
inequality (6.2.41) tells us u(f, P2) is an upper bound for L, the set of lower sums of f over [a, b].
By the Axiom of Completeness 1.3.8, supU exists. Since a supremum is the least upper bound
by Theorem 1.3.10, we have

supL = sup {`(f, P1) : P1 is a partition of [a, b]} ≤ u(f, P2). (6.2.43)

By allowing P1 to stand for any partition of [a, b], inequality (6.2.42) tells us inf U is an upper
bound of L. Since supL is the least upper bound by Theorem 1.3.10, we have

supL ≤ inf U. (6.2.44)

Finally, since a supremum is an upper bound and an infimum is a lower bound, we have the
desired inequality

`(f, P1) ≤ supL ≤ inf U ≤ u(f, P2). (6.2.45)

The following corollary of Theorem 6.2.7 is handy.

Corollary 6.2.9: Refinements improve estimates

Suppose P1 and P2 are partitions of [a, b], Q is a refinement where P1 ⊆ Q and P2 ⊆ Q, and
f : [a, b]→ R is bounded. Then

0 ≤ u(f,Q)− `(f,Q) ≤ u(f, P1)− `(f, P2). (6.2.46)
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|
a = x0

|
x1 = b

u0

`0

Figure 6.2.3: A bounded function on [a, b] with the simplest partition P0 =
{x0, x1} along with upper and lower heights u0 and `0. All upper and lower sums
of this function represent areas between the rectangles shown here. See Example
6.2.10.

Proof of Corollary 6.2.9. Suppose P1 and P2 are partitions of [a, b], Q is a refinement where
P1 ⊆ Q and P2 ⊆ Q, and f : [a, b]→ R is bounded. By Theorem 6.2.7, we have

`(f, P2) ≤ `(f,Q) ≤ u(f,Q) ≤ u(f, P1). (6.2.47)

So by reorganizing as in property (vi) of Theorem 1.3.2 and Figure 1.3.1, and noting the differences
are nonnegative, we get the desired result

0 ≤ |u(f,Q)− `(f,Q)| (6.2.48)
= u(f,Q)− `(f,Q) (6.2.49)
≤ u(f, P1)− `(f, P2) (6.2.50)
= |u(f, P1)− `(f, P2)|. (6.2.51)

A special case of Theorem 6.2.7 tells us that upper and lower sums of a bounded function are
between rectangles.

Example 6.2.10: Between rectangles

Given a bounded function f : [a, b]→ R, consider the partition P0 given by

P0 = {x0, x1} = {a, b}. (6.2.52)

By Definition 6.1.3, every partition P of [a, b] is a refinement of P0 since we have P0 =
{a, b} ⊆ P . Now let `0 = inf f([a, b]) and u0 = sup f([a, b]). By Theorem 6.2.7, we have

`0(b− a) = `(f, P0) ≤ `(f, P ) ≤ u(f, P ) ≤ u(f, P0) = u0(b− a). (6.2.53)

See Figure 6.2.3.

The definition of integral in Definition 6.1.6 is not a classic one, but it is equivalent to ones
that are such as the Darboux integral. Theorem 6.2.7 ensures the definition is sound.
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Definition 6.2.11: Upper, lower, and Darboux integrals

Given a bounded function f : [a, b]→ R, the upper integral u(f) and lower integral `(f) of
f over [a, b] are respectively defined by

u(f) = inf U = inf {u(f, P ) : P is a partition of [a, b]} and (6.2.54)
`(f) = supL = sup {`(f, P ) : P is a partition of [a, b]} . (6.2.55)

The function f is Darboux integrable when u(f) = `(f). In this case, the common value is
called the Darboux integral of f .

The key result of the section provides four equivalent notions of integrability. (None of which
happen to be the one originally developed by Bernhard Riemann.)

Theorem 6.2.12: Equivalent forms of integration

Suppose f : [a, b]→ R is bounded. Then the following are equivalent:

(i) f is integrable over [a, b] as in Definition 6.1.6.

(ii) f is Darboux integrable over [a, b], so u(f) = `(f) as in Definition 6.2.11.

(iii) f is sequentially integrable over [a, b]:

There is a sequence (Pn) of partitions of [a, b] such that (6.2.56)
lim
n→∞

(u(f, Pn)− `(f, Pn)) = 0. (6.2.57)

(iv) f satisfies the following Cauchy criterion for integrability:

For every error ε > 0, (6.2.58)
there is a partition Pε of [a, b] such that (6.2.59)
u(f, Pε)− `(f, Pε) < ε. (6.2.60)

If any of these statements hold, then they all do and we have∫ b

a
f = u(f) = `(f). (6.2.61)

Remark 6.2.13: Comparing the different forms of integration

The definition of sequential limit (Definition 2.2.1) assumes we have a candidate for the
limit y in mind. On the other hand, the definition of a Cauchy sequence (Definition 2.6.1)
does not mention a candidate for the limit at all. Even so, the Cauchy Criterion (Theorem
2.6.5) tells us a sequence in a Euclidean space converges if and only if the sequence is Cauchy.
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A similar comparison holds here. The notions of integrability in (i) Definition 6.1.6 and (ii)
Darboux integrability in Definition 6.2.11 explicitly mention values of the integral as

∫ b
a f or

u(f) and `(f), respectively. On the other hand, neither (iii) sequential integrability nor (iv)
Cauchy criterion for integrability mentions a value of the integral, providing some useful
flexibility. Still, the four notions do have something in common. Each codifies integrability
in that upper and lower sums can be brought arbitrarily close together.

Scratch Work 6.2.14: A culmination of results and perspectives

It was fun to think about all the different ways to prove Theorem 6.2.12. Ultimately, the
decision to run with the string of implications

(i) =⇒ (iii) =⇒ (iv) =⇒ (ii) =⇒ (i) (6.2.62)

is due to the way results from throughout the book come together.

Proof of Theorem 6.2.12. Throughout the proof, suppose f : [a, b]→ R is bounded.

(i) =⇒ (iii): Suppose f : [a, b] → R integrable as in Definition 6.1.6. Recall from Definition
6.1.5 that the sets of upper sums U and lower sums L of f are given by

U = {u(f, P ) : P is a partition of [a, b]} and (6.2.63)
L = {`(f, P ) : P is a partition of [a, b]}. (6.2.64)

Then the integral
∫ b
a f ∈ R exists where both

∫ b
a f aclL and

∫ b
a f aclU . By the fundamental

connection between arbitrarily close and convergence (Theorem 2.3.1), there are sequences of
partitions (P ′n) and (P ′′n ) such that

lim
n→∞

u(f, P ′n) =
∫ b

a
f and lim

n→∞
`(f, P ′′n ) =

∫ b

a
f. (6.2.65)

For each index n ∈ N, define Qn to be the common refinement of P ′n and P ′′n so that Qn = P ′n∪P ′′n .
Since lower sums are below upper sums as in Lemma 6.2.5 and Theorem 6.2.7, for each n ∈ N we
have

`(f, P ′′n ) ≤ `(f,Qn) ≤ u(f,Qn) ≤ u(f, P ′n). (6.2.66)

By the Squeeze Theorem for sequences 2.4.3 (twice), we have

lim
n→∞

`(f,Qn) =
∫ b

a
f = lim

n→∞
u(f,Qn). (6.2.67)

So by the linearity of sequential limits (Theorem 2.3.9), we have

lim
n→∞

(u(f,Qn)− `(f,Qn)) = lim
n→∞

u(f,Qn)− lim
n→∞

`(f,Qn) =
∫ b

a
f −

∫ b

a
f = 0. (6.2.68)

Therefore, (i) =⇒ (iii).
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(iii) =⇒ (iv): Suppose f is sequentially integrable in that there is a sequence (Pn) of partitions
of [a, b] such that

lim
n→∞

(u(f,Qn)− `(f,Qn)) = 0. (6.2.69)

Since lower sums are below upper sums as in Corollary 6.2.9, for each index n ∈ N we have

0 ≤ u(f, Pn)− `(f, Pn) =⇒ |u(f, Pn)− `(f, Pn)| = u(f, Pn)− `(f, Pn). (6.2.70)

Now let ε > 0. By the definition of sequential limit (Definition 2.2.1), there is a threshold nε ∈ N
such that

u(f, Pnε)− `(f, Pnε) = |u(f, Pnε)− `(f, Pnε)| < ε. (6.2.71)

Therefore, (iii) =⇒ (iv).

(iv) =⇒ (ii): Suppose f satisfies the Cauchy criterion for integrability in that for every ε > 0,
there is a partition Pε of [a, b] where

u(f, Pε)− `(f, Pε) < ε. (6.2.72)

Since f is bounded on [a, b], the proof of Theorem 6.2.7 ensures the existence of

u(f) = inf U = inf{u(f, P ) : P is a partition of [a, b]} and (6.2.73)
`(f) = supL = sup{`(f, P ) : P is a partition of [a, b]}. (6.2.74)

Also by Theorem 6.2.7, we have

`(f, Pε) ≤ `(f) ≤ u(f) ≤ u(f, Pε). (6.2.75)

Manipulating these inequalities as in part (vi) of Theorem 1.3.2, and in particular noting u(f, Pε)−
`(f, Pε) is nonnegative, yields

u(f)− `(f) ≤ u(f, Pε)− `(f, Pε) = |u(f, Pε)− `(f, Pε)| < ε. (6.2.76)

So by the definition of arbitrarily close (Definition 1.5.1), we have

u(f) acl{`(f)}. (6.2.77)

Since two points arbitrarily close must be the same point (Lemma 1.5.5), we have

u(f) = `(f). (6.2.78)

Therefore, (iv) =⇒ (ii).

(ii) =⇒ (i): Suppose f is Darboux integrable as in Definition 6.2.11 and let v denote the
common value of the upper and lower integrals so that

v = u(f) = `(f). (6.2.79)
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Since suprema and infima are arbitrarily close to their sets by Definition 1.1.14, we have

v aclU and v aclL. (6.2.80)

Hence, by Definition 6.1.6, f is integrable over [a, b] and∫ b

a
f = v = u(f) = `(f). (6.2.81)

Therefore, we have (ii) =⇒ (i).

In conclusion, we have shown

(i) =⇒ (iii) =⇒ (iv) =⇒ (ii) =⇒ (i). (6.2.82)

Therefore, statements (i) through (iv) provide equivalent forms integrability.

In Theorem 6.2.12, sequential integrability (iii) and the Cauchy criterion for integrability (iv)
consider the difference between the upper and lower sum stemming from a common partition, like
this:

u(f, P )− `(f, P ). (6.2.83)

The situation arises often enough to merit a lemma.

Lemma 6.2.15: Difference of upper and lower sums

Suppose f : [a, b]→ R is bounded. If P is a partition of [a, b] where

P = {x0, x1, . . . , xn}, (6.2.84)

then we have

u(f, P )− `(f, P ) =
n∑
k=1

(uk − `k)(xk − xk−1). (6.2.85)

Proof of Lemma 6.2.15. Suppose f : [a, b]→ R is bounded and let P be a partition of [a, b] where

P = {x0, x1, . . . , xn}. (6.2.86)

By the definition of upper and lower sums (Definition 6.1.5) along with the commutative, asso-
ciative, and distributive properties of addition, we have

u(f, P )− `(f, P ) =
n∑
k=1

uk(xk − xk−1)−
n∑
k=1

`k(xk − xk−1) (6.2.87)

=
n∑
k=1

(uk(xk − xk−1)− `k(xk − xk−1)) (6.2.88)

=
n∑
k=1

(uk − `k)(xk − xk−1). (6.2.89)

When a function is integrable, its integral is between any lower sum and any upper sum.



6.2. CRITERIA FOR INTEGRABILITY 409

Corollary 6.2.16: Integrals are between upper and lower sums

If f : [a, b]→ R is integrable, then for any pair of partitions P1 and P2 of [a, b] we have

`(f, P1) ≤
∫ b

a
f ≤ u(f, P2). (6.2.90)

Proof of Corollary 6.2.16. Suppose f : [a, b] → R is integrable and P1 and P2 are partitions of
[a, b]. By Theorem 6.2.12, f is Darboux integrable with integral equal to the upper and lower
integrals. So by Theorem 6.2.7, we have

`(f, P1) ≤ `(f) =
∫ b

a
f = u(f) ≤ u(f, P2). (6.2.91)

The next theorem establishes one of the fundamental connections between integrals and con-
tinuity.

Theorem 6.2.17: Continuous functions are integrable

If f : [a, b]→ R is continuous, then f is integrable over [a, b].

Scratch Work 6.2.18: Continuity and the size of partitions

The Cauchy criterion for integrability ((iv) in Theorem 6.2.12) provides a perspective on
integrability that pairs especially well with continuity. Given ε > 0, we only need to find
a single partition Pε whose upper and lower sums are within ε of each other. Suitable
partitions stem from continuity.

Since the domain [a, b] is compact and continuous functions on compact intervals are actually
uniformly continuous by Theorem 4.7.13, we have a uniform threshold δ which tells us how
close inputs should be—across all of [a, b]—to ensure their outputs are as close together as
we like. This control on both the domain and the range allows us to control the widths and
heights defining upper and lower sums. See Figure 6.2.4 for a visualization of this approach
and to motivate our choice of δ in the following proof.

Proof of Theorem 6.2.17. Suppose f : [a, b] → R is continuous. Since [a, b] is compact, Theorem
4.7.13 tells us f is uniformly continuous. So let ε > 0 and choose a uniform threshold δ > 0
(Definition 4.7.1) where

x, y ∈ [a, b] with |x− y| < δ =⇒ |f(x)− f(y)| < ε

b− a
. (6.2.92)

Next, define a partition Pε of [a, b] where Pε = {x0, x1, . . . , xn} whose subintervals have length
less than δ. That is, choose Pε so that for each k = 1, . . . , n we have

xk − xk−1 = |xk − xk−1| < δ. (6.2.93)
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x

y

|
a

|
b

f + ε

2(b− a)

f

f − ε

2(b− a)

Figure 6.2.4: The squiggly area between the curves f+ ε

2(b− a) and f− ε

2(b− a)
is exactly ε, the same as a rectangle of height ε/(b − a) and width b − a. (This
follows from the linearity of integration, see Theorem 6.3.6.) In the proof of
Theorem 6.2.17, the integrability of f is assured since, by uniform continuity,
we can choose a partition Pε where the upper and lower heights fit within the
squiggly area. When that happens, the difference between upper and lower sums
is less than ε, so the Cauchy criterion for integrability (iv) in Theorem 6.2.12 is
satisfied by f .

The Extreme Value Theorem 4.6.9 applies to each compact subinterval [xk−1, xk] and for each
k = 1, . . . , n and yields inputs sk, tk ∈ [xk−1, xk] where

f(sk) = `k = inf f([xk−1, xk]) and f(tk) = uk = sup f([xk−1, xk]). (6.2.94)

Since sk, tk ∈ [xk−1, xk], we have

|tk − sk| ≤ |xk − xk−1| < δ. (6.2.95)

Suprema are larger than infima on the same set, so we have

f(sk) = `k ≤ f(tk) = uk ⇐⇒ f(tk)− f(sk) = uk − `k ≥ 0. (6.2.96)

Hence, the extreme values of f on the kth subinterval satisfy

|f(tk)− f(sk)| = f(tk)− f(sk) = uk − `k <
ε

b− a
. (6.2.97)

To establish the hypothesis of Cauchy criterion for integrability ((iv) in Theorem 6.2.12) and
finish the proof, the next step shows that the difference of upper and lower sums over the partition
Pε is less than a nice telescoping sum, which in turn is less than ε. See Remark 6.1.12 where it is
shown that

n∑
k=1

(xk − xk−1) = b− a. (6.2.98)
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By Lemma 6.2.15, inequality (6.2.97), and the telescoping sum (6.2.98), we have

u(f, Pε)− `(f, Pε) =
n∑
k=1

(uk − `k)(xk − xk−1) (6.2.99)

<
n∑
k=1

(
ε

b− a
(xk − xk−1)

)
(6.2.100)

= ε

b− a

n∑
k=1

(xk − xk−1) (6.2.101)

= ε

b− a
(b− a) (6.2.102)

= ε. (6.2.103)
Therefore, by the Cauchy criterion for integrability ((iv) in Theorem 6.2.12), f is integrable over
[a, b].

The next section develops the linearity of integration. See Theorem 6.3.6.

Exercises
6.2.1. Prove the Power Rule for definite integrals: For every n ∈ N and every compact interval
[a, b], we have ∫ b

a
xn dx = bn+1 − an+1

n+ 1 . (6.2.104)

6.2.2. Suppose f : [a, b]→ R is continuous and f(x) ≥ 0 for all x ∈ [a, b]. Prove∫ b

a
f = 0 =⇒ f(x) = 0 for all x ∈ [a, b]. (6.2.105)

6.2.3. Suppose f : [a, b]→ R is monotone. Prove f is integrable.
6.2.4. Prove the Substitution formula for definite integrals: Suppose g : [a, b]→ R is differentiable
where g′ is continuous and g([a, b]) = [c, d] with g(a) = c and g(b) = d. Further suppose f : [c, d]→
R is continuous. Then ∫ b

a
f(g(x))g′(x) dx =

∫ d

c
f(u) du. (6.2.106)

6.2.5. Prove the area of the unit circle is π. Specifically, use “trig substitution” by pairing the
Substitution formula in the previous exercise with the trigonometric identity

1− sin2 θ = cos2 θ for all θ ∈ R (6.2.107)
to show that ∫ 1

0

√
1− x2 dx = π

4 . (6.2.108)
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6.3 Linearity of integration

The linearity of integration is another beautiful property we can prove. Our approach makes use
of a few more results regarding suprema and infima of functions from the real line to the real line.

Lemma 6.3.1: Suprema and infima of sums of functions

Suppose D ⊆ R where f, g : D → R are bounded. Then

sup (f + g)(D) ≤ sup f(D) + sup g(D) and (6.3.1)
inf (f + g)(D) ≥ inf f(D) + inf g(D). (6.3.2)

Scratch Work 6.3.2: Same input for both summands

The sum f + g is defined by plugging in the same input x into f and g separately, the
taking the sum of their outputs f(x) and g(x) to define the output (f + g)(x). This means
the supremum of f + g is limited to the collection of outputs of f and g evaluated at the
same time. See Figure 6.3.1 to get a sense of how this works.

The proof of Lemma 6.3.1 makes a pointwise argument to generate the result. However,
only the supremum case is proven below. The infimum case follows from a similar argument
and its proof is omitted.

Proof of Lemma 6.3.1. Suppose D ⊆ R where f, g : D → R are bounded. So by the Axiom of
Completeness 1.3.8, sup f(D) and sup g(D) exist. Since suprema are upper bounds (Definition
1.1.14), for all x ∈ D we have

(f + g)(x) = f(x) + g(x) ≤ sup f(D) + sup g(D). (6.3.3)

Therefore, sup f(D) + sup g(D) is an upper bound of the range (f + g)(D). Since a supremum is
the least upper bound by Theorem 1.3.10, we have

sup(f + g)(D) ≤ sup f(D) + sup g(D). (6.3.4)

The following example shows us that the inequalities in Lemma 6.3.1 are as good as we can
expect.

Example 6.3.3: Inequalities can be strict

The First Derivative Test from calculus can be used to verify the following conclusions: If
f, g : [0, 2π] → R are given by f(x) = sin x and g(x) = cosx, then f + g : [0, 2π] → R is
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x

y

0
|

2π

sup f(D) + sup g(D) = 2
sup(f + g)(D) =

√
2

1

f + g

f

g

Figure 6.3.1: The functions f(x) = sin x and g(x) = cosx on the interval
D = [0, 2π] attain their suprema 1 at different inputs, while their sum f + g has
supremum

√
2 (which is strictly less 2). See Lemma 6 and Example 6.3.3.

given by (f + g)(x) = sin x+ cosx and

sup f([0, 2π]) = sup g([0, 2π]) = 1, (6.3.5)
inf f([0, 2π]) = inf g([0, 2π]) = −1, but (6.3.6)

sup(f + g)([0, 2π]) =
√

2 and (6.3.7)
inf(f + g)([0, 2π]) = −

√
2. (6.3.8)

Therefore, Lemma 6.3.1 results in strict inequalities since

sup(f + g)([0, 2π]) =
√

2 < 2 = sup f([0, 2π]) + sup g([0, 2π]) and (6.3.9)
inf(f + g)([0, 2π]) = −

√
2 > −2 = inf f([0, 2π]) + inf g([0, 2π]). (6.3.10)

See Figure 6.3.1.

Lemma 6.3.4: Suprema and infima of scaled functions

Suppose D ⊆ R where f : D → R is bounded and α ∈ R.

(i) If α ≥ 0, then sup (αf(D)) = α sup f(D) and inf (αf(D)) = α inf f(D).

(ii) If α < 0, then sup (αf(D)) = α inf f(D) and inf (αf(D)) = α sup f(D).

Scratch Work 6.3.5: Parity of the scalar matters

Suprema and infima are bounds, so the parity of a scalar as positive or negative determines
whether the corresponding inequalities flip. In particular, when the scalar is negative, lower
bounds become upper bounds and vice versa. This idea is use in the proof of Theorem
1.4.1, which takes the existence of a supremum for sets bounded above from Axiom of
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Completeness 1.3.8 and generates a mirrored result for infima. A similar approach is taken
here.

The proof addresses just two of the four results in Lemma 6.3.4, namely

α ≥ 0 =⇒ sup (αf(D)) = α sup f(D) and (6.3.11)
α < 0 =⇒ inf (αf(D)) = α sup f(D) (6.3.12)

The other cases follow from similar arguments, so their proofs are omitted. After some
initial arguments, the proof splits into three cases: α > 0, α < 0, and α = 0.

Proof of Lemma 6.3.4. Suppose D ⊆ R where f : D → R is bounded and α ∈ R. Since f is
bounded, sup f(D) exists by the Axiom of Completeness 1.3.8. Also, since a supremum is an
upper bound (Definition 1.1.14), for all x ∈ D we have

f(x) ≤ sup f(D). (6.3.13)
Now let ε > 0 and assume α 6= 0. Then ε/|α| > 0 and since (sup f(D)) acl f(D) by the definition
of supremum (Definition 1.1.14), there is some xε ∈ D such that

|f(xε)− sup f(D)| < ε

|α|
. (6.3.14)

Since |α| > 0, we have

|(αf)(xε)− α sup f(D)| = |α||f(xε)− sup f(D)| < |α| ε
|α|

= ε. (6.3.15)

Hence, (α sup f(D)) acl (αf)(D).
From here, the proof is split into three cases: α > 0, α < 0, and α = 0.

Case α > 0: Assume α > 0. Then for all x ∈ D we have
(αf)(x) = αf(x) ≤ α sup f(D). (6.3.16)

Hence, α sup f(D) is an upper bound for αf . Therefore, since (α sup f(D)) acl (αf)(D), by the
definition of supremum (Definition 1.1.14) we have

sup(αf)(D) = α sup f(D). (6.3.17)
Case α < 0: Assume α < 0. Then for all x ∈ D we have

(αf)(x) = αf(x) ≥ α sup f(D). (6.3.18)
Hence, α sup f(D) is a lower bound for αf . Therefore, since (α sup f(D)) acl (αf)(D), by the
definition of infimum (Definition 1.1.14) we have

inf(αf)(D) = α sup f(D). (6.3.19)
Case α = 0: Assume α = 0. Then for all x ∈ D we have (αf)(x) = αf(x) = 0. Therefore,

sup(αf)(D) = sup{0} = 0 = α sup f(D). (6.3.20)

We are now prepared to prove the linearity of integration.
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Theorem 6.3.6: Linearity of integration

Suppose f, g : [a, b]→ R, both f and g are integrable, and α ∈ R. Then f + g and αf are
integrable with

(i)
∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g (additivity); and

(ii)
∫ b

a
(αf) = α

∫ b

a
f (homogeneity).

With all the tools at our disposal such as the equivalent forms of integration in Theorem 6.2.12,
the lemmas in this section, numerous properties on suprema and infima, and linearity in various
forms, there are lots of ways to approach the proof of the linearity of integration (Theorem 6.3.6).
It is split in two—additivity and homogeneity—since the arguments are a bit long.

Scratch Work 6.3.7: Perspective of arbitrarily close

The proof of additivity focuses on upper sums since the argument for lower sums is so
similar. The approach here through the definitions of integration (Definition 6.1.6) and
supremum (Definition 1.1.14) in terms of arbitrarily close in the real line (Definition 1.1.8).

Proof of additivity in Theorem 6.3.6. Suppose f, g : [a, b]→ R where both f and g are integrable.
Let P be a partition of [a, b] where P = {x0, x1, . . . , xn}.

To compare the upper sums of f , g, and f + g, for each k = 1, . . . , n let

uk = sup(f + g)([xk−1, xk]), (6.3.21)
u′k = sup f([xk−1, xk]), and (6.3.22)
u′′k = sup g([xk−1, xk]). (6.3.23)

By Lemma 6.3.1, for each k = 1, . . . , n we have

uk = sup(f + g)([xk−1, xk]) (6.3.24)
≤ sup f([xk−1, xk]) + sup g([xk−1, xk]) (6.3.25)
= u′k + u′′k. (6.3.26)

Since xk − xk−1 > 0 for each k = 1, . . . , n, taking sums gives us

u(f + g, P ) =
n∑
k=1

uk(xk − xk−1) (6.3.27)

≤
n∑
k=1

(u′k + u′′k)(xk − xk−1) (6.3.28)

=
n∑
k=1

u′k(xk − xk−1) +
n∑
k=1

u′′k(xk − xk−1) (6.3.29)

= u(f, P ) + u(g, P ). (6.3.30)
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By a similar argument for the lower sums, we also have

`(f + g, P ) ≥ `(f, P ) + `(g, P ). (6.3.31)

Denote the sets of upper and lower sums of f , g, and f + g by Uf , Lf , Ug, Lg, Uf+g, and
Lf+g, respectively. Since f and g are integrable, we have

∫ b
a f aclUf ,

∫ b
a f aclLf ,

∫ b
a g aclUg and∫ b

a g aclLg.
Now let ε > 0. By the definitions of integral (Definition 6.1.6), upper and lower sums (Defi-

nition 6.1.5), and arbitrarily close in the real line (Definition 1.1.8) as well as splitting absolute
values, there are partitions P1, P2, P3, and P4 of [a, b] where∣∣∣∣∣u(f, P1)−

∫ b

a
f

∣∣∣∣∣ < ε

2 =⇒ u(f, P1) <
∫ b

a
f + ε

2 , (6.3.32)∣∣∣∣∣`(f, P2)−
∫ b

a
f

∣∣∣∣∣ < ε

2 =⇒
∫ b

a
f − ε

2 < `(f, P2), (6.3.33)∣∣∣∣∣u(g, P3)−
∫ b

a
g

∣∣∣∣∣ < ε

2 =⇒ u(g, P3) <
∫ b

a
g + ε

2 , and (6.3.34)∣∣∣∣∣`(g, P4)−
∫ b

a
g

∣∣∣∣∣ < ε

2 =⇒
∫ b

a
g − ε

2 < `(g, P4). (6.3.35)

Let Q be the common refinement Q = P1 ∪ P2 ∪ P3 ∪ P4. Since lower sums are below upper sums
by Theorem 6.2.7, the previous string of inequalities yields(∫ b

a
f − ε

2

)
+
(∫ b

a
g − ε

2

)
< `(f,Q) + `(g,Q) (6.3.36)

≤ `(f + g,Q) (6.3.37)
≤ u(f + g,Q) (6.3.38)
≤ u(f,Q) + u(g,Q) (6.3.39)

<

(∫ b

a
f + ε

2

)
+
(∫ b

a
g + ε

2

)
. (6.3.40)

Subtracting the sum
∫ b
a f +

∫ b
a g and focusing on f + g yields

−ε < `(f + g,Q)−
(∫ b

a
f +

∫ b

a
g

)
≤ u(f + g,Q)−

(∫ b

a
f +

∫ b

a
g

)
< ε. (6.3.41)

Considering the lower and upper sums separately, we have both∣∣∣∣∣`(f + g,Q)−
(∫ b

a
f +

∫ b

a
g

)∣∣∣∣∣ < ε and (6.3.42)∣∣∣∣∣u(f + g,Q)−
(∫ b

a
f +

∫ b

a
g

)∣∣∣∣∣ < ε. (6.3.43)

By the definition of arbitrarily close (Definition 1.5.1), we have both(∫ b

a
f +

∫ b

a
g

)
aclLf+g and

(∫ b

a
f +

∫ b

a
g

)
aclUf+g. (6.3.44)
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Therefore, by the definition of integration (Definition 6.1.6), f + g is integrable and∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g. (6.3.45)

Scratch Work 6.3.8: Parity of the scalar matters

As in Lemma 6.3.4 in dealing with the suprema and infima of the ranges of scaled func-
tions, the parity of the scalar α as either nonnegative or negative impacts the proof of the
homogeneity of integration. That said, the proof below focuses on the lower sums of αf in
the case where α < 0. The results for all the other cases follow from similar arguments, so
their proofs are omitted.

Proof of homogeneity in Theorem 6.3.6. Suppose f : [a, b] → R where f is integrable and α ∈ R
such that α < 0. Then both f and αf are bounded and their suprema and infima exist over all
compact subintervals of [a, b].

Let P be a partition of [a, b] where P = {x0, x1, . . . , xn}. Then by Lemma 6.3.4, for each
k = 1, . . . , n we have

`αk = inf(αf)([xk−1, xk]) = α sup f([xk−1, xk]) = αuk. (6.3.46)
So taking the sum from k = 1 to n yields

`(αf, P ) =
n∑
k=1

`αk (xk − xk−1) =
n∑
k=1

αuk(xk − xk−1) = αu(f, P ). (6.3.47)

Denote the set of lower sums of αf denoted by Lαf and denote the set of upper sums of f by Uf .
Since (6.3.47) holds for an arbitrary partition P of [a, b], we have

Lαf = {`(αf, P ) : P is a partition of [a, b]} (6.3.48)
= {αu(f, P ) : P is a partition of [a, b]} (6.3.49)
= αUf . (6.3.50)

Now let ε > 0. Since α < 0, we have ε/|α| > 0. By the definition of integral (Definition 6.1.6), we
have

∫ b
a f aclUf . So by the definition of arbitrarily close in the real line (Definition 1.1.8), there

is a partition Pε of [a, b] such that ∣∣∣∣∣u(f, Pε)−
∫ b

a
f

∣∣∣∣∣ < ε

|α|
. (6.3.51)

So for the particular partition Pε we have∣∣∣∣∣`(αf, Pε)− α
∫ b

a
f

∣∣∣∣∣ =
∣∣∣∣∣αu(f, Pε)− α

∫ b

a
f

∣∣∣∣∣ (6.3.52)

= |α|
∣∣∣∣∣u(f, Pε)−

∫ b

a
f

∣∣∣∣∣ (6.3.53)

< |α| ε
|α|

(6.3.54)

= ε. (6.3.55)



418 CHAPTER 6. INTEGRATION

Hence, (α
∫ b
a f) aclLαf . By a similar argument for the set Uαf of upper sums of αf , we also have

(α
∫ b
a f) aclUαf . Therefore, αf is integrable and we have

∫ b

a
(αf) = α

∫ b

a
f. (6.3.56)

A similar set of arguments hold for the case where α > 0. The case where α = 0 holds by
Lemma 6.1.10 since αf = 0 is a constant function.

Yet again and as mentioned in Remark 1.6.18, a corollary of the linearity of integration holds
for linear combinations:

The integral of a linear combination is the linear combination of integrals.

As with the proofs of previous corollaries regarding linearity, the proof of Corollary 6.3.9 follows
from induction on the linearity of integration in Theorem 6.3.6. So, the proof is left as an exercise.

Corollary 6.3.9: Linear combinations of integrals

Suppose k ∈ N and for each j = 1, . . . , k we have cj ∈ R and the functions fj : [a, b] → R
are integrable. Then the linear combination f given by

f(x) =
k∑
j=1

cjfj(x) = c1f1(x) + . . .+ ckfk(x) (6.3.57)

is integrable and with integral given by
∫ b

a
f =

k∑
j=1

(
cj

∫ b

a
fj

)
= c1

∫ b

a
f1 + . . .+ ck

∫ b

a
fk. (6.3.58)

Another corollary of the linearity of integration (Theorem 6.3.6) tells us how integrals respect
order.

Corollary 6.3.10: Order property of integration

If f and g are integrable over [a, b] where f(x) ≤ g(x) for all x ∈ [a, b], then∫ b

a
f ≤

∫ b

a
g. (6.3.59)

Proof of Corollary 6.3.10. Suppose f and g are integrable over [a, b] with f(x) ≤ g(x) for all
x ∈ [a, b]. Hence, 0 is a lower bound for the difference g − f since

0 ≤ g(x)− f(x) for all x ∈ [a, b]. (6.3.60)

Since an infimum is the greatest lower bound, we have

0 ≤ inf(g − f)([a, b]). (6.3.61)
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By the linearity of integration (Theorem 6.3.6), the difference g − f is integrable over [a, b] and∫ b

a
(g − f) =

∫ b

a
g −

∫ b

a
f. (6.3.62)

Since integrals are between rectangles as in Example 6.2.10, we have

0 ≤ (b− a)︸ ︷︷ ︸
width

inf(g − f)([a, b])︸ ︷︷ ︸
height

≤
∫ b

a
(g − f) =

∫ b

a
g −

∫ b

a
f. (6.3.63)

Therefore, ∫ b

a
f ≤

∫ b

a
g. (6.3.64)

The next section develops even more properties of integrals, starting with an example of a
bounded function which is not integrable.

Exercises
6.3.1. Let R[a, b] denote the set of integrable functions over [a, b]. Use Lemma 1.6.7 to prove
R[a, b] is a vector space.

6.3.2. Use the Product Rule 5.4.6 and the Fundamental Theorem of Calculus I 6.1.15 to prove
the Integration by Parts formula for definite integrals: Suppose f and g are integrable functions
on [a, b] with antiderivatives F and G, respectively (i.e., F ′ = f and G′ = g on [a, b]). Then∫ b

a
Fg = F (b)G(b)− F (a)G(a)−

∫ b

a
Gf. (6.3.65)

6.4 Properties of integration
There are many more properties of integrals to explore such as integrability when compositions
are in play and a triangle inequality for integrals. The first result of the section gives us another
tool to control upper and lower sums through the distance of outputs.

Lemma 6.4.1: Reach of the range

Suppose D ⊆ R and f : D → R is bounded by q ≥ 0. Then for every x, y ∈ D we have

|f(x)− f(y)| ≤ sup f(D)− inf f(D) ≤ 2q. (6.4.1)
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sup f(D)

f(y)

f(x)

inf f(D)

−q

Figure 6.4.1: A function f on D = [0, 2π] bounded by q ≥ 0 showing that the
distance between any pair of outputs is no larger than the difference between its
supremum and infimum and no larger than twice the bound. See Lemma 6.4.1.

Scratch Work 6.4.2: Draw stuff

The reach of the range for a bounded function from the real line to the real line is visualized
in Figure 6.4.1. Comparing the distances

|f(x)− f(y)|, sup f(D)− inf f(D), and |q − (−q)| = 2q (6.4.2)

in the figure provides some nice evidence to support the concluding inequality of Lemma
6.4.1.

Proof 6.4.1. Suppose D ⊆ R and f : D → R is bounded by q ≥ 0. Then q is an upper bound for
the f(D) and −q is a lower bound. Without loss of generality, let x, y ∈ D where f(x) ≤ f(y).
Since a supremum is both an upper bound and the least upper bound (Theorem 1.3.10) and an
infimum is both a lower bound and the greatest lower bound (Theorem 1.4.3), we have

−q ≤ inf f(D) ≤ f(x) ≤ f(y) ≤ sup f(D) ≤ q. (6.4.3)

By tracking which differences are nonnegative and rearranging the inequlaities as in (vi) in The-
orem 1.3.2 we have

|f(x)− f(y)| ≤ sup f(D)− inf f(D) ≤ 2q. (6.4.4)
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An application of Lemma 6.4.1 cleans up the proof of the following theorem.

Theorem 6.4.3: Integrable compositions

Suppose K ⊆ R is compact, f : [a, b] → K is integrable, and g : K → R is continuous.
Then the composition g ◦ f : [a, b]→ R is integrable.

Scratch Work 6.4.4: A difficult argument

The following proof is an expansion of the proof of the corresponding result Theorem
6.11 in [10]. The idea is to show the composition g ◦ f satisfies the Cauchy criterion
for integrability ((vi) in Theorem 6.2.12), but the path is not an easy one to follow. In
particular, choice and usage of the uniform threshold δ in the proof is unlike anything we
have come across so far.

Take your time.

Proof of Theorem 6.4.3. Suppose K ⊆ R is compact, f : [a, b]→ K is integrable, and g : K → R
is continuous. Since g is continuous on a compact set, the Extreme Value Theorem 4.6.9 tells us
g is bounded. Hence, |g| is bounded as well and so by the Axiom of Completeness 1.3.8,

v = sup{|g(t)| : t ∈ K} = sup |g|(K). (6.4.5)

exists.
Now let ε > 0. By Theorem 4.7.13, g is uniformly continuous. So by Definition 4.7.1, there is

a uniform threshold δ > 0 chosen so that we have both

s, t ∈ K with |s− t| < δ =⇒ |g(s)− g(t)| < ε

b− a+ 2v (6.4.6)

as well as

δ <
ε

b− a+ 2v . (6.4.7)

Since f is integrable, it is bounded and satisfies the Cauchy criterion for integrability ((vi) in
Theorem 6.2.12) which tells us there is a partition P of [a, b] such that

P = {x0, x1, . . . , xn} and u(f, P )− `(f, P ) < δ2. (6.4.8)

Since g is bounded, g ◦ f is bounded as well. So for each k = 1, . . . , n, let

uk = sup f([xk−1, xk]), `k = inf f([xk−1, xk]), (6.4.9)
u∗k = sup (g ◦ f)([xk−1, xk]), and `∗k = inf (g ◦ f)([xk−1, xk]). (6.4.10)

(Each exists by either the by the Axiom of Completeness 1.3.8 or Theorem 1.4.1.) Also, since
u∗k ≤ v and −v ≤ `∗k, we have

u∗k − `∗k ≤ v + v = 2v. (6.4.11)
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As a new and subtle step, split indices k = 1, . . . , n of the partition P into a disjoint union
A ∪B where

A = {k : uk − `k < δ} and B = {k : uk − `k ≥ δ}. (6.4.12)

Hence, by implication (6.4.6) applied to each k ∈ A, our choice for δ tells us that if x, y ∈ [xk−1, xk],
we have

|x− y| ≤ uk − `k < δ =⇒ |g(f(x))− g(f(y))| < ε

b− a+ 2v . (6.4.13)

Since x and y are arbitrary, an application of Lemma 6.4.1 to the composition g ◦ f yields

u∗k − `∗k ≤
ε

b− a+ 2v . (6.4.14)

By the difference of upper and lower sums in Lemma 6.2.15 applied to f with partition P , the
definition of B giving uk − `k ≥ δ for each k ∈ B, and uk − `k ≥ 0 for all k, we have

δ
∑
k∈B

(xk − xk−1) ≤
∑
k∈B

(uk − `k)(xk − xk−1) (6.4.15)

≤
n∑
k=1

(uk − `k)(xk − xk−1) (6.4.16)

= u(f, P )− `(f, P ) (6.4.17)
< δ2. (6.4.18)

Since δ > 0, dividing by δ gives us ∑
k∈B

(xk − xk−1) < δ. (6.4.19)

Hence, by the difference of upper and lower sums in Lemma 6.2.15 applied to g ◦ f with partition
P , we have

u(g ◦ f, P )− `(g ◦ f, P ) =
n∑
k=1

(u∗k − `∗k)(xk − xk−1) (6.4.20)

=
∑
k∈A

(u∗k − `∗k)(xk − xk−1) +
∑
k∈B

(u∗k − `∗k)(xk − xk−1) (6.4.21)

≤
∑
k∈A

(
ε

b− a+ 2v

)
(xk − xk−1) +

∑
k∈B

2v(xk − xk−1) (6.4.22)

≤
(

ε

b− a+ 2v

)
(b− a) + 2vδ (6.4.23)

<
(

ε

b− a+ 2v

)
(b− a) + 2v

(
ε

b− a+ 2v

)
(6.4.24)

= ε. (6.4.25)

Therefore, g ◦ f satisfies the Cauchy criterion for integrability ((vi) in Theorem 6.2.12), meaning
g ◦ f is integrable.

Integrals have their own version of a triangle inequality.
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Corollary 6.4.5: Integral triangle inequality

If f : [a, b]→ R is integrable, then |f | is integrable as well and we have∣∣∣∣∣
∫ b

a
f

∣∣∣∣∣ ≤
∫ b

a
|f |. (6.4.26)

Scratch Work 6.4.6: Squeezing upper and lower sums together

An intuitive idea for this inequality comes from noting that the integral
∣∣∣∫ ba f ∣∣∣ allows for

negative area to cancel positive area before taking absolute value. On the other hand,∫ b
a |f | makes all outputs positive before they contribute to the area with the integral, so no
such cancellation happens here.

The proof of the integrability of |f | follows from Theorem 6.4.3 and the fact that the absolute
value function is continuous (Example 4.3.11, modified to the restriction on a compact set
as needed). The proof of the integral triangle inequality (6.4.26) follows from applying the
order property of integration (Corollary 6.3.10) along with the homogeneity of integrals
(Theorem 6.3.6) to −|f | and |f |.

Proof of Corollary 6.4.5. Suppose f : [a, b] → R is integrable and K ⊆ R is a compact set
containing f([a, b]). Since the absolute value function g : K → R given by g(x) = |x| is continuous,
the composition g ◦ f = |f | is integrable by Theorem 6.4.3.

Now, by the homogeneity of integrals (Theorem 6.3.6), we have −|f | is integrable as well.
Since −|f(x)| ≤ f(x) ≤ |f(x)| for every x ∈ [a, b], by the order property of integration (Corollary
6.3.10) applied twice and the homogeneity of integrals (Theorem 6.3.6) applied one more time,
we have

−
∫ b

a
|f | ≤

∫ b

a
f ≤

∫ b

a
|f |. (6.4.27)

Therefore, by a property of absolue value we have
∣∣∣∣∣
∫ b

a
f

∣∣∣∣∣ ≤
∫ b

a
|f |. (6.4.28)

Continuity plays a significant role in the development of properties of integrals. Even so,
integration can handle a certain amount of discontinuity. The next example suggests that a single
point of discontinuity does not break integrability. However, a complete proof for the next example
result is omitted since it can get pretty technical. Instead, consider the scratch work and Figure
6.4.2.
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Example 6.4.7: Integrating over a single discontinuity

Consider the function g : [0, 1]→ R given by

g(x) =
1, if x = 1/2,

0, if x 6= 1/2.
(6.4.29)

We have ∫ 1

0
g =

∫ 1

0
0 = 0. (6.4.30)

The function g is almost identical to the zero function, except it has a removable disconti-
nuity at c = 1/2 where the output jumps to g(1/2) = 1. This discontinuity does not impact
the integrability of g, nor does it change the value integral since, roughly speaking, the area
over a single point is zero.

Scratch Work 6.4.8: A simple partition works

To establish the integrability of g, we can use Definition 6.1.6 since we have a good
candidate for the integral, namely zero. The trick is to show zero is arbitrarily close to the
sets of upper sums and lower sums of g.

Notice `(g, P ) = 0 for any partition P = {0, . . . , n} since `k = inf g([xk−1, xk]) = 0 for every
k = 1, . . . , n. Hence, the set of lower sums L is a singleton: L = {0}. Therefore, 0 aclL by
Lemma 1.5.4.

To show 0 aclU for the set of upper sums U , it suffices to find a single partition Pε in
response to a given ε > 0 where

|u(g, Pε)− 0| = u(g, Pε) < ε. (6.4.31)

Since g is zero except for g(1/2) = 1, the partition

Pε = {x0, x1, x2, x3} =
{

0, 1
2 −

ε

3 ,
1
2 + ε

3 , 1
}

(6.4.32)

will get the job done (for small enough ε). See Figure 6.4.2. Then we have

|u(g, Pε)− 0| = u(g, Pε) (6.4.33)

=
3∑

k=1
uk(xk − xk−1) (6.4.34)

= 0 + 1
(1

2 + ε

3 −
(1

2 −
ε

3

))
+ 0 (6.4.35)

= 2
3ε (6.4.36)

< ε. (6.4.37)



6.4. PROPERTIES OF INTEGRATION 425
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Figure 6.4.2: The function g from Example 6.4.7 is zero except at c = 1/2 where
it jumps to 1. This discontinuity does not impact the integrability of g since every
lower sum is zero and, given ε, we can always choose a partition Pε whose upper
sum u(g, Pε) is strictly less than ε. Here, Pε comprises four endpoints where x1
and x2 have c between them and are 2ε/3 apart, meaning the upper sum u(g, Pε)
is just 2ε/3.

Since both 0 aclL and 0 aclU , we have∫ 1

0
g =

∫ 1

0
0 = 0. (6.4.38)

The following lemma will help us split a partition of an interval [a, b] into partitions of subin-
tervals [a, p] and [p, b] in a useful way and allows us to recover another result from calculus. (See
Theorem 6.4.11.) Also, by a mild abuse of notation to mitigate how complicated the details can
become, f stands for the function f over [a, b] as well its restrictions to the subintervals [a, p] and
[p, b].

Lemma 6.4.9: Splitting sums and partitions in two

Suppose f : [a, b] → R is bounded, t ∈ (a, b), and P is a partition of [a, b] containing t so
that

P = {x0 = a, . . . , xj = t, . . . , xn = b} (6.4.39)
for some j, n ∈ N where 0 < j < n. If P1 = P ∩ [a, t] and P2 = P ∩ [t, b], then

u(f, P ) = u(f, P1) + u(f, P2) and (6.4.40)
`(f, P ) = `(f, P1) + `(f, P2). (6.4.41)
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Scratch Work 6.4.10: Control partitions around the split

The proof focuses on splitting an upper sum around the point t. The trick is to carefully
deal with the indices in the resulting pair of sums. The proof for the lower sums is similar,
so it is omitted.

Proof of Lemma 6.4.9. Suppose the hypotheses of Lemma 6.4.9 hold. By the definition of upper
sums (Definition 6.1.5) as well as the commutativity of addition we have

u(f, P ) =
n∑
k=1

uk(xk − xk−1) (6.4.42)

=
j∑

k=1
uk(xk − xk−1) +

n∑
k=j+1

uk(xk − xk−1) (6.4.43)

= u(f, P1) + u(f, P2). (6.4.44)

Similary, `(f, P ) = `(f, P1) + `(f, P2).

Time for a classic result from calculus which, even with all the tools we have available, takes
a while to prove.

Theorem 6.4.11: Splitting integrals in two

Suppose f : [a, b]→ R is bounded and t ∈ (a, b). Then f is integrable over [a, b] if and only
if f is integrable over both [a, t] and [t, b]. In this case, we have∫ b

a
f =

∫ t

a
f +

∫ b

t
f. (6.4.45)

Scratch Work 6.4.12: Control intgrals around the split

The focus of the proof is on controlling the difference between the upper and lower sums
around the point t. Part (iv) of the Cauchy criterion for integrability (Theorem 6.2.12) along
with a number of properties of upper sums and lower sums are involved. Also, the proof
has three unnamed parts: the forward implication regarding integrability, the backward
implication, and the equation with the integrals.

Proof of Theorem 6.4.11. Throughout the proof, suppose f : [a, b]→ R is bounded and t ∈ (a, b).
To prove the forward implication regarding integrability, assume f is integrable over [a, b] and

let ε > 0. Then f satisfies the Cauchy criterion for integrability ((iv) of Theorem 6.2.12), meaning
there is a partition Pε of [a, b] where

u(f, Pε)− `(f, Pε) < ε. (6.4.46)

To ensure we can split [a, b] around t ∈ (a, b), let Qε = Pε ∪ {t}. Then for some j, n ∈ N where
0 < j < n we have

Qε = {x0 = a, . . . , xj = t, . . . , xn = b}. (6.4.47)
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Now let P1 = Qε ∩ [a, t] and P2 = Qε ∩ [t, b]. By carefully splitting sums at the index j as in
Lemma 6.4.9, we have

u(f,Qε)− `(f,Qε) = (u(f, P1) + u(f, P2))− (`(f, P1)) + `(f, P2)) (6.4.48)
= u(f, P1)− `(f, P1) + u(f, P2)− `(f, P2). (6.4.49)

So by Corollary 6.2.9 applied to the above split, we have

u(f, P1)− `(f, P1) + u(f, P2)− `(f, P2) = u(f,Qε)− `(f,Qε) (6.4.50)
≤ u(f, Pε)− `(f, Pε) (6.4.51)
< ε. (6.4.52)

Again by Corollary 6.2.9, we have both

u(f, P1)− `(f, P1) ≥ 0 and u(f, P2)− `(f, P2) ≥ 0. (6.4.53)

Hence, we have both

u(f, P1)− `(f, P1) ≤ u(f,Qε)− `(f,Qε) < ε and (6.4.54)
u(f, P2)− `(f, P2) ≤ u(f,Qε)− `(f,Qε) < ε. (6.4.55)

By the Cauchy criterion for integrability ((iv) in Theorem 6.2.12), f is integrable over both [a, t]
and [t, b].

To show the backward implication regarding integrability, assume f is integrable over both
[a, t] and [t, b], and let ε > 0. By the Cauchy criterion for integrability ((iv) in Theorem 6.2.12),
there are partitions R1 of [a, t] and R2 of [t, b] such that

u(f,R1)− `(f,R1) < ε

2 and u(f,R2)− `(f,R2) < ε

2 . (6.4.56)

Define Rε to the partition of [a, b] given by Rε = R1 ∪ R2. Then by splitting upper and lower
sums according to Lemma 6.4.9, we have

u(f,Rε)− `(f,Rε) = u(f,R1)− `(f,R1) + u(f,R2)− `(f,R2) (6.4.57)

<
ε

2 + ε

2 (6.4.58)

< ε. (6.4.59)

Therefore, by the Cauchy criterion for integrability ((iv) in Theorem 6.2.12), we have f is inte-
grable over [a, b].

At this point we have shown f is integrable over [a, b] if and only if f is integrable over both
[a, t] and [t, b]. It remains to show equation (6.4.45) holds. To that end, suppose f is integrable
over [a, b] so that the integrals

∫ b
a f ,

∫ t
a f , and

∫ b
t f exist.

Once again, let ε > 0 and let Pε, Qε, P1, and P2 satisfy the same relationships as in the proof
of the forward implication above. In particular, we have

u(f,Qε)− `(f,Qε) < ε. (6.4.60)
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Since integrals are between their upper and lower sums by Corollary 6.2.16 and the lower sum
over Qε splits at p into P1 and P2 as in Lemma 6.4.9, we have∫ b

a
f ≤ u(f,Qε) (6.4.61)

< `(f,Qε) + ε (6.4.62)
= `(f, P1) + `(f, P2) + ε (6.4.63)

≤
∫ t

a
f +

∫ b

t
f + ε. (6.4.64)

Since ε is arbitrary, Lemma 1.5.22 implies∫ b

a
f ≤

∫ t

a
f +

∫ b

t
f. (6.4.65)

For the other inequality, and again since integrals are between their upper and lower sums by
Corollary 6.2.16 while the lower sum over Qε splits at t into P1 and P2 as in Lemma 6.4.9, we
have ∫ t

a
f +

∫ b

t
f ≤ u(f, P1) + u(f, P2) (6.4.66)

< `(f, P1) + `(f, P2) + ε (6.4.67)
= `(f,Qε) + ε (6.4.68)

≤
∫ b

a
f + ε. (6.4.69)

Since ε is arbitrary, Lemma 1.5.22 once again implies∫ t

a
f +

∫ b

t
f ≤

∫ b

a
f. (6.4.70)

Therefore, ∫ b

a
f =

∫ t

a
f +

∫ b

t
f. (6.4.71)

Next, consider definite integrals in the sense of functions defined as integrals where one limit
of integration is fixed and the other is variable.

Definition 6.4.13: Definite integral

Suppose f : [a, b] → R is integrable. The definite integral of f over [a, b] is the function
g : [a, b]→ R defined for each x ∈ [a, b] by

g(x) =
∫ x

a
f. (6.4.72)

Definite integrals are nice.
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Theorem 6.4.14: Definite integrals are uniformly continuous

Suppose f : [a, b] → R is integrable and g is the definite integral of f over [a, b] given by
g(x) =

∫ x
a f . Then g is uniformly continuous.

Scratch Work 6.4.15: Linearity and several properties of integration

Following the guide in Remark 4.3.4 for proofs of continuity, but keeping in mind we want
a uniform threshold δ which is independent of inputs, we would like to end up with

|x− y| < δ =⇒ |g(x)− g(y)| =
∣∣∣∣∫ x

a
f −

∫ y

a
f

∣∣∣∣ < ε. (6.4.73)

Stringing together properties of integrals allows us to streamline to expression considerably.
For any bound q > 0 of |f |, we have

|g(x)− g(y)| =
∣∣∣∣∫ x

a
f −

∫ y

a
f
∣∣∣∣ =

∣∣∣∣∫ x

y
f
∣∣∣∣ ≤ ∫ x

y
|f | ≤ q|x− y| < ε. (6.4.74)

So a reasonable choice for a uniform threshold is

δ = ε

q
. (6.4.75)

On to the proof.

Proof of Theorem 6.4.14. Suppose f : [a, b] → R is integrable and g is the definite integral of f
over [a, b] given by g(x) =

∫ x
a f . Since integrable functions are bounded and the absolute value of

a bounded function is also bounded, let q > 0 be a bound for |f |.
Suppose x, y ∈ [a, b] where, without loss of generality, we have y < x. Then by splitting the

definite integral at y as in Theorem 6.4.11, we have∫ x

a
f =

∫ y

a
f +

∫ x

y
f ⇐⇒

∫ x

a
f −

∫ y

a
f =

∫ x

y
f. (6.4.76)

Also, as a constant, q is integrable over [y, x] by Lemma 6.1.10 with∫ x

y
q = q(x− y) = q|x− y|. (6.4.77)

Now let ε > 0 and choose δ = ε/q. Suppose

|x− y| < δ = ε

q
. (6.4.78)

Then by the integral triangle inequality and the order or integration (Corollaries 6.4.5 and 6.3.10),
we have

|g(x)− g(y)| =
∣∣∣∣∫ x

a
f −

∫ y

a
f
∣∣∣∣ =

∣∣∣∣∫ x

y
f
∣∣∣∣ ≤ ∫ x

y
|f | ≤

∫ x

y
q = q|x− y| < ε. (6.4.79)

Therefore, the definite integral g is uniformly continuous.
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Modifying the hypothesis of integrability of the integrand in Theorem 6.4.14 with continuity
at a point yields the second half of the Fundamental Theorem of Calculus.

Theorem 6.4.16: Fundamental Theorem of Calculus II

Suppose f : [a, b] → R is integrable over [a, b] and continuous at c ∈ [a, b]. Let g be the
definite integral of f over [a, b] given by g(x) =

∫ x
a f . Then g is differentiable at c and we

have

g′(c) =
(∫ x

a
f
)′

(c) = f(c). (6.4.80)

Scratch Work 6.4.17: Simplify the difference quotient

Since the goal is show differentiability, consider the difference quotient of the definite integral
g at c. We have

g(x)− g(c)
x− c

= 1
x− c

(∫ x

a
f −

∫ c

a
f
)

= 1
x− c

(∫ x

c
f
)
. (6.4.81)

So, the goal of the proof is to show the limit of this difference quotient is f(c). So, we would
like to show for a suitable threshold δ that

0 < |x− c| < δ =⇒
∣∣∣∣ 1
x− c

(∫ x

c
f
)
− f(c)

∣∣∣∣ < ε. (6.4.82)

Properties on integrals allow us to show a threshold δ from the continuity of f at c allows
us to accomplish this goal.

Along the way and as a clever trick, it will help to keep in mind that f(c) is a constant, so
it is integrable over either [c, x] or [x, c] by Lemma 6.1.10 and we have∫ x

c
f(c) = f(c)(x− c) =⇒ 1

x− c

(∫ x

c
f(c)

)
= f(c). (6.4.83)

Linearity of integration (Theorem 6.3.6) helps as well.

Proof of the Fundemental Theorem of Calculus II 6.4.16. Suppose f : [a, b] → R is integrable
over [a, b] and continuous at c ∈ [a, b], and let g be the definite integral of f over [a, b] given by
g(x) =

∫ x
a f . Note that f(c) is a constant, so it is integrable by Lemma 6.1.10 and we have∫ x

c
f(c) = f(c)(x− c) =⇒ 1

x− c

(∫ x

c
f(c)

)
= f(c). (6.4.84)

Now let ε > 0. Since f is continuous at c, there is a threshold δ > 0 such that

t ∈ [a, b] with |t− c| < δ =⇒ |f(t)− f(c)| < ε

2 . (6.4.85)

Next, to show the limit of the difference quotient of g at c is f(c), suppose

x ∈ [a, b] with |x− c| < δ. (6.4.86)



6.4. PROPERTIES OF INTEGRATION 431

At this point, it helps to reintroduce the dummy variable t and dt. Note t ∈ [c, x] and t ∈ [x, c]
imply

|t− c| ≤ |x− c| < δ. (6.4.87)

From here, considering c < x without loss of generality, splitting the definite integral at c (Theorem
6.4.11), the linearity of integration (Theorem 6.3.6) and a number of other integral properties yield∣∣∣∣∣g(x)− g(c)

x− c
− f(c)

∣∣∣∣∣ =
∣∣∣∣ 1
x− c

(∫ x

a
f −

∫ c

a
f
)
− 1
x− c

(∫ x

c
f(c)

)∣∣∣∣ (6.4.88)

=
∣∣∣∣ 1
x− c

(∫ x

c
f
)
− 1
x− c

(∫ x

c
f(c)

)∣∣∣∣ (6.4.89)

= 1
|x− c|

∣∣∣∣∫ x

c
f(t)− f(c) dt

∣∣∣∣ (6.4.90)

≤ 1
x− c

∫ x

c
|f(t)− f(c)| dt (6.4.91)

≤ 1
x− c

∫ x

c

ε

2 dt (6.4.92)

= 1
x− c

(
ε

2(x− c)
)

(6.4.93)

= ε

2 (6.4.94)

< ε. (6.4.95)

Hence, the limit of the difference quotient of g at c is f(c). Therefore, g is differentiable at c and
g′(c) = f(c).

Exercises
6.4.1. Suppose f is integrable over [a, b] and f(x) ≥ 0 for all x ∈ [a, b]. Prove

√
f is integrable

over [a, b].

6.4.2. Suppose f and g are integrable over [a, b]. Define h : [a, b]→ R by

h(x) = max{f(x), g(x)} for all x ∈ [a, b]. (6.4.96)

Prove h is integrable over [a, b]

6.4.3. Suppose f and g are continuous on [a, b] and
∫ b
a f =

∫ b
a g. Prove there is some c ∈ [a, b]

such that f(c) = g(c).

6.4.4. Suppose f : [a, b]→ R is continuous except at the finite number of points x1, . . . , xn ∈ [a, b].
Prove that f is bounded, then f is integrable over [a, b].
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6.4.5. Suppose g : [a, b] → R is continuous except on a convergent sequence (xn) ⊆ [a, b]. Prove
that if g is bounded, then g is integrable over [a, b].

6.4.6. Suppose h : [0, 1] → R is continuous except on the Cantor set C ⊆ [0, 1] from Exercises
2.8.9, 3.5.4, and 3.6.9. Prove that if h is bounded, then h is integrable over [0, 1]. Hint: According
to part (ii) of Exercise 3.5.4, the Cantor set C is arbitrarily small. (This exercise shows that a
function can be integrable even if it is discontinuous on an uncountable set.)



Chapter 7

Pointwise and Uniform Convergence

One of the big pictures for continuity is their preservation of nice properties between points,
sequences, and sets. They preserve closeness and convergence of sequences (Theorem 4.4.7), con-
nectedness (Theorem 4.6.3), and compactness (Theorem 4.6.7). Continuity is also linear (Theorem
4.5.5), respecting scalar multiplication and sums.

Sequences and series (Chapter 8) of functions have the potential to preserve nice properties
like continuity, differentiability, and integrability. In this short chapter, a pair of related limit
processes for sequences of functions provide a framework to prove such preservation properties.

7.1 Sequences of functions
Pointwise convergence is an extension of componentwise convergence. A reminder of component-
wise convergence might help.

Example 7.1.1: A divergent component

Suppose (xn) is a sequence of points in R4 where for each index n we have

xn =


x1,n
x2,n
x3,n
x4,n

 =


1

1/
√

2n
(−1)n/

√
2n

(−1)n

 . (7.1.1)

See Figure 7.1.1. The first three component sequences of (xn) converge since we have

lim
n→∞

x1,n = lim
n→∞

1 = 1, (7.1.2)

lim
n→∞

x2,n = lim
n→∞

1√
2n

= 0, and (7.1.3)

lim
n→∞

x3,n = lim
n→∞

(−1)n√
2n

= 0, (7.1.4)

433
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n
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Figure 7.1.1: The sequence (xn) ⊆ R4 from Example 7.1.1 split into its com-
ponent sequences (x1,n), (x2,n), (x3,n), (x4,n) ⊆ R. The sequence (xn) diverges
since the component (x4,n) = ((−1)n) alternates between −1 and 1, meaning it
diverges by Divergence Criteria for Sequences 2.6.9.

where the limits for (x2,n) and (x3,n) are determined by Corollary 2.4.19. On the other
hand, (x4,n) = ((−1)n) has two subsequences converging to different limits. That is,

lim
k→∞

x2k = 1 6= −1 = lim
k→∞

x2k−1. (7.1.5)

So, (x4,n) diverges by Divergence Criteria for Sequences 2.6.9. Furthermore, (xn) diverges
by Theorem 2.4.11 since one of its components diverges.

Remark 7.1.2: From componentwise to pointwise

The leap from componentwise convergence of a sequence of vectors in a Euclidean space
Rm to the pointwise convergence of a sequence of functions comes from considering
more sequences. Every sequence (xn) ⊆ Rm can be split into m component sequences
(x1,n), . . . , (xm,n) ⊆ R, and (xn) converges if and only if all of its component sequences
converge (Theorem 2.4.11).

In the setting of a sequence of functions (fn) from the real line to the real line, the finite
number of indices 1, . . . ,m for vectors are replaced with uncountably many inputs c from
a common domain D where we write (fn(c)) to denote the sequence of outputs associated
with c. Then much like componentwise convergence, pointwise convergence occurs when
each of the output sequences converges.

Definition 7.1.3: Output sequence

A sequence of functions (fn) where fn : D → R for some D ⊆ R and every index n ∈ N
is called a sequence of functions on D. For each c ∈ D, the output sequence at c is the
sequence (fn(c)).
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Example 7.1.4: Sequence of monomials

Consider the sequence of monomials (fn) on the compact interval [0, 1] given by

fn(x) = xn for all x ∈ [0, 1] and n ∈ N. (7.1.6)

See Figure 7.1.2. Each output sequence (fn(c)) = (cn) exhibits its own behavior, depending
on the input c ∈ [0, 1]. For instance, when c = 0 or c = 1, the output sequence is constant.
On the other hand, inputs c = 1/2 and c = 0.9 yield strictly decreasing output sequences
that converge to 0. For each index n ∈ N we have fn(0) = 0, fn(1/2) = 1/2n, fn(0.9) =
(0.9)n, and fn(1) = 1. See Figure 7.1.2. Since 0 ≤ 1/2 < 0.9 < 1, by Corollary 2.4.19 we
also have

lim
n→∞

fn(0) = lim
n→∞

fn(1/2) = lim
n→∞

fn(0.9) = 0, while (7.1.7)

lim
n→∞

fn(1) = 1. (7.1.8)

Moreover, by Corollary 2.4.19, whenever 0 ≤ c < 1 we have

lim
n→∞

fn(c) = cn = 0. (7.1.9)

A sequence of functions that produces convergent output sequences for each of its inputs is
said to be pointwise convergent.

Definition 7.1.5: Pointwise convergence

Suppose D ⊆ R, c ∈ D, and fn : D → R for every index n ∈ N. The sequence of functions
(fn) converges at c if the output sequence (fn(c)) converges. The sequence (fn) converges
pointwise (on D) if every output sequence converges. In this case, the function f : D → R
defined by

f(x) = lim
n→∞

fn(x) for all x ∈ D (7.1.10)

is called the pointwise limit of (fn). See Figure 7.1.2.

Pointwise convergence can break continuity.

Example 7.1.6: Pointwise limit of monomials

For the sequence of functions (fn) on [0, 1] in Example 7.1.4 and Figure 7.1.2 given by
fn(x) = xn for all x ∈ [0, 1] and n ∈ N, (7.1.11)

the pointwise limit of (fn) is the function f : [0, 1]→ R where

f(x) = lim
n→∞

fn(x) =
0, if 0 ≤ x < 1,

1, if x = 1.
(7.1.12)

Moreover, even though each fn is continuous, the pointwise limit f is not.
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fn(x) = xn

x

y

| | |
0 1/2 0.9 1

−1

f1

f2

f3

...
•

•

•

•

•
•

•
•
•
•

fn(1/2) = 1/2n ◦
0
...

1/21/41/8
•••

fn(0.9) = (0.9)n ◦
0
... ...

0.90.81
•••

Figure 7.1.2: The sequence of monomials (fn(x)) = (xn) on [0, 1] along with
output sequences for c = 1/2 and c = 0.9 from Example 7.1.4. Play around with
the Desmos activity “Pointwise convergence of monomials” accessed through the
QR code. https://www.desmos.com/calculator/4zehljtc2q

https://www.desmos.com/calculator/4zehljtc2q
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Proof for Example 7.1.6. The formula for the pointwise limit f in (7.1.12) follows immediately
from Example 7.1.4 and the definition for pointwise limit (Definition 7.1.5). Since polynomials
are continuous (Theorem 4.5.2), each function fn is continuous. However, the pointwise limit f
is discontinuous at c = 1 because

lim
n→∞

(
1− 1

2n

)
= 1 (7.1.13)

in the domain [0, 1] while

lim
n→∞

f
(

1− 1
2n

)
= 0 6= 1 = f(1) (7.1.14)

in the range (see Discontinuity Criteria 4.6.13).

Pointwise convergence can break anticipated values of integrals, too.

Example 7.1.7: A sequence of blocks

Consider the sequence of blocks (bn) on [0, 2] given by

bn(x) =
0, when x = 0 or 1/n ≤ x ≤ 2,
n, when 0 < x < 1/n.

(7.1.15)

See Figure 7.1.3. Even though the sequence (bn) converges pointwise to 0 on [0, 2], the
integrals satisfy

∫ 2
0 bn = 1 for each n ∈ N. Hence,

lim
n→∞

∫ 2

0
bn = 1 6= 0 =

∫ 2

0
0 =

∫ 2

0

(
lim
n→∞

bn

)
. (7.1.16)

So, the limit of the integrals is not the integral of the pointwise limit.

Proof for Example 7.1.7. For each index n ∈ N, the function bn is continuous on [0, 2] except at
the real numbers c = 0 and c = 1/n. By splitting the integral at 1/n in the domain (Theorem
6.4.11 and taking the integrals of constants (Lemma 6.1.10), we have

∫ 2

0
bn =

∫ 1/n

0
n+

∫ 2

1/n
0 = n(1/n) + 0(2− (1/n)) = 1. (7.1.17)

Therefore,

lim
n→∞

∫ 2

0
bn = 1. (7.1.18)

To establish that the pointwise limit of (bn) is 0, first note bn(0) = 0 for every index n ∈ N.
Hence,

lim
n→∞

bn(0) = 0. (7.1.19)
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b1

b2

b3

|||||
210 1/21/3

0

1

2

3

◦ ◦

◦ ◦

◦ ◦

•

Figure 7.1.3: The sequence of blocks (bn) on [0, 2] converges pointwise to 0
even though their integrals are all equal to 1. In a way, pointwise convergence
can break integration. See Example 7.1.7.
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Now suppose 0 < x ≤ 2. Then the output sequence bn(x) is eventually the constant 0. To see
this, note that by the corollary of the Archimedean Property (Corollary 1.4.8), there is an index
nx ∈ N such that

0 < 1/nx < x. (7.1.20)

Hence, for each index n ≥ nx we have bn(x) = 0. Furthermore, for every ε > 0, the index nx is a
threshold for the convergence of the output sequence (bn(x)) to 0 since, for every n ≥ nx, we have

|bn(x)− 0| = |0− 0| = 0 < ε. (7.1.21)

Therefore, 0 is the pointwise limit of (bn) on [0, 2] since

lim
n→∞

bn(x) = 0 for every x ∈ [0, 2]. (7.1.22)

Some sequences of functions fail to converge pointwise.

Example 7.1.8: Powers of sine

Consider the sequence of functions (gn) on [0, 2π] where
gn(x) = (sin x)n = sinn x for all x ∈ [0, 2π] and n ∈ N. (7.1.23)

See Figure 7.1.4 as well as Example 7.1.1 and its Figure 7.1.1. For c = 3π/2 and every
n ∈ N, we have

gn(3π/2) = sinn(3π/2) = (−1)n =
−1, when n is odd,

1, when n is even.
(7.1.24)

So, by Divergence Criteria for Sequences 2.6.9, the output sequence (gn(3π/2)) diverges
since two of its subsequences converge to different limits:

lim
k→∞

g2k−1(3π/2) = −1 while lim
k→∞

g2k(3π/2) = 1. (7.1.25)

Therefore, (gn) does not converge pointwise on [0, 2π].

The other inputs c ∈ [0, 2π]\{3π/2} have convergent output sequences exhibiting a variety
of behaviors. For instance,

gn(π/2) = sinn(π/2) = 1, (7.1.26)

gn(3π/4) = sinn(3π/4) =
(√

2
2

)n
= 1√

2n
, and (7.1.27)

gn(5π/4) = sinn(5π/4) =
(
−
√

2
2

)n
= (−1)n√

2n
(7.1.28)

for every index n ∈ N. So,
lim
k→∞

gn(π/2) = 1 and lim
k→∞

gn(3π/4) = lim
k→∞

gn(5π/4) = 0, (7.1.29)

where the latter two follow from Corollary 2.4.19.
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gn(x) = sinn x

x

y

|||||

−

−

0 π/2 3π/4 3π/2 2π
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g1
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• •

•

•
•••

•

•

•

•

Figure 7.1.4: The sequence of powers of the sine function (gn(x)) = (sinn x) on
[0, 2π] along with output sequences for c = π/2, 3π/4, 5π/4, and 3π/2, although
5π/4 is not labeled on the x-axis. See Examples 7.1.8 and 7.1.1 as well as Figure
7.1.1. Also, play around with the Desmos activity “Sequence of powers of sine”
accessed through the QR code. https://www.desmos.com/calculator/ofe6otbfyu

https://www.desmos.com/calculator/ofe6otbfyu
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We can dive a bit deeper into pointwise convergence, or lack thereof, by considering the
pointwise thresholds and rates of convergence for convergent output sequences. See the definition
for thresholds in Definition 2.2.1. Pointwise thresholds determine the rate of convergent of their
output sequences.

Definition 7.1.9: Pointwise thresholds

Let (fn) be a pointwise convergent sequence of functions where fn : D → R for some
D ⊆ R and every index n ∈ N. For each c ∈ D, a pointwise threshold at c is an index
nc ∈ N which is a threshold for the convergence of the output sequence (fn(c)).

More specifically, the index nc ∈ N is a pointwise threshold at c if for every distance ε > 0
and some yc ∈ R we have

n ≥ nc with n ∈ N =⇒ |fn(c)− yc| < ε. (7.1.30)

Finding pointwise thresholds follows the guide for working with limits of sequences in Remark
2.2.4.

Example 7.1.10: Pointwise thresholds for the sequence of monomials

Consider the sequence fn = xn on [0, 1] from Example 7.1.4. The index n0 = n1 = 1 is a
pointwise threshold for both c = 0 and c = 1 since for every distance ε > 0 and every index
n ∈ N we have

|fn(0)− 0| = 0 < ε and |fn(1)− 1| = |1n − 1| = 0 < ε. (7.1.31)

For c = 1/2, a bit more work is involved. We want to end up with

|fn(1/2)− 0| = 1/2n < ε. (7.1.32)

Following the guide in Remark 2.2.4, solving for n looks like this:

1/2n < ε =⇒ n ln(1/2) < ln ε =⇒ n >
ln ε

ln(1/2) , (7.1.33)

where the last implication holds since ln(1/2) < 0. Hence, any index

n1/2 >
ln ε

ln(1/2) (7.1.34)

serves a pointwise threshold for the sequence (fn(1/2)) = (1/2n). Very similarly, for the
input c = 0.9 we want to end up with

|fn(0.9)− 0| = (0.9)n < ε. (7.1.35)

This leads to

(0.9)n < ε =⇒ n ln(0.9) < ln ε =⇒ n >
ln ε

ln(0.9) , (7.1.36)



442 CHAPTER 7. POINTWISE AND UNIFORM CONVERGENCE

where the last implication holds since ln(0.9) < 0. Hence, any index

n0.9 >
ln ε

ln(0.9) (7.1.37)

serves as a pointwise threshold for the sequence (fn(0.9)) = ((0.9)n).

Now, instead of proving the limit of both (fn(1/2)) = (1/2n) and (fn(0.9)) = ((0.9)n) is
0 (which is redundant in light of Example 7.1.4), compare their rates of convergence. For
the distance ε1 = 1/10, the formulas (7.1.34) and (7.1.37) for the pointwise thresholds at
c = 1/2 at c = 0.9 yield

n1/2 >
ln(1/10)
ln(1/2) > 3.321 and (7.1.38)

n0.9 >
ln(1/10)
ln(0.9) > 22.854. (7.1.39)

So, n1/2 = 4 suffices for the distance ε1 = 1/10 and the output sequence (fn(1/2)) = (1/2n).
However, n0.9 = 4 does not suffice for the same distance ε1 = 1/10 the output sequence
(fn(0.9)) = ((0.9)n) since

|f4(0.9)− 0| = (0.9)4 = 0.6561 ≥ 0.1 = 1/10 = ε1. (7.1.40)

In other words and to summarize, the output sequences (fn(0)) = (0n), (fn(1/2)) = (1/2n),
and (fn(0.9)) = ((0.9)n) all converge to 0, but they do so at different rates: For the distance
ε1 = 1/10, the smallest pointwise thresholds for c = 0, 1/2, and 0.9 are respectively given
by

n0 = 1, n1/2 = 4, and n0.9 = 23. (7.1.41)

So, (fn(0.9)) = ((0.9)n) converges to 0 slower than (fn(0)) = (0n) and (fn(1/2)) = (1/2n)
since n0.9 = 23 is the largest of the three minimal pointwise thresholds.

To recap some of the results in this section, sequences of functions can exhibit all sorts of
behaviors.

• In Example 7.1.8, the sequence (gn(x)) = (sinn x) comprises continuous functions but fails
to converge pointwise on [0, 2π]. The issue occurs with the divergent output sequence at
c = 3π/2 given by (gn(3π/2)) = ((−1)n).

• In Examples 7.1.4 and 7.1.6, the sequence (fn(x)) = (xn) converges pointwise on [0, 1] to
the function

f(x) =
0, if 0 ≤ x < 1,

1, if x = 1.
(7.1.42)

However, the continuity of the polynomials fn(x) = xn is broken by the pointwise limit
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f which is discontinuous at c = 1. So, the pointwise limit of continuous functions is not
necessarily continuous.

• In Example 7.1.7, the sequence of functions (bn) converges pointwise to 0, but the integral
of each box bn is 1. So, the limit of integrals is not necessarily the integral of the pointwise
limit.

This begs the question: When does a sequence of functions preserve nice properties? The next
section provides an answer with the idea of uniform convergence.

Exercises
7.1.1. Construct a function g : R→ R satisfying the following properties and prove your result:

(i) g is increasing.

(ii) g is continuous at every c ∈ R\N.

(iii) g is discontinuous at every c ∈ N.

7.1.2. Let fn : R→ R be given by

fn(x) = (x2 + 1)
n2 (7.1.43)

for each n ∈ N and x ∈ R. Prove (fn) converges pointwise to f(x) = 0 on R. Do the pointwise
thresholds depend on the inputs?

7.1.3. Let gn : R→ R be given by

gn(x) = sin x
n

+ x+ cosx (7.1.44)

for each n ∈ N and x ∈ R. Prove (gn) converges pointwise to g(x) = x + cosx on R. Do the
pointwise thresholds depend on the inputs?

7.1.4. Let hn : R→ R be given by

hn(x) = x

1 + nx2 (7.1.45)

for each n ∈ N and x ∈ R. Prove (hn) converges pointwise on R. Do the pointwise thresholds
depend on the inputs?

7.1.5. Find an example of a sequence of bounded functions defined on (0, 1) that converges
pointwise to an unbounded limit on (0, 1).
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Figure 7.2.1: The QR code takes you to the Desmos activity “Uniform con-
vergence” which is designed to accompany Definition 7.2.1. It allows for an
exploration of a sequence of functions that converge uniformly on the real line.
https://www.desmos.com/calculator/o3qsnaagez

7.2 Uniform convergence

Uniform convergence for sequences of functions is an analog of uniform continuity (Definition
4.7.1) in that we have

One threshold to rule them all.

In this case, the uniform threshold goes by “Sauron’s Nani”1 and is a single threshold which serves
as the pointwise threshold for every output sequence.

Definition 7.2.1: Uniform convergence

Suppose D ⊆ R and fn : D → R for every index n ∈ N. The sequence of functions (fn)
converges uniformly to f (on D) if for every distance ε > 0 there is an index nε ∈ N such
that for every input c ∈ D we have

n ≥ nε with n ∈ N =⇒ |fn(c)− f(c)| < ε. (7.2.1)

In this case, the index nε is called a uniform threshold and f is called the uniform limit of
(fn). See Figure 7.2.1.

In Example 7.1.6, the sequence of functions (xn) is shown to converge pointwise on the compact
interval [0, 1]. By the restricting the domain to the smaller interval [0, 0.9], the modified version
of this sequence converges uniformly.

1Thank you, Nikita Campos!

https://www.desmos.com/calculator/o3qsnaagez
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Example 7.2.2: Revising the domain for monomials yields
uniform convergence

Consider the revised sequence of functions (fn) on the compact interval [0, 0.9] given by

fn(x) = xn for all x ∈ [0, 0.9] and n ∈ N. (7.2.2)

The sequence (fn) converges uniformly to 0 on [0, 0.9]. See Figure 7.2.2.

Scratch Work 7.2.3: Similar scratch for pointwise and uniform convergence

The scratch work for showing uniform convergence and pointwise convergence are
very similar since both involve finding suitable thresholds. The key difference is that
pointwise convergence is satisfied when each input has its own pointwise threshold,
but uniform convergence requires a single threshold to serve as the pointwise threshold
for every input at the same time. So, to guide the determination of suitable choice
for a uniform threshold, see Figure 7.2.2. Once the output fn(0.9) = (0.9)n is within ε
of 0, all of the outputs fn(c) = (c)n for every c in the domain [0, 0.9] are within ε of 0 as well.

If there is an output sequence with the slowest rate of convergence, its pointwise threshold
will suffice for all the output sequences. In the case of Example 7.2.2, the output sequence
fn(0.9) = (0.9)n has the slowest rate of convergence and its pointwise threshold n0.9 ∈ N
serves as the uniform threshold. The formula describing n0.9 is found in Example 7.1.10,
stemming from the implications

(0.9)n < ε =⇒ n ln(0.9) < ln ε =⇒ n >
ln ε

ln(0.9) , (7.2.3)

where the last inequality holds since ln(0.9) < 0. So, any index nε ∈ N such that

nε = n0.9 >
ln ε

ln(0.9) (7.2.4)

should serve as a uniform threshold for the uniform convergence of the sequence (fn(x)) =
(xn) to f(x) = 0.

Proof for Example 7.2.2. For any c ∈ [0, 0.9] and any index n ∈ N we have

0 ≤ c ≤ 0.9 =⇒ 0 ≤ cn ≤ 0.9n (7.2.5)

since each positive power of x is increasing. Now let ε > 0. Choose an index nε ∈ N such that

nε >
ln ε

ln(0.9) ⇐⇒ 0.9nε < ε. (7.2.6)

Then for every input c ∈ [0, 0.9] and index n ∈ N we have

n ≥ nε =⇒ |fn(c)− 0| = cn ≤ 0.9n ≤ 0.9nε < ε (7.2.7)
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fn(x) = xn
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f(x) = 0

Figure 7.2.2: The revised sequence of functions (fn(x)) = (xn) on [0, 0.9]
along with output sequences for c = 1/2 and c = 0.9, and a distance ε > 0
away from the pointwise limit f(x) = 0. See Example 7.2.2. The out-
put sequence (fn(0.9)) = ((0.9)n) has the slowest rate of convergence, so its
threshold serves as the uniform threshold. Play around with the Desmos ac-
tivity “Pointwise convergence of monomials” accessed through the QR code.
https://www.desmos.com/calculator/4zehljtc2q

https://www.desmos.com/calculator/4zehljtc2q
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since 0 < 0.9 < 1. Therefore, by Definition 7.2.1, nε is a uniform threshold and (fn) converges
uniformly to 0 on [0, 0.9].

The proof of Example 7.2.2 motivates the following lemma. If we can find a sequence of
nonnegative real numbers that converge to zero and act as bounds on the difference of the outputs
of a sequence of functions and another function, then this other function is the uniform limit.

Lemma 7.2.4: Sequence of bounds implies uniform convergence

Suppose D ⊆ R, f : D → R, (fn) is a sequence of real-valued functions on D, and (an) is a
sequence of nonnegative real numbers where both

lim
n→∞

an = 0 and |fn(x)− f(x)| ≤ an (7.2.8)

for each index n ∈ N and each input x ∈ D. Then (fn) converges uniformly to f .

Scratch Work 7.2.5: Uniform threshold from the convergence of real numbers

The convergence of the sequence of bounds (an) to zero provides a threshold via Definition
2.2.1 which immediately serves as the uniform threshold for the uniform convergence of (fn)
to f as in Definition 7.2.1.

Proof of Lemma 7.2.4. Suppose D ⊆ R, f : D → R, (fn) is a sequence of real-valued functions
on D, and (an) is a sequence of nonnegative real numbers where (an) converges to zero. Further
suppose that for each n ∈ N and each x ∈ D we have

|fn(x)− f(x)| ≤ an. (7.2.9)

Now let ε > 0. By the definition of sequential limit (Definition 2.2.1) and inequality (7.2.9), there
is a threshold nε ∈ N such that

n ≥ nε =⇒ |fn(x)− f(x)| ≤ an = |an − 0| < ε. (7.2.10)

Therefore, nε is a uniform threshold and (fn) converges uniformly to f as in Definition 7.2.1.

Uniform convergence is a strengthening of pointwise convergence.

Lemma 7.2.6: Uniform convergence implies pointwise convergence

If a sequence of functions (fn) converges uniformly to f on D ⊆ R, then (fn) converges
pointwise to f on D.

Scratch Work 7.2.7: “One threshold to rule them all”

Any uniform threshold serves as the pointwise threshold for every output sequence. The
proof follows directly from the definitions.
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Proof of Lemma 7.2.6. Suppose (fn) converges uniformly to f on D and ε > 0. By Definition
7.2.1, there is a uniform threshold nε ∈ N such that for every input c ∈ D we have

n ≥ nε with n ∈ N =⇒ |fn(c)− f(c)| < ε. (7.2.11)

So by Definitions 7.1.3, 7.1.5, and 7.1.9, for every c ∈ D, the uniform threshold nε is the pointwise
threshold for the output sequence (fn(c)) and the uniform limit f is the pointwise limit.

Uniform convergence is another property that exhibits linearity.

Theorem 7.2.8: Linearity of uniform convergence

Suppose (fn) and (gn) converge uniformly on D to f and g, respectively, and suppose α ∈ R.
Then (fn + gn) converges uniformly to f + g on D, (αfn) converges uniformly to αf on D,
and for every x ∈ D we have

(i) lim
n→∞

(fn(x) + gn(x)) = lim
n→∞

fn(x) + lim
n→∞

gn(x) = f(x) + g(x) (additivity); and

(ii) lim
n→∞

(αfn(x)) = α lim
n→∞

fn(x) = αf(x) (homogeneity).

Scratch Work 7.2.9: Almost identical to linearity of sequential limits

The scratch work and proof of Theorem 7.2.8 is essentially the same as Scratch Work 2.3.11
and 2.3.12 for the proof of Theorem 2.3.9.

For both additivity and homogeneity, we can verify the definition of uniform convergence
(Definition 7.2.1) holds by considering an arbitrary ε > 0 and finding a suitable uniform
thresholds which serves as pointwise threshold for every input. These threshold can be
shown to ensure the outputs with indices large enough are within ε of the proposed uniform
limit across the whole common domain.

The proof is split in two to address additivity and homogeneity separately.

Proof of additivity (i) in Theorem 7.2.8. Assume (fn) and (gn) converge uniformly on D to f
and g, respectively, and let ε > 0. Then ε/2 > 0 and by the definition of uniform convergence
(Definition 7.2.1) there are uniform thresholds jε/2 and kε/2 such that for every x ∈ D we have

n ≥ jε/2 =⇒ |fn(x)− f(x)| < ε

2 and (7.2.12)

n ≥ kε/2 =⇒ |gn(x)− g(x)| < ε

2 . (7.2.13)

Define nε to be the larger of the two uniform thresholds (so nε = max{jε/2, kε/2}). Then every
index n where n ≥ nε is large enough to give us both n ≥ jε/2 and n ≥ kε/2. So by the triangle
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inequality (1.2.35), (7.2.12), and (7.2.13), n ≥ nε implies that for every x ∈ D we have

|(fn(x) + gn(x))− (f(x) + g(x))| = |fn(x)− f(x) + gn(x)− g(x)| (7.2.14)
≤ |fn(x)− f(x)|+ |gn(x)− g(x)| (7.2.15)

<
ε

2 + ε

2 (7.2.16)

= ε. (7.2.17)

Therefore, nε is a uniform threshold, (fn + gn) converges uniformly to f + g on D, and for every
x ∈ D we have

lim
n→∞

(fn(x) + gn(x)) = lim
n→∞

fn(x) + lim
n→∞

gn(x) = f(x) + g(x). (7.2.18)

Hence, uniform convergence is additive.

Proof of homogeneity (ii) in Theorem 7.2.8. Assume (fn) converges uniformly on D to f and as-
sume α ∈ R. This proof has two cases from here: (i) α = 0 and (ii) α 6= 0.

Case (i): Suppose α = 0 and ε > 0. Define nε = 21. Then for every index n ≥ nε = 21 and
every x ∈ D we have

|αfn(x)− αf(x)| = |0− 0| = 0 < ε. (7.2.19)

Therefore, nε = 21 is a uniform threshold, (αfn) converges uniformly to αf on D, and for every
x ∈ D we have

lim
n→∞

(αfn(x)) = α lim
n→∞

fn(x) = αf(x). (7.2.20)

Case (ii): Assume α 6= 0 and ε > 0. Then ε/|α| > 0 and by the definition of uniform
convergence (Definition 7.2.1) there is a uniform threshold nε/|α| such that for every x ∈ D

n ≥ nε/|α| =⇒ |αfn(x)− αf(x)| < ε

|α|
. (7.2.21)

By (1.2.33) and (7.2.21), for every index n ≥ nε and every x ∈ D we have

|αfn(x)− αf(x)| = |α||fn(x)− f(x)| (7.2.22)

< |α| ε
|α|

(7.2.23)

= ε. (7.2.24)

Therefore, nε/|α| is a uniform threshold, (αfn) converges uniformly to αf on D, and for every
x ∈ D we have

lim
n→∞

(αfn(x)) = α lim
n→∞

fn(x) = αf(x). (7.2.25)

Hence, uniform convergence is homogeneous.

As mentioned in Remark 1.6.18, a corollary of the linearity of sequential limits holds for linear
combinations. As with the proof Corollary 1.6.16 on arbitrarily close and linear combinations
of sets and the proof of Corollary 2.3.13 on linear combinations and sequential limits, the proof
of Corollary 7.2.10 follows from induction. So, it is left as an exercise. Here, the notation fj,n
indicates the nth function of the jth sequence.
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Corollary 7.2.10: Linear combinations and uniform convergence

Suppose k ∈ N and for each j = 1, . . . , k we have αj ∈ R and the sequence (fj,n) converges
uniformly to fj on D. Then the sequence of linear combinations ∑k

j=1 αjfj,n converges
uniformly to the linear combination ∑k

j=1 αjfj on D and we have

lim
n→∞

 k∑
j=1

αjfj,n(x)
 =

k∑
j=1

(
αj lim

n→∞
fj,n(x)

)
=

k∑
j=1

(αjfj(x)) . (7.2.26)

The section concludes with a Cauchy criterion for uniform convergence. As with the other
Cauchy criteria, we get uniform convergence without having a candidate for the limit in mind.

Theorem 7.2.11: Cauchy criterion for uniform convergence

A sequence of functions (fn) converges uniformly on a set D if and only if for every ε > 0
there is a uniform threshold nε ∈ N such that for all x ∈ D we have

j, k ∈ N with j, k ≥ nε =⇒ |fj(x)− fk(x)| < ε. (7.2.27)

Scratch Work 7.2.12: Cauchy criteria and the triangle inequality

The forward implication follows from a standard triangle inequality argument. The back-
wards implication is more subtle since a candidate for the uniform limit is needed. It comes
from applying the Cauchy criterion for sequences (Theorem 2.6.5) to the output sequences,
ensuring each output sequence converges. The uniform convergence to the candidate then
follows from the implication (7.2.27) and properties of sequential limits.

Proof of Theorem 7.2.11. To prove the forward implication, suppose (fn) converges uniformly to
f on a set D. Let ε > 0. By the definition of uniform convergence (Definition 7.2.1), there is a
uniform threshold nε/2 ∈ N such that for all x ∈ D,

n ∈ N with n ≥ nε/2 =⇒ |fn(x)− f(x)| < ε

2 . (7.2.28)

Now suppose j, k ∈ N where j, k ≥ nε/2. Then by the triangle inequality (1.2.35) we have

|fj(x)− fk(x)| = |fj(x)−f(x) + f(x)︸ ︷︷ ︸
add zero

+fk(x)| (7.2.29)

≤ |fj(x)− f(x)|+ |f(x)− fk(x)| (7.2.30)

<
ε

2 + ε

2 (7.2.31)

= ε (7.2.32)

for every x ∈ D. Therefore, (fn) satisfies the Cauchy criterion for uniform convergence (7.2.27).
To prove the backward implication, suppose (fn) satisfies the Cauchy criterion for uniform

convergence (7.2.27). Then every output sequence (fn(x)) is a Cauchy sequence (Definition 2.6.1).
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By the Cauchy criterion for sequences (Theorem 2.6.5), (fn(x)) converges. As a candidate for a
uniform limit, define f : D → R by

f(x) = lim
n→∞

fn(x) (7.2.33)

for each x ∈ D. To show f is the uniform limit of (fn), let ε > 0. By (7.2.27), there is a threshold
nε/2 ∈ N such that for every x ∈ D we have

j, k ∈ N with j, k ≥ nε/2 =⇒ |fj(x)− fk(x)| < ε

2 . (7.2.34)

By fixing an index j ∈ N with j ≥ nε/2 and letting k tend to infinity, the linearity and order
properties of sequential limits (Theorem 2.3.9 and Corollary 2.3.22) imply

|fj(x)− f(x)| = lim
k→∞
|fj(x)− fk(x)| ≤ ε

2 < ε. (7.2.35)

for every x ∈ D. Since j and x are arbitrary, the index nε/2 is a uniform threshold as in Definition
7.2.1. Therefore, (fn) converges to f uniformly on D.

The next section explores the relationship between continuity, differentiability, integrability,
and uniform convergence.

Exercises
7.2.1. Prove that for every 0 < b < 1, the sequence of monomials fn : [0, b]→ R where

fn(x) = xn for each n ∈ N (7.2.36)

converges uniformly to 0 on [0, b].

7.2.2. Let fn : R→ R be the functions from Exercise 7.1.2 given by

fn(x) = (x2 + 1)
n2 (7.2.37)

for each n ∈ N and x ∈ R.

(i) Explain why (fn) does not converge uniformly on R.

(ii) Prove that if the domain is restricted to a compact interval [a, b], then (fn) converges uni-
formly on [a, b].

7.2.3. Let gn : R→ R be the functions from Exercise 7.1.3 given by

gn(x) = sin x
n

+ x+ cosx (7.2.38)

for each n ∈ N and x ∈ R. Prove g(xn) converges uniformly to g(x) = x+ cosx on R.
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7.2.4. Let hn : R→ R be the functions from Exercise 7.1.4 given by

hn(x) = x

1 + nx2 (7.2.39)

for each n ∈ N and x ∈ R. Does (hn) converge uniformly on R? (For a partial spoiler, see Example
7.3.6.)
7.2.5. Suppose qn : (0,∞)→ R is given by

qn(x) = nx

1 + nx2 (7.2.40)

for each n ∈ N and x ∈ (0,∞).
(i) Prove (qn) converges pointwise on (0,∞)

(ii) Does (qn) converges uniformly on (0,∞)?

(iii) Does (qn) converges uniformly on (0, 1)?

(iv) Does (qn) converges uniformly on (1,∞)?
7.2.6. Give an example of sequences of functions (fn) and (gn) that converge uniformly on D ⊆ R
whose sequence of products (fngn) does not converge uniformly.
7.2.7. Suppose sequences of functions (fn) and (gn) converge uniformly on D ⊆ R and suppose
b > 0 is a uniform bound on both (fn) and (gn) in that

|fn(x)| ≤ b and |gn(x)| ≤ b (7.2.41)
for each n ∈ N and x ∈ D. Prove the sequence of products (fngn) converges uniformly.
7.2.8. Suppose D ⊆ R. For every bounded function g : D → R, define the supremum norm ‖g‖∞
by

‖g‖∞ = sup |g(D)| = sup{|g(x)| : x ∈ D}. (7.2.42)
Suppose fn : D → R is bounded for each n ∈ N and f : D → R. Prove (fn) converges uniformly
to f on D if and only if

lim
n→∞

‖fn − f‖∞ = 0. (7.2.43)

7.2.9. Suppose D ⊆ R and let U(D) denote the set of uniformly convergent sequences of real-
valued functions on D. Use Lemma 1.6.7 to prove U(D) is a vector space.

7.3 Calculus and uniform convergence
This section develops results connecting uniform convergence to three concepts in calculus: con-
tinuity, integration, and differentiation. The proofs are a culmination of results developed earlier
in the book.

For starters, recall that Example 7.1.6 shows us the sequence of continuous monomials (xn)
converges pointwise on the compact interval [0, 1], but the pointwise limit is not continuous. Uni-
form convergence ensures the pointwise limit of a sequence of continuous functions is continuous.
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Theorem 7.3.1: Uniform convergence preserves continuity

If (fn) converges uniformly to f on D and fn is continuous on D for each n ∈ N, then the
uniform limit f is continuous on D.

Scratch Work 7.3.2: Triangle inequality and uniform threshold

Following the guide in Remark 4.3.4 for working with the definition of continuity (Definition
4.3.2), the goal is to end up with

|f(x)− f(c)| < ε. (7.3.1)

Thanks to the uniform convergence of (fn) to f , the outputs fn(x) and fn(c) can be made as
close as we like to their limits f(x) and f(c) using the same threshold, a uniform threshold
nε. The continuity of fnε allows us to make fnε(x) and fnε(c) close as we like. Stitching
distances together by adding zero and using the triangle inequality allows to show that since
f(x) is close to fnε(x), which is close to fnε(c), which is close to f(c), we have f(x) and
f(c) are close.

Proof of Theorem 7.3.1. Suppose (fn) converges uniformly to f on D and fn is continuous on D
for each n ∈ N. Let c ∈ D and ε > 0. By the definition of uniform convergence (Definition 7.2.1),
there is a uniform threshold nε/3 ∈ N such that

|fnε/3(x)− f(x)| < ε/3 for all x ∈ D. (7.3.2)

Since fnε/3 is continuous at c, by Definition 4.3.2 there is a threshold δε/3 > 0 such that

x ∈ D with |x− c| < δε/3 =⇒ |fnε/3(x)− fnε/3(c)| < ε

3 . (7.3.3)

Therefore, by adding zero (1.2.34) and the triangle inequality (1.2.32), for all x ∈ D where
|x− c| < δε/3 we have

|f(x)− f(c)| = |f(x)−fnε/3(x) + fnε/3(x)︸ ︷︷ ︸
add zero

−fnε/3(c) + fnε/3(c)︸ ︷︷ ︸
add zero

−f(c)| (7.3.4)

≤ |f(x)− fnε/3(x)|︸ ︷︷ ︸
unif. conv.

+ |fnε/3(x)− fnε/3(c)|︸ ︷︷ ︸
cont. of fnε/3

+ |fnε/3(c)− f(c)|︸ ︷︷ ︸
unif. conv.

(7.3.5)

<
ε

3 + ε

3 + ε

3 (7.3.6)

= ε. (7.3.7)

Hence, δε/3 is a threshold for the continuity of f at c. Since c is arbitrary, f is continuous on
D.
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Example 7.3.3: Pointwise does not imply integrable

Consider the sequence of functions (gn) defined on [0, 2] by

gn(x) =


0, when x = 0,
n, when x ∈ (0, 1/n),
1/x, when x ∈ [1/n, 2].

(7.3.8)

Then (gn) converges pointwise to the unbounded function g : [0, 2]→ R given by

g(x) =
0, when x = 0,

1/x, when x ∈ (0, 2].
(7.3.9)

For each n ∈ N, gn is continuous on (0, 2] by Theorem 5.2.1 since

gn

( 1
n

)
= lim

x→1/n
gn(x) = n. (7.3.10)

Also, each gn is integrable since it continuous except at single point, c = 0, much like
Example 6.4.7. However, the pointwise limit g is not bounded, so g is not integrable
(Definition 6.1.6). The proofs of these claims are omitted, but drawing figures is suggested.

When a sequence of integrable functions converges uniformly, the limit of their integrals is the
integral of the uniform limit.

Theorem 7.3.4: Uniform convergence respects integration

If (fn) converges uniformly to f on the compact interval [a, b] and fn is integrable over [a, b]
for each n ∈ N, then the uniform limit f is integrable over [a, b] and

lim
n→∞

∫ b

a
fn(x) dx =

∫ b

a

(
lim
n→∞

fn(x)
)
dx =

∫ b

a
f(x) dx. (7.3.11)

Scratch Work 7.3.5: Squeeze upper and lower sums together

As with so many of the proofs involving integration in Chapter 6, the approach here is to
find a partition that will bring the upper and lower sums of the uniform limit arbitrarily
close. The uniform convergence of (fn) means a particular fnε can be brought as close
to the uniform limit f as we like across the whole domain, and the Cauchy criterion for
integrability ((vi) in Theorem 6.2.12) allows us to squeeze the upper and lower sums of fnε
and f together.

Proof of Theorem 7.3.4. Suppose a < b, (fn) converges uniformly to f on [a, b], and fn is inte-
grable over [a, b] for each n ∈ N. Let ε > 0 and x ∈ [a, b]. By the definition of uniform convergence
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fn(x)

∫ b
a fn(x) dx

limn→∞ fn(x) = f(x)

∫ b
a f(x) dx =

∫ b
a (limn→∞ fn(x)) dx

= limn→∞
∫ b
a fn(x) dx

n→∞

n→∞

integrate
over [a, b]

integrate
over [a, b]

Figure 7.3.1: To pair with Theorem 7.3.4, this commutative diagram shows
that whether we integrate or take the limit first, the uniform convergence of a
sequence of integrable functions (fn) to a function f on [a, b] ensures the limit of
the integrals of fn is equal to the integral of the uniform limit f .

(Definition 7.2.1) and splitting the absolute value, there is a uniform threshold nε such that

|fnε(x)− f(x)| < ε

3(b− a) (7.3.12)

⇐⇒ − ε

3(b− a) < f(x)− fnε(x) < ε

3(b− a) . (7.3.13)

Adding fnε(x) gives us

fnε(x)− ε

3(b− a) < f(x) < fnε(x) + ε

3(b− a) (7.3.14)

for all x ∈ [a, b]. So, since fnε is bounded, f is bounded as well. Also, since fnε is integrable, by
Theorem 6.2.12 there is a partition Pε/3 = {x0, x1, . . . , xj} such that

u(fnε , Pε/3)− `(fnε , Pε/3) < ε

3 . (7.3.15)

Now, for each k = 1, . . . , j let

uk = sup f([xk−1, xk]), `k = sup f([xk−1, xk]), (7.3.16)
u′k = sup fnε([xk−1, xk]), and `′k = sup fnε([xk−1, xk]). (7.3.17)

Since a supremum is the least upper bound (Theorem 1.3.10), an infimum is the greatest lower
bound (Theorem 1.4.3), and the supremum is greater than the infimum over the same set, we
have

− ε

3(b− a) + `′k ≤ `k ≤ uk ≤ u′k + ε

3(b− a) . (7.3.18)

Since we have xk−xk−1 > 0 for each index k = 1, . . . , j, multiplying through (7.3.18) by (xk−xk−1),
noting the telescoping sum ∑j

k=1(xk − xk−1) = b− a is in play, and taking sums yields

−ε3 + `(fnε , Pε/3) ≤ `(f, Pε/3) ≤ u(f, Pε/3) ≤ u(fnε , Pε/3) + ε

3 . (7.3.19)
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By rearranging these inequalities as in property (vi) of Theorem 1.3.2 and including inequality
(7.3.15), we get

u(f, Pε/3)− `(f, Pε/3) ≤ u(fnε , Pε/3)− `(fnε , Pε/3) + 2ε
3 <

ε

3 + 2ε
3 = ε. (7.3.20)

Therefore, the uniform limit f satisfies the Cauchy criterion for integrability, so f is integrable
over [a, b] by Theorem 6.2.12.

Next, the goal is to show equations (7.3.11) hold. To that end, let ε > 0 again. By the
definition of uniform convergence (Definition 7.2.1), there is a uniform threshold qε such that for
all x ∈ [a, b] we have

n ≥ qε with n ∈ N =⇒ |fn(x)− f(x)| < ε

2(b− a) . (7.3.21)

Since the uniform limit f and each fn is integrable over [a, b], applications of the linearity of
integration (Theorem 6.3.6), the integral triangle inequality (Corollary 6.4.5), the order property
of integration (Corollary 6.3.10), and the integral of a constant (Lemma 6.1.10) combine to yield

∣∣∣∣∣
∫ b

a
fn −

∫ b

a
f

∣∣∣∣∣ =
∣∣∣∣∣
∫ b

a
(fn − f)

∣∣∣∣∣ (7.3.22)

≤
∫ b

a
|fn − f | (7.3.23)

≤
∫ b

a

ε

2(b− a) (7.3.24)

= ε

2(b− a)(b− a) (7.3.25)

= ε

2 (7.3.26)

< ε. (7.3.27)

By the definition of sequential limit (Definition 2.2.1), the sequence of integrals
(∫ b
a fn

)
converges

to
∫ b
a f and we have

lim
n→∞

∫ b

a
fn(x) dx =

∫ b

a

(
lim
n→∞

fn(x)
)
dx =

∫ b

a
f(x) dx. (7.3.28)

Uniform convergence has a more complicated relationship with derivatives than it does with
continuity and integration (see Theorems 7.3.1 and 7.3.4). For instance, the following example
shows that the derivative of a uniform limit is not necessarily the limit of derivatives. More
examples showing interesting behavior with derivatives despite uniform convergence are explored
in the exercises.
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Example 7.3.6: Uniform convergence with broken derivatives

Consider the sequence of functions (hn) on [−2, 2] given by

hn(x) = x

1 + nx2 . (7.3.29)

We have hn is differentiable on [−2, 2] for each index n ∈ N, (hn) converges uniformly to
the zero function h(x) = 0 on [−2, 2], but also

lim
n→∞

h′n(0) = 1 6= 0 = h′(0). (7.3.30)

Scratch Work 7.3.7: First derivative test

Since each hn is a rational function whose denominator is never zero, each hn is differentiable
by the Quotient Rule 5.4.10 with derivative given by

h′n(x) = (1 + nx2)(1)− x(2nx)
(1 + nx2)2 = 1− nx2

(1 + nx2)2 . (7.3.31)

So at x = 0, we have h′n(0) = 1.

The hard part is showing (hn) converges uniformly to the zero function on [−2, 2]. A uniform
threshold comes from an application of the First Derivative Test from calculus: Solving the
zeros of each h′n leads to

h′n(x) = 1− nx2

(1 + nx2)2 = 0 ⇐⇒ 1− nx2 = 0 ⇐⇒ x = ± 1√
n
. (7.3.32)

It turns out that for each index n ∈ N, these inputs yield the maximum and minimum
values of hn. Hence, we can convert these into a sequence of bounds on hn and get uniform
convergence from Lemma 7.2.4.

Proof of Example 7.3.6. Consider the sequence of functions (hn) on I = [−2, 2] defined for each
n ∈ N by

hn(x) = x

1 + nx2 . (7.3.33)

By the Quotient Rule 5.4.10, each hn is differentiable on [−2, 2] with derivative given by

h′n(x) = (1 + nx2)(1)− x(2nx)
(1 + nx2)2 = 1− nx2

(1 + nx2)2 . (7.3.34)

So at x = 0 we have h′n(0) = 1. Also, motivated by the First Derivative Test, we have

h′n(x) = 1− nx2

(1 + nx2)2 = 0 ⇐⇒ 1− nx2 = 0 ⇐⇒ x = ± 1√
n
. (7.3.35)
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Since the denominator of hn is positive for every x ∈ [−2, 2], we have

x ∈ [−2,−1/
√
n) =⇒ 1− nx2 < 0 =⇒ h′n(x) < 0, (7.3.36)

x ∈ (−1/
√
n, 1/

√
n) =⇒ 1− nx2 > 0 =⇒ h′n(x) > 0, and (7.3.37)

x ∈ (1/
√
n, 2] =⇒ 1− nx2 < 0 =⇒ h′n(x) < 0. (7.3.38)

By Corollary 5.5.15 applied for each n ∈ N, hn is decreasing on [−2,−1/
√
n), increasing on

(−1/
√
n, 1/

√
n), then decreasing again on (1/

√
n, 2]. Hence, the mimimum of hn is attained at

−1/
√
n and the maximum is attained at 1/

√
n. Therefore, we have

hn

(
− 1√

n

)
= − 1

2
√
n
≤ hn(x) ≤ 1

2
√
n

= hn

(
1√
n

)
(7.3.39)

for all x ∈ [−2, 2]. Rearranging the inequalities yields

|hn(x)| = |hn(x)− 0| ≤ 1
2
√
n
. (7.3.40)

Since (1/(2
√
n)) is a sequence of nonnegative bounds that converges to zero, Lemma 7.2.4 tells

us (hn) converges uniformly to the zero function h(x) = 0 on [−2, 2].

Despite Example 7.3.6, uniform convergence can preserve differentiability under suitable con-
ditions.

Theorem 7.3.8: Uniform convergence and derivatives

Suppose (fn) is a sequence of differentiable functions on [a, b] where the sequence of deriva-
tives (f ′n) converges uniformly to a function g on [a, b]. If there is some x0 ∈ [a, b] whose
output sequence (fn(x0)) converges, then there is a function f : [a, b]→ R such that

(i) (fn) converges uniformly to f on [a, b] with

f(x) = lim
n→∞

fn(x) (7.3.41)

for every x ∈ [a, b]; and

(ii) f is differentiable on [a, b] and f is an antiderivative of g with

f ′(x) = lim
n→∞

f ′n(x) = g(x) (7.3.42)

for every x ∈ [a, b].

Remark 7.3.9: Not like the others

The relationships uniform convergence has with continuity and integration are quite dif-
ferent from its relationship with differentiation. For instance, the hypotheses of Theorems
7.3.1 and 7.3.4 include the assumption that a sequence of functions converges uniformly
to a given function. On the other hand, in Theorem 7.3.8 the hypotheses include the
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assumption that a sequence of derivatives converges uniformly to a given function while
the conclusions include the uniform convergence of the antiderivatives. There are other
differences as well, including the hypothesis of the convergence of a single output sequence
in Theorem 7.3.8.

The proof is exceptionally long and brings together a wide variety of results to get the pair
of conclusions.

Proof of Theorem 7.3.8. Suppose the hypotheses of Theorem 7.3.8 hold and let ε > 0. Since the
output sequence (fn(x0)) converges, it is also Cauchy by the Cauchy criterion for sequences 2.6.5.
So, there is a threshold jε ∈ N such that

j, k ∈ N with j, k ≥ jε =⇒ |fj(x0)− fk(x0)| < ε

2 . (7.3.43)

Also, by the Cauchy criterion for uniform convergence 7.2.11, there is a threshold kε ∈ N such
that for all t ∈ [a, b] we have

j, k ∈ N with j, k ≥ kε =⇒ |f ′j(t)− f ′k(t)| <
ε

2(b− a) . (7.3.44)

Define nε = max{jε, kε} and assume j, k ∈ N with j, k ≥ nε so that inequalities (7.3.43) and
(7.3.44) both hold. By the linearity of derivatives (Theorem 5.4.1), we have fj−fk is differentiable
on [a, b] with

(fj − fk)′(t) = f ′j(t)− f ′k(t) (7.3.45)

for all t ∈ [a, b]. Now, without loss of generality, for any pair u, v ∈ [a, b] where u < v the Mean
Value Theorem 5.5.9 applies to fj − fk on [u, v]. Hence, there is some c ∈ (u, v) ⊆ [a, b] such that

(fj − fk)′(c) = f ′j(c)− f ′k(c) = fj(v)− fk(v)− (fj(u)− fk(u))
v − u

. (7.3.46)

Equivalently, by multiplying by v − u we have

(f ′j(c)− f ′k(c)(v − u) = fj(v)− fj(u) + fk(u)− fk(v). (7.3.47)

So, by adding zero, the triangle inequality (1.2.35), equation 7.3.47, and inequalities (7.3.43) and
(7.3.44), we have for all j, k ∈ N with j, k ≥ nε, all x ∈ [a, b] and some c0 ∈ [a, b] we have

|fj(x)− fk(x)| = |fj(x)− fk(x)−fj(x0) + fk(x0) + fj(x0)− fk(x0)︸ ︷︷ ︸
add zero

| (7.3.48)

≤ |fj(x)− fk(x)− fj(x0) + fk(x0)|+ |fj(x0)− fk(x0)| (7.3.49)
= |(f ′j(c0)− f ′k(c0))(x− x0)|+ |fj(x0)− fk(x0)| (7.3.50)

<
ε

2(b− a) |x− x0|+
ε

2 (7.3.51)

≤ ε

2(b− a)(b− a) + ε

2 (7.3.52)

= ε. (7.3.53)
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Hence, (fn) satisfies the Cauchy criterion for uniform convergence (Theorem 7.2.11). So there is
a function f : [a, b]→ R such that (fn) converges to f uniformly and

f(x) = lim
n→∞

fn(x) (7.3.54)

for every x ∈ [a, b]. Therefore, part (i) in Theorem 7.3.8 holds.
To prove part (ii) in Theorem 7.3.8 holds from here, fix x ∈ [a, b] and for each n ∈ N let qn

denote the extended difference quotient of fn at x given by

qn(y) =


fn(y)− fn(x)

y − x
, y ∈ [a, b]\{x},

f ′n(x), y = x.
(7.3.55)

Since each fn is differentiable on [a, b], by Definition 5.3.1 we have

f ′n(x) = lim
y→x

fn(y)− fn(x)
y − x

= lim
y→x

qn(y). (7.3.56)

Hence, qn is continuous at x by Theorem 5.2.1.
Now, with the goal of showing f is differentiable at x with f ′(x) = g(x), define q : [a, b]→ R

to be the extended difference quotient of f at x given by

q(y) =


f(y)− f(x)

y − x
, y ∈ [a, b]\{x}

g(x), y = x.
(7.3.57)

It turns out q is the pointwise limit of (qn) since, by the linearity of sequential limits (Theorem
2.3.9) and other properties, for all y ∈ [a, b]\{x} we have

lim
n→∞

qn(y) = lim
n→∞

fn(y)− fn(x)
y − x

=
lim
n→∞

fn(y)− lim
n→∞

fn(x)
lim
n→∞

(y − x) = f(y)− f(x)
y − x

. (7.3.58)

Also, for y = x we have

lim
n→∞

qn(x) = f ′n(x) = g(x) = q(x). (7.3.59)

Note that by Theorem 5.1.8 and the definition of derivative as the limit of the difference
quotient (Definition 5.3.1), the differentiability of f at x will be ensured once we show its extended
difference quotient q is continuous at x. This can be proven via Theorem 7.3.1 by showing the
sequence (qn) of continuous difference quotients converges to q uniformly.

To invoke the Cauchy criterion for uniform convergence (Theorem 7.2.11), let ε > 0. Since the
sequence of derivatives (f ′n) converges uniformly to g on [a, b], there is a threshold zε ∈ N such
that for all t ∈ [a, b] we have

j, k ∈ N with j, k ≥ zε =⇒ |f ′j(t)− f ′k(t)| <
ε

2 . (7.3.60)
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In particular, we have

|qj(x)− qk(x)| = |f ′j(x)− f ′k(x)| < ε

2 . (7.3.61)

Also, for all j, k ∈ N with j, k ≥ zε and all y ∈ [a, b]\{x}, by another argument involving the
Mean Value Theorem 5.5.9 as in the proof of part (i) above, for some c1 between x and y we have

|qj(y)− qk(y)| =
∣∣∣∣∣fj(y)− fj(x)

y − x
− fk(y)− fk(x)

y − x

∣∣∣∣∣ (7.3.62)

= |fj(y)− fj(x)− fk(x) + fk(y)|
∣∣∣∣∣ 1
y − x

∣∣∣∣∣ (7.3.63)

= |(f ′j(c1)− f ′j(c1))(x− y)|
∣∣∣∣∣ 1
y − x

∣∣∣∣∣ (7.3.64)

≤ ε

2 |x− y||
∣∣∣∣∣ 1
y − x

∣∣∣∣∣ (7.3.65)

< ε. (7.3.66)

Therefore, since y is arbitrary, the Cauchy criterion for uniform convergence 7.2.11 tells us the
sequence of difference quotients (qn) converges uniformly on [a, b] to its pointwise limit q. Since
each qn is continuous, Theorem 7.3.1 tells us the (now) uniform limit q is continuous. By Theorem
5.1.8 and the definition of derivative as the limit of difference quotients (Definition 5.3.1), we have
f is differentiable at every x ∈ [a, b] with

f ′(x) = lim
t→x

q(t) = q(x) = g(x) = lim
n→∞

f ′n(x). (7.3.67)

Therefore, part (ii) in Theorem 7.3.8 holds.

The next section develops one of the pinnacles of real analysis: the Weierstrass Approximation
Theorem 7.4.7.

Exercises
7.3.1. Suppose 0 < b < 1 and let (fn) be the sequence of monomials fn : [0, b]→ R from Exercise
7.2.1 given by fn(x) = xn for each n ∈ N and x ∈ [0, b].

(i) Prove lim
n→∞

∫ b

0
fn =

∫ b

0

(
lim
n→∞

fn

)
=
∫ b

0
0 = 0.

(ii) Extend the domain of (fn) to [0, 1]. See Example 7.1.4. Prove

lim
n→∞

∫ 1

0
fn =

∫ 1

0

(
lim
n→∞

fn

)
=
∫ 1

0
f = 0, (7.3.68)

where f is the pointwise limit of (fn) on [0, 1].



462 CHAPTER 7. POINTWISE AND UNIFORM CONVERGENCE

(iii) For each n ∈ N, determine the sequence of derivatives (f ′n) on [0, 1]. Does (f ′n) converge
pointwise or uniformly on [0, 1]? On [0, b] with 0 < b < 1?

7.3.2. Let fn : R→ R be the functions from Exercises 7.1.2 and 7.2.2 given by

fn(x) = (x2 + 1)
n2 (7.3.69)

for each n ∈ N and x ∈ R. Determine the sequence of derivatives (f ′n) on R. Does (f ′n) converge
uniformly on R?
7.3.3. Let gn : R→ R be the functions from Exercises 7.1.3 and 7.2.3 given by

gn(x) = sin x
n

+ x+ cosx (7.3.70)

for each n ∈ N and x ∈ R. Determine the sequence of derivatives (g′n) on R. Does (g′n) converge
uniformly on R?
7.3.4. Consider the sequence of spikes (tn) on [0, 2] given by

tn(x) =


n2x, when 0 ≤ x ≤ 1/n,
−n2x+ 2n, when 1/n < x < 2/n,
0, when 2/n ≤ x ≤ 2.

(7.3.71)

See Figure 7.3.2. Prove tn is continuous on [0, 2] for each index n ∈ N. Furthermore, determine
the pointwise limit t on [0, 2] and prove

lim
n→∞

∫ 2

0
tn 6=

∫ 2

0
t. (7.3.72)

Does (tn) converge to t uniformly on [0, 2]?
7.3.5. Suppose (rk) is an enumeration of Q ∩ [0, 2] where each rational number appears exactly
once as a term. Define fn : [0, 2]→ R for each n ∈ N by

fn(x) =


0, if x ∈ [0, 2]\Q,
1, if x = rk and k ≤ n,

0, if x = rk and k > n.

(7.3.73)

(i) Prove each fn is integrable over [0, 2].

(ii) Prove (fn) converges pointwise on [0, 2] to a bounded function. What is the pointwise limit?

(iii) Prove the pointwise limit of (fn) is not integrable. So, even if a sequence of integrable func-
tions converges pointwise to a bounded function, the pointwise limit may not be integrable.

7.3.6. Prove Dini’s Theorem, a partial converse to Theorem 7.3.1: Suppose K ⊆ R is compact
and (fn) converges pointwise to f on K such that the output sequence (fn(x)) is increasing for
each x ∈ K. Then (fn) converges uniformly to f on K.

Hint: For a fixed ε > 0 and each n ∈ N, let
Kn = {x ∈ K : f(x)− fn(x) ≥ ε}. (7.3.74)

First prove K1 ⊇ K2 ⊇ K3 ⊇ · · · , then use this result to finish the proof of Dini’s Theorem.



7.3. CALCULUS AND UNIFORM CONVERGENCE 463

t1

t2

t3

x

y

|||||
0 212/31/21/3

−

−

−

1

2

3

•

•

•

Figure 7.3.2: The sequence of spikes (tn) on [0, 2] in Exercise 7.3.4. Each tn is
continuous and has integral 1, but the sequence (tn) converges pointwise to 0.
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7.4 The Weierstrass Approximation Theorem
Polynomials are some of the most important and ubiquitous functions in mathematics. Moreover,

Every continuous function on a compact interval
is arbitrarily close to the set of polynomials.

The formal version of this statement is the Weierstrass Approximation Theorem 7.4.7. Our
approach to proving it is thanks to Ukrainian mathematician Sergei Natanovich Bernstein and
the polynomials that bear his name. While Bernstein’s approach was probabilistic in nature,
we also use a perspective of combinatorics stemming from the factorial function and binomial
coefficients. Following Bernstein, we first prove a special case of the Weierstrass Approximation
Theorem that holds on the unit interval (Theorem 7.4.5).

Definition 7.4.1: Bernstein basis polynomial

Given a nonnegative integer n ∈ N∪{0} and k = 0, 1, . . . , n, the Bernstein basis polynomial
bn,k : [0, 1]→ R is given by

bn,k(x) =
(
n

k

)
xk(1− x)n−k. (7.4.1)

Example 7.4.2: Some Bernstein basis polynomials

Here are the first six Bernstein basis polynomials for n = 0, 1, 2:

b0,0(x) = 1, (7.4.2)
b1,0(x) = (1− x), b1,1(x) = x, (7.4.3)
b2,0(x) = (1− x)2, b2,1(x) = 2x(1− x), and b2,2(x) = x2. (7.4.4)

The Bernstein basis polynomials exhibit some very interesting probabilistic properties and
play a central role in approximating continuous functions over the compact interval [0, 1]. The
proof of the following lemma is left as a collection of exercises.

Lemma 7.4.3: Probability and Bernstein basis polynomials

Suppose x ∈ [0, 1] and n ∈ N ∪ {0}. Then
(i) bn,k(x) ≥ 0 (nonnegativity);

(ii)
n∑
k=0

bn,k(x) =
n∑
k=0

(
n

k

)
xk(1− x)n−k = 1 (probability, partition of unity);

(iii)
n∑
k=0

k

n
bn,k(x) =

n∑
k=0

k

n

(
n

k

)
xk(1− x)n−k = x (mean); and

(iv)
n∑
k=0

(
x− k

n

)2

bn,k(x) =
n∑
k=0

(
x− k

n

)2 (
n

k

)
xk(1− x)n−k = x(1− x)

n
(variance).
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Figure 7.4.1: The QR code takes you to the Desmos activity “Bern-
stein polynomial” designed to accompany Definition 7.4.4. It allows for
an exploration of the Bernstein polynomials defined by a sine function.
https://www.desmos.com/calculator/gwxwh9nrow

Bernstein polynomials approximate all continuous functions over the compact interval [0, 1]
as closely as we like. Each is defined as a linear combination of Bernstein basis polynomials
(Definition 7.4.1) with weights (or scalars) given by an interpolation type of process using a finite
set of outputs from a given continuous function.

Definition 7.4.4: Bernstein polynomial

Given a continuous function f : [0, 1]→ R and n ∈ N ∪ {0}, the nth Bernstein polynomial
of f is the linear combination of Bernstein basis polynomials given by

Bn(f)(x) =
n∑
k=0

f

(
k

n

)
bn,k(x) =

n∑
k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k. (7.4.5)

See Figure 7.4.1.

The following version of theWeierstrass Approximation Theorem tells us real-valued continuous
functions on the unit interval [0, 1] are arbitrarily close to their set of Bernstein polynomials.

Theorem 7.4.5: Weierstrass Approximation Theorem on [0, 1]

If f : [0, 1] → R is continuous, then for every ε > 0 there is an index nε ∈ N such that for
all x ∈ [0, 1] we have

|Bnε(f)(x)− f(x)| < ε. (7.4.6)

Scratch Work 7.4.6: Split the difference

The proof of Theorem 7.4.5 comes from a careful decomposition of the difference

|Bn(f)(x)− f(x)|. (7.4.7)

https://www.desmos.com/calculator/gwxwh9nrow
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The uniform continuity of f on [0, 1] and the triangle inequality (1.2.35) allows us to squeeze
the decomposed difference to be less than any given ε > 0.

Proof of Theorem 7.4.5. Suppose f : [0, 1]→ R is continuous. Since [0, 1] is compact, the Extreme
Value Theorem 4.6.9 tells us f is bounded. So, let

u = max |f |([0, 1]) = max{|f(x)| : x ∈ [0, 1]}. (7.4.8)

Also, f is uniformly continuous by Theorem 4.7.13.
Now let ε > 0. By Definition 4.7.1, there is a uniform threshold δ > 0 such that

x, y ∈ [0, 1] with |x− y| < δ =⇒ |f(x)− f(y)| < ε

2 . (7.4.9)

Next, choose an index nε ∈ N large enough to satisfy

nε >
4u
δ2ε

⇐⇒ 2u
nεδ2 <

ε

2 . (7.4.10)

The remainder of the proof shows that nε gives us the desired Bernstein polynomial Bnε .
By part (ii) of Lemma 7.4.3, for every n ∈ N ∪ {0} and x ∈ [0, 1] we have

f(x) = f(x)
n∑
k=0

bn,k(x) =
n∑
k=0

f(x)bn,k(x). (7.4.11)

Hence, by the definition of Bernstein polynomials (Definition 7.4.4), combining like terms, the
nonnegativity of the Bernstein basis polynomials (part (i) of Lemma 7.4.3), and repeated use of
the triangle inequality (1.2.35), we have

|Bn(f)(x)− f(x)| =
∣∣∣∣∣
n∑
k=0

f

(
k

n

)
bn,k(x)−

n∑
k=0

f(x)bn,k(x)
∣∣∣∣∣ (7.4.12)

=
∣∣∣∣∣
n∑
k=0

(
f

(
k

n

)
− f(x)

)
bn,k(x)

∣∣∣∣∣ (7.4.13)

≤
n∑
k=0

∣∣∣∣∣f
(
k

n

)
− f(x)

∣∣∣∣∣ bn,k(x) (7.4.14)

The next step is focus on the index nε to split (7.4.14) over the indices k = 0, 1, . . . , nε into those
where the ratio k/nε is within δ of x and those that aren’t. To that end, we have

nε∑
k=0

∣∣∣∣∣f
(
k

nε

)
− f(x)

∣∣∣∣∣ bnε,k(x) = (7.4.15)

∑
| knε−x|<δ

∣∣∣∣∣f
(
k

nε

)
− f(x)

∣∣∣∣∣ bnε,k(x) +
∑

| knε−x|≥δ

∣∣∣∣∣f
(
k

nε

)
− f(x)

∣∣∣∣∣ bnε,k(x) (7.4.16)
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For the sum over k where k/nε is within δ of x, by (7.4.14) and parts (i) and (ii) of Lemma 7.4.3
we have

∑
| knε−x|<δ

∣∣∣∣∣f
(
k

nε

)
− f(x)

∣∣∣∣∣ bnε,k(x) < ε

2

 ∑
| knε−x|<δ

bnε,k(x)

 ≤ ε

2 . (7.4.17)

For the sum over k where k/nε is at least δ away from x, by another application of the triangle
inequality (1.2.35) we have

∑
| knε−x|≥δ

∣∣∣∣∣f
(
k

nε

)
− f(x)

∣∣∣∣∣ bnε,k(x) ≤
∑

| knε−x|≥δ

(∣∣∣∣∣f
(
k

nε

)∣∣∣∣∣+ |f(x)|
)
bnε,k(x) (7.4.18)

≤
∑

| knε−x|≥δ
2ubnε,k(x) (7.4.19)

= 2u

 ∑
| knε−x|≥δ

bnε,k(x)

 . (7.4.20)

Also, since the sum is over k where k/nε is at least δ away from x, multiplying a nice version of
1 and applying part (iv) of Lemma 7.4.3 yields

∑
| knε−x|≥δ

bnε,k(x) =
∑

| knε−x|≥δ

∣∣∣ k
nε
− x

∣∣∣2∣∣∣ k
nε
− x

∣∣∣2 bnε,k(x) (7.4.21)

≤
∑

| knε−x|≥δ

∣∣∣ k
nε
− x

∣∣∣2
δ2 bnε,k(x) (7.4.22)

= 1
δ2

∑
| knε−x|≥δ

(
k

nε
− x

)2

bnε,k(x) (7.4.23)

= x(1− x)
nεδ2 . (7.4.24)

Since 0 ≤ x ≤ 1, we also have 0 ≤ 1− x ≤ 1 as well as 0 ≤ x(1− x) ≤ 1. Hence, by starting from
(7.4.14) with index n = nε, splitting the resulting sum as in (7.4.16), then applying the bounds
(7.4.17), (7.4.20), and (7.4.24) we have

|Bnε(f)(x)− f(x)| ≤
nε∑
k=0

∣∣∣∣∣f
(
k

nε

)
− f(x)

∣∣∣∣∣ bnε,k(x) (7.4.25)

<
ε

2 + 2ux(1− x)
nεδ2 (7.4.26)

≤ ε

2 + 2u
nεδ2 (7.4.27)

< ε. (7.4.28)

Therefore, the Weierstrass Approximation Theorem holds on [0, 1].
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Figure 7.4.2: The QR code takes you to the Desmos activity “Weier-
strass Approximation Theorem” designed to accompany Theorem 7.4.7. It
allows for an exploration of generalized Bernstein polynomials which uni-
formly approximate a given continuous function on some compact interval.
https://www.desmos.com/calculator/p0ac1ozo3u

The full statement of the Weierstrass Approximation Theorem holds for real-valued continuous
functions on compact intervals.

Theorem 7.4.7: Weierstrass Approximation Theorem

If a < b and g : [a, b]→ R is continuous, then for every ε > 0 there is a polynomial pε such
that for all t ∈ [a, b] we have

|pε(t)− g(t)| < ε. (7.4.29)

See Figure 7.4.2.

Scratch Work 7.4.8: Composition with a line

The proof of the Weierstrass Approximation Theorem 7.4.7 follows from the special case
of the theorem on the unit interval [0, 1] as in Theorem 7.4.5. The idea is to replace the
given function g which is defined on [a, b] with an equivalent function f defined on [0, 1]
so that Theorem 7.4.5 applies and gives us a suitable Bernstein polynomial. The trick
is to compose a line with g to generate f through a change of variables. Since lines are
continuous, g is assumed to be continuous, and compositions of continuous functions are
continuous, f will be continuous as well.

The line for the job is h : [0, 1]→ [a, b] and its inverse h−1 : [a, b]→ [0, 1] given by

h(x) = t = (b− a)x+ a ⇐⇒ h−1(t) = x = t− a
b− a

, (7.4.30)

and the desired polynomial pε will stem from a Bernstein polynomial defined by the com-
position g ◦ h.

https://www.desmos.com/calculator/p0ac1ozo3u
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Proof of the Weierstrass Approximation Theorem 7.4.7. Suppose a < b and g : [a, b] → R is con-
tinuous. Since b − a > 0, the line h : [0, 1] → [a, b] and its inverse h−1 : [a, b] → [0, 1] given
by

h(x) = t = (b− a)x+ a ⇐⇒ h−1(t) = x = t− a
b− a

(7.4.31)

are both well-defined (and each is a bijection). Also, the compositions f = g ◦ h and g = f ◦ h−1

are well-defined with

f(x) = g(h(x)) = g((b− a)x+ a) and g(t) = f(h−1(t)) = f
(
t− a
b− a

)
(7.4.32)

for all x ∈ [0, 1] and all t ∈ [a, b], respectively.
Next, since lines are continuous as a special case of the basic affine transformations in Theorem

4.3.9, g is continuous on [a, b], and compositions of continuous functions are continuous (Theorem
4.5.13), the composition f = g ◦ h is continuous on [0, 1].

Now let ε > 0. By the special case of the Weierstrass Approximation Theorem 7.4.5 that holds
on [0, 1], there is an index nε ∈ N whose Bernstein polynomial Bnε(f)(x) is arbitrarily close to
f(x) in that for every x ∈ [0, 1] we have

|Bnε(f)(x)− f(x)| < ε. (7.4.33)

Define pε : [a, b]→ R by

pε(t) = Bnε(f)(h−1(t)) = Bnε(f)
(
t− a
b− a

)
. (7.4.34)

Since g(t) = f(x) and x = (t− a)/(b− a), we have

|pε(t)− g(t)| =
∣∣∣∣Bnε(f)

(
t− a
b− a

)
− g(t)

∣∣∣∣ (7.4.35)

= |Bnε(f)(x)− f(x)| < ε. (7.4.36)

To see that pε is indeed a polynomial, note that for every t ∈ [a, b], the definition of Bernstein
polynomials (Definition 7.4.4) along with (7.4.31) and (7.4.32) yields

pε(t) = Bnε(f)
(
t− a
b− a

)
(7.4.37)

=
nε∑
k=0

f

(
k

nε

)
bnε,k

(
t− a
b− a

)
(7.4.38)

=
nε∑
k=0

f

(
k

nε

)(
t− a
b− a

)k (
1− t− a

b− a

)nε−k
(7.4.39)

=
nε∑
k=0

g

(
(b− a) k

nε
+ a

)(
t− a
b− a

)k (
1− t− a

b− a

)nε−k
. (7.4.40)

The last two sums above show that pε is a polynomial.

An analog of the fundamental theorem of arbitrarily close (Theorem 2.3.1) tells us every
continuous function on a compact interval is the uniform limit of a sequence of polynomials.



470 CHAPTER 7. POINTWISE AND UNIFORM CONVERGENCE

Corollary 7.4.9: A continuous function is the uniform limit
of a sequence of polynomials

If a < b and g : [a, b] → R is continuous, then there is a sequence of polynomials (pn) that
converges uniformly to g on [a, b] where

lim
n→∞

pn(t) = g(t) (7.4.41)

for all t ∈ [a, b].

Scratch Work 7.4.10: A fundamental argument

The Weierstrass Approximation Theorem 7.4.7 is truly a statement about objects that are
arbitrarily close to sets. In fact, the scratch work and proof follow in much the same way as
Scratch Work 2.3.2 and Theorem 2.3.1 on the fundamental connection between arbitrarily
close and convergence: An object arbitrarily close to a set is the limit of a sequence of
objects from the set. Here, the objects are continuous functions on compact intervals and
the sets are the sets of polynomials defined on those compact intervals.

The argument follows by taking advantage of the idea that ε > 0 is arbitrary, so a sequence
of positive real numbers which tend to zero yields the desired sequence of polynomials
through the Weierstrass Approximation Theorem 7.4.7.

Proof of Corollary 7.4.9. Suppose a < b and g : [a, b]→ R is continuous, and let ε > 0. Consider
the sequence of positive real numbers (εn) given by

εn = 1
n
> 0 for all n ∈ N. (7.4.42)

By the Weierstrass Approximation Theorem 7.4.7, there is a sequence of polynomials (pn) such
that for each n ∈ N we have

|pn(t)− g(t)| < εn = 1
n

for all t ∈ [a, b]. (7.4.43)

Now choose nε ∈ N such that

nε >
1
ε

⇐⇒ 1
nε

< ε. (7.4.44)

Then for every n ∈ N where n ≥ nε and every t ∈ [a, b] we have

|pn(t)− g(t)| < 1
n
≤ 1
nε

< ε. (7.4.45)

Therefore, by Definition 7.2.1, nε is a uniform threshold and (pn) converges uniformly to g on
[a, b].

Here’s a fun way to finish the chapter.
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Remark 7.4.11: Weierstrass Approximation Theorem haiku

Continuity,
arbitrarily close to
polynomial.

The next chapter turns our attention to series.

Exercises
7.4.1. Use mathematical software (Desmos, GeoGebra, etc.) to explore the Bernstein polynomials
of the following functions defined on [0, 1].

(i) f1(x) = 2x2 − 2x+ 1

(ii) f2(x) = sin 2πx

(iii) f3(x) = cos 2πx

(iv) f4(x) = ex

(v) f5(x) = ln x

(vi) f6(x) = 1/(1 + x)

7.4.2. The Bernstein basis polynomials bn,k exhibit a wide variety of interesting behaviors includ-
ing and beyond Lemma 7.4.3. Suppose x ∈ [0, 1], n ∈ N ∪ {0}, and k = 0, 1, . . . , n. Prove the
following statements.

(i) bn,k(x) ≥ 0 (nonnegativity).

(ii)
n∑
k=0

bn,k(x) =
n∑
k=0

(
n

k

)
xk(1− x)n−k = 1 (probability, partition of unity).

Hint: Apply the Binomial Theorem 1.2.24 to (x+ (1− x)).

(iii)
n∑
k=0

k

n
bn,k(x) =

n∑
k=0

k

n

(
n

k

)
xk(1− x)n−k = x (mean).

Hint: Take the derivative of (x+ y)n with respect to x while treating y as a constant, then
let y = 1− x.

(iv)
n∑
k=0

(
x− k

n

)2

bn,k(x) =
n∑
k=0

(
x− k

n

)2 (
n

k

)
xk(1− x)n−k = x(1− x)

n
(variance).

Hint: Take the second derivative of (x+y)n with respect to x while treating y as a constant,
then let y = 1− x.

(v) bn,k(1− x) = bn,n−k(x).

(vi) bn,k(x) where 0 < k ≤ n has a root at x = 0 with multiplicity k.

(vii) bn,k(x) where 0 ≤ k < n has a root at x = 1 with multiplicity n− k.
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(viii) Antiderivatives:
∫
bn,k(x) dx = 1

n+ 1

n+1∑
j=k+1

bn+1,j(x).

(ix) Definite integrals are constant for each n ∈ N:∫ 1

0
bn,k(x) dx = 1

n+ 1 . (7.4.46)

(x) The derivative b′n,k is a linear combination of Bernstein polynomials of lower degree:

b′n,k(x) = n(bn−1,k−1(x)− bn−1,k(x)). (7.4.47)

(xi) The jth derivatives at 0 and 1 are nice:

b
(j)
n,k(0) = n!

(n− k)!

(
j

k

)
(−1)k+j and b

(j)
n,k(1) = (−1)jb(j)

n,n−k(0). (7.4.48)

(xii) For n > 0, bn,k has a unique maximum attained at k/n and

max bn,k([0, 1]) = bn,k

(
k

n

)
= kk

nn
(n− k)n−k

(
n

k

)
. (7.4.49)



Chapter 8

Series

Series formalize the notion of infinite linear combinations and sums with infinitely many terms
by taking the terms of a sequence and adding them together one term at a time. In turn, series
define a notion of infinite polynomials through power series. The chapter brings the main content
of the book to a conclusion with an exploration of Taylor polynomials and series.

8.1 Series of real numbers

First, let’s define series of real numbers. Series of functions are defined later. Although series of
vectors in Euclidean spaces make for a meaningful and interesting topic, they are not explored in
this book.

Definition 8.1.1: Series

A series of real numbers is an object of the form
∞∑
n=1

xn = x1 + x2 + x3 + · · · (8.1.1)

where (xn) is a sequence of real numbers called the terms of the series. For each index
k ∈ N, the kth partial sum of the above series is the linear combination sk given by

sk =
k∑

n=1
xn = x1 + x2 + · · ·+ xk. (8.1.2)

Also, the k-tail of a series is the series defined by the sequential k-tail (xn≥k) where we have
∞∑
n=k

xn = xk + xk+1 + xk+2 + · · · . (8.1.3)

473



474 CHAPTER 8. SERIES

Remark 8.1.2: Indexing series

In practice, series can take more general forms than (8.1.1) such as
∞∑
n=0

xn = x0 + x1 + x2 + · · · (8.1.4)

where the indices begin with n = 0. That is, the indices can begin at any integer. For
instance, we have

∞∑
n=−3

1
2n = 8 + 4 + 2 + 1 + 1

2 + 1
4 + 1

8 + · · · (8.1.5)

where n ∈ N ∪ {−3,−2,−1, 0}. In this more general setting, every k-tail of a series as in
(8.1.3) is itself a series whose indices begin at an integer k.

Series converge when their partial sums converge as a sequence. Also, the sum of a series is
the limit of its sequence of partial sums.

Definition 8.1.3: Convergence and sum of a series

A series of real numbers
∞∑
n=1

xn = x1 + x2 + x3 + · · · (8.1.6)

converges when its sequence of partial sums (sk) converges as in Definition 2.2.1. In this
case, the limit of (sk) is a real number s called the sum of the series and we write

∞∑
n=1

xn = lim
k→∞

(
k∑

n=1
xn

)
= lim

k→∞
sk = s. (8.1.7)

Also, a series diverges if its sequence of partial sums diverges.

Remark 8.1.4: Series and sequences

Convergence of series is determined by the sequence of partial sums. As a result, the
approach to proofs on the convergence of series often involves the manipulation of partial
sums followed by properties of sequential limits from throughout Chapter 2 impact the
results we obtain on series. The first example of the section exhibits this idea.

Example 8.1.5: A telescoping series

Consider the series of positive numbers given by
∞∑
n=1

1
n(n+ 1) = 1

1 · 2 + 1
2 · 3 + 1

3 · 4 + · · · . (8.1.8)
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This series converges and its sum is 1.

Scratch Work 8.1.6: The partial sums telescope

The trick to this proof is to recognize that the partial sums telescope. Note that for each
n ∈ N, we can find a common denominator by multiplying by a couple of nice versions of 1
to get

1
n
− 1
n+ 1 = 1

n

(
n+ 1
n+ 1

)
− 1
n+ 1

(
n

n

)
(8.1.9)

= n+ 1
n(n+ 1) −

n

n(n+ 1) (8.1.10)

= (n+ 1)− n
n(n+ 1) (8.1.11)

= 1
n(n+ 1) . (8.1.12)

Reversing this process by adding a nice version of zero to the numerator leads to a sequence
of partial sums, each of which telescope.

Proof for Example 8.1.5. Consider the series
∞∑
n=1

1
n(n+ 1) = 1

1 · 2 + 1
2 · 3 + 1

3 · 4 + · · · . (8.1.13)

For each n ∈ N, by adding a nice version of zero to the numerator and splitting the fraction in
two, we have

1
n(n+ 1) = (n+ 1)− n

n(n+ 1) = n+ 1
n(n+ 1) −

n

n(n+ 1) = 1
n
− 1
n+ 1 . (8.1.14)

Thus, for each k ∈ N, the partial sum sk telescopes in that

sk =
k∑

n=1

1
n(n+ 1) (8.1.15)

=
k∑

n=1

( 1
n
− 1
n+ 1

)
(8.1.16)

=
(1

1 −
1
2

)
+
(1

2 −
1
3

)
+ 1

3 − · · · −
1
k

+
(1
k
− 1
k + 1

)
(8.1.17)

= 1− 1
k + 1 (8.1.18)

By the linearity of convergent sequences (Theorem 2.3.9), we have

lim
k→∞

sk = lim
k→∞

(
1− 1

k + 1

)
= lim

k→∞
1− lim

k→∞

1
k + 1 = 1− 0 = 1. (8.1.19)
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Therefore, by the definition of convergence for series (Definition 8.1.3), the series given by∑∞n=1 1/(n(n+
1)) converges to the sum 1 and

∞∑
n=1

1
n(n+ 1) = lim

k→∞
sk = 1. (8.1.20)

The geometric sums and decimal expansions explored in Section 2.7 series. In fact, infinite
decimal expansions (Definition 2.7.7) are the sums of convergent series thanks to Theorem 2.7.8.

Corollary 8.1.7: Decimals are series

Every infinite decimal expansion is the sum of a convergent series. Moreover,

0.x1x2 . . . = lim
k→∞

(
k∑

n=1

xn
10n

)
=
∞∑
n=1

xn
10n (8.1.21)

where (xn) is a sequence of digits satisfying

xn ∈ {0, 1, 2, . . . , 9} for each n ∈ N. (8.1.22)

Scratch Work 8.1.8: Interpret previous results

The proof follows from interpreting the results of Theorem 2.7.8 on infinite decimal expan-
sions as series. See Definitions 2.7.7, 8.1.1, and 8.1.3.

Proof of Lemma 7.2.6. Suppose (xn) is a sequence of digits given by

xn ∈ {0, 1, 2, . . . , 9} for each n ∈ N. (8.1.23)

Consider the infinite decimal expansion 0.x1x2 . . . and the modified sequence (xn/10n) along with
the series

∞∑
n=1

xn
10n . (8.1.24)

By Definitions 2.7.7, 8.1.1, and 8.1.3 along with Theorem 2.7.8, this series converges to the infinite
decimal expansion 0.x1x2 . . . since it is also the limit of the partial sums of the series. That is, we
have

0.x1x2 . . . = lim
k→∞

(
k∑

n=1

xn
10n

)
=
∞∑
n=1

xn
10n . (8.1.25)

Geometric sums from Definition 2.7.1 lead to a vital class of series: geometric series.
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Definition 8.1.9: Geometric series

A geometric series is a series of the form
∞∑
n=0

arn = a+ ar + ar2 + · · · (8.1.26)

where a, r ∈ R. The real number a is called the initial term and r is called the common
ratio. Also, we use the convention r0 = 1.

Geometric series provide an important class of series, especially since we know exactly when
they converge and what they converge to. Make sure you are comfortable with this result; geo-
metric series pop up in many proofs and exercises.

Theorem 8.1.10: Closed form for geometric series

A geometric series of the form
∞∑
n=0

arn = a+ ar + ar2 + · · · (8.1.27)

converges if and only if a = 0 or |r| < 1. In this case, the sum of the series is given by
∞∑
n=0

arn = a

1− r . (8.1.28)

Scratch Work 8.1.11: Consider the partial sums

The convergence or divergence of a series stems from the behavior of its partial sums. In the
case of geometric series, the partial sums are geometric sums as in Definition 2.7.1 (though
in the current context the role of the variables n and k are reversed). Specifically, thanks to
the Geometric Sum Formula 2.7.2, a geometric series of the form (8.1.27) has partial sums
given by

sk =
k∑

n=0
arn = a+ ar + ar2 + · · ·+ ark = a(1− rk+1)

1− r (8.1.29)

for each index k ∈ N and r 6= 1. Note how the k-th partial sum sk very much depends on
the behavior of the expression rk+1. The proof breaks down the argument into several cases
largely based on how the sequence (rk+1) behaves.

Proof of Theorem 8.1.10. Throughout the proof, consider geometric series of the form

∞∑
n=0

arn = a+ ar + ar2 + · · · (8.1.30)
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where a, r ∈ R. When r 6= 1, the partial sums are given by

sk =
k∑

n=0
arn = a+ ar + ar2 + · · ·+ ark = a(1− rk+1)

1− r , (8.1.31)

which follows from the Geometric Sum Formula 2.7.2.
Case (i), a = 0: Suppose a = 0. Then the partial sums of (8.1.30) are all zero. That is, for

each index k ∈ N we have

sk = 0(1− rk+1)
1− r = 0. (8.1.32)

Hence, the corresponding geometric series converges to 0 since
∞∑
n=0

0rn = lim
k→∞

sk = lim
n→∞

0 = 0. (8.1.33)

The remaining cases consider nonzero values of a.

Case (ii), |r| < 1: Suppose a 6= 0 and |r| < 1. By Corollary 2.4.19, we have

lim
k→∞

rk+1 = 0. (8.1.34)

Hence, by the linearity of limits of sequences (Theorem 2.3.9) we have
∞∑
n=0

arn = lim
k→∞

sk = lim
k→∞

(
a(1− rk+1)

1− r

)
= a

1− r . (8.1.35)

Case (iii), r = −1: Suppose a 6= 0 and r = −1. Then rk+1 = (−1)k+1 for each index k ∈ N,
meaning rk+1 = 1 when k is odd and rk+1 = −1 when k is even. Hence, the partial sums alternate
between a and 0 since

sk = a(1− (−1)k+1)
1− (−1) =

0, when k is odd,
a, when k is even.

(8.1.36)

The subsequences of (sk) determined by odd and even indices, respectively (s2j−1) and (s2j),
converge to different limits since

lim
j→∞

s2j−1 = 0 6= a = lim
j→∞

s2j. (8.1.37)

Therefore, by the Divergence Criteria for Sequences 2.6.9, the sequence of partial sums (sk) and
the geometric series ∑∞n=0 ar

n diverge.
Case (iv), r = 1: Suppose a 6= 0 and r = 1. Then rk+1 = 1 for every index k ∈ N and so the

sequence of partial sums is unbounded since

sk =
k∑

n=0
a1k+1 = a(k + 1). (8.1.38)
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Therefore, by the Divergence Criteria for Sequences 2.6.9, the sequence of partial sums (sk) =
(a(k + 1)) and the geometric series ∑∞n=0 ar

n diverge.
Case (v), |r| > 1: Suppose a 6= 0 and |r| > 1. Then (rk+1) is unbounded, and so the sequence

of partial sums is unbounded as well since

sk = a(1− rk+1)
1− r = a

1− r − r
k
(

r

1− r

)
. (8.1.39)

Therefore, by the Divergence Criteria for Sequences 2.6.9, the sequence of partial sums (sk) and
the geometric series ∑∞n=0 ar

n diverge.

Every real number can be thought of as the sum of lots of different series. Also, we can always
reindex a series to start with n = 0, 1, or any integer we like.

Example 8.1.12: Sum to 1

Geometric series of various forms sum to 1. For instance,
∞∑
n=1

1
2n =

∞∑
n=0

1/2
2n = 1

2 + 1
4 + 1

8 + · · · = 1 and (8.1.40)

∞∑
n=1

9
10n =

∞∑
n=0

9/10
10n = 9

10 + 9
100 + · · · = 0.999 . . . = 1. (8.1.41)

Since both series are geometric series (Definition 8.1.9), both sums follow from Theorem
8.1.10 by setting a = r = 1/2 and a = 9/10 with r = 1/10, respectively. We have

∞∑
n=0

1
2n+1 =

∞∑
n=0

1/2
2n = 1/2

1− (1/2) = 1 and (8.1.42)

∞∑
n=1

9
10n =

∞∑
n=0

9/10
10n = 9/10

1− (1/10) = 1. (8.1.43)

Also, see Example 2.7.10 where it is shown that 0.999 . . . = 1 from the perspective of infinite
decimal expansions as limits of sequences of finite decimal expansions.

As a first application of geometric series, we can prove that the set of rational numbers Q is,
in some sense, arbitrarily small. Specifically, even though the rationals are unbounded and dense
in the real line, Q is contained in the union of a countable number of open intervals whose total
length can be made as small as we like. Try to draw it yourself to get a sense of what this might
mean.

Theorem 8.1.13: The set of rational numbers is arbitrarily small

For every ε > 0, there is a sequence of open intervals (In) where In = (an, bn) for each index
n ∈ N ∪ {0},

Q ⊆
∞⋃
n=0

In and
∞∑
n=0

(bn − an) = ε. (8.1.44)
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Scratch Work 8.1.14: Break ε into countably many pieces

The key idea is to take the positive number ε and break it into countably many pieces whose
sum is ε. Resetting the initial term to a = ε/2 for the first geometric series in Example
8.1.12 yields

∞∑
n=0

ε

2n+1 =
∞∑
n=1

ε/2
2n = ε/2

1− (1/2) = ε. (8.1.45)

From here, the open intervals In stem from any enumeration of the rationals (rn) where, for
each index n ∈ N ∪ {0}, we pair the rational number rn with the open interval In centered
at rn whose length—the distance between its endpoints—is exactly ε/2n+1. Setting the
endpoints an and bn to be the real numbers at exactly ε/2n+2 away from rn gets the job
done.

Proof of Theorem 8.1.13. Let (rn) be an enumeration of the rationals Q starting with index n = 0
and let ε > 0. For each index n ∈ N ∪ {0}, define

an = rn −
ε

2n+2 , bn = rn + ε

2n+2 , (8.1.46)

and

In = (an, bn) =
(
rn −

ε

2n+2 , rn + ε

2n+2

)
. (8.1.47)

Since (rn) accounts for every rational number and rn ∈ In = (an, bn) for each index n ∈ N ∪ {0},
we have

Q ⊆
∞⋃
n=0

In =
∞⋃
n=0

(an, bn). (8.1.48)

Furthermore, we have

bn − an =
(
rn + ε

2n+2

)
−
(
rn −

ε

2n+2

)
= 2ε

2n+2 = ε

2n+1 . (8.1.49)

Therefore,
∞∑
n=0

(bn − an) =
∞∑
n=0

ε

2n+1 =
∞∑
n=1

ε/2
2n = ε/2

1− (1/2) = ε. (8.1.50)

Remark 8.1.15: Countable subsets of a Euclidean space
are arbitrarily small

Scratch Work 8.1.14 and the proof of Theorem 8.1.13 can be modified to prove a more
general statement when S is a countable subset of a Euclidean space Rm. In this case, S
is arbitrarily small in the following sense: For every ε > 0, there is a sequence of open
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neighborhoods (Vn) where for each index n ∈ N ∪ {0} the neighborhood Vn is centered at
some point in S and has radius εn where

S ⊆
∞⋃
n=0

Vn and
∞∑
n=0

εn = ε. (8.1.51)

The details of such a proof are left as an exercise.

To close out the section, consider an important pair of examples.

Example 8.1.16: Harmonic series

The series
∞∑
n=1

1
n

= 1 + 1
2 + 1

3 + · · · (8.1.52)

is known as the harmonic series. Despite the fact that its sequence of terms converges to
zero, the harmonic series diverges. That is,

lim
n→∞

1
n

= 0 and yet
∞∑
n=1

1
n

diverges. (8.1.53)

Scratch Work 8.1.17: Consider the partial sums

As with geometric series, the convergence or divergence of the harmonic series can be
determined by the behavior of the partial sums. Here, they are shown to be arbitrarily
large in that every time we skip from one partial sum to another by doubling the number
of terms considered, we add at least 1/2. For instance:

s1 = 1, (8.1.54)

s2 = 1 + 1
2 , (8.1.55)

s4 = 1 + 1
2 +

(1
3 + 1

4

)
(8.1.56)

> 1 + 1
2 +

(1
4 + 1

4

)
= 1 + 2

2 , and (8.1.57)

s8 = 1 + 1
2 +

(1
3 + 1

4

)
+
(1

5 + 1
6 + 1

7 + 1
8

)
(8.1.58)

> 1 + 1
2 +

(1
4 + 1

4

)
+
(1

8 + 1
8 + 1

8 + 1
8

)
= 1 + 3

2 . (8.1.59)

In general, an induction argument shows that for each index k ∈ N we have

s2k =
2k∑
n=1

1
n
> 1 + k

2 . (8.1.60)
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Thus, the sequence of partial sums is unbounded and so, by the Divergence Criteria for
Sequences 2.6.9, the harmonic series diverges.

The details of the induction argument and the proof are left as an exercise.

The number e from calculus is known as Euler’s number, and one way to define it is as the
sum of a special convergent series of positive numbers.

Example 8.1.18: Euler’s number e

Euler’s number e is the sum of the series whose terms are 1/(n!) for each index n ∈ N∪{0}.
That is, this series converges and we define e as the sum. Hence,

e =
∞∑
n=0

1
n! . (8.1.61)

Scratch Work 8.1.19: Comparing partial sums

The goals is to show Euler’s number e is well-defined by showing its series converges. As
with all the proofs in the section up to this point, the result is obtained by considering
partial sums and taking advantage of properties of sequential limits. Here, the convergence
of the given series follows from showing the partial sums form an increasing sequence which
is bounded above and, therefore, converges by the Monotone and Bounded Convergence
Theorem 2.4.9.

Proof for Example 8.1.18. Consider the series whose terms are 1/n! for each n ∈ N ∪ {0}. Since
1/n ≤ 1/2 when n ≥ 2, for each n ∈ N ∪ {0} we have

0 ≤ 1
n! = 1

1 · 2 · 3 · · · (n− 1) · n ≤
1

1 · 2 · 2 · · · 2 · 2︸ ︷︷ ︸
n factors

= 1
2n−1 . (8.1.62)

The sequence of partial sums (sk) is bounded above by 4 since, for each k ∈ N ∪ {0},

sk =
k∑

n=0

1
n! ≤

k∑
n=0

1
2n−1 = 2(1− (1/2)n+1)

1− (1/2) ≤ 2
1/2 = 4, (8.1.63)

where the sum on the right is a geometric sum and the Geometric Sum Formula 2.7.2 applies.
Also, the sequence of partial sums (sk) is increasing since

sk =
k∑

n=0

1
n! ≤

(
k∑

n=0

1
n!

)
+ 1

(k + 1)! =
k+1∑
n=0

1
n! = sk+1. (8.1.64)

Hence, by the Monotone and Bounded Convergence Theorem 2.4.9, the sequence of partial sums
(sk) converges. Therefore, the number e is well-defined by

e =
∞∑
n=0

1
n! (8.1.65)

since this series converges by Definition 8.1.3.
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The next section develops some key properties of series of real numbers.

Exercises
8.1.1. Prove convergent series are linear: Suppose ∑∞n=1 xn and ∑∞n=1 yn are convergent series of
real numbers which converge to x and y, respectively, and suppose α ∈ R. Then ∑∞n=1(xn + yn)
converges to x+ y and ∑∞n=1(αxn) converges αx. That is,

(i)
∞∑
n=1

(xn + yn) =
∞∑
n=1

xn +
∞∑
n=1

yn = x+ y (additivity); and

(ii)
∞∑
n=1

(αxn) = α
∞∑
n=1

xn = αx (homogeneity).

Hint: The convergence of a series is defined by the convergence of the sequence of partial sums
(Definition 8.1.3), so apply the linearity of sequential limits (Theorem 2.3.9) to the partial sums.

8.1.2. Assume convergent series are linear as in the previous exercise. Prove the following corol-
lary: Suppose q ∈ N and for each j = 1, . . . , q we have αj ∈ R and the series of real numbers∑∞
n=1 xj,n converges to xj. Then the series of linear combinations ∑∞n=1

∑q
j=1(αjxj,n) converges to

the linear combination of series ∑q
j=1

∑∞
n=1(αjxj,n), and we have

∞∑
n=1

q∑
j=1

(αjxj,n) =
q∑
j=1

(
αj

∞∑
n=1

xj,n

)
=

q∑
j=1

(αjxj). (8.1.66)

8.1.3. Prove the harmonic series
∞∑
n=1

1
n

diverges by completing the argument started in Scratch

Work 8.1.17.

8.1.4. Determine whether the series
∞∑
n=1

1
n+ 3n converges or diverges.

8.1.5. Prove lim
n→∞

(
1 + 1

n

)n
= e by completing the following steps.

(i) Use the Binomial Theorem 1.2.24 to show for each n ∈ N we have

yn =
(

1 + 1
n

)n
= 1 + 1 + 1

2!

(
1− 1

n

)
+ 1

3!

(
1− 1

n

)(
1− 2

n

)
+ · · ·

+ 1
n!

(
1− 1

n

)(
1− 2

n

)
· · ·

(
1− n− 1

n

)
. (8.1.67)

(ii) Use (i) to show (yn) is increasing and bounded above by e. Why does this show lim
n→∞

yn =

lim
n→∞

(
1 + 1

n

)n
converges?
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(iii) Let n, k ∈ N where n ≥ k and sk is the kth partial sum of the series that defines e in
Example 8.1.18. Show that sk ≤ yn.

(iv) Combine the above results to complete the proof.

8.1.6. This exercise shows Euler’s number e is irrational.

(i) Let k ∈ N and let sk denote the kth partial sum of the series that defines e in Example
8.1.18. Prove

0 <e− sn <
1
k!k . (8.1.68)

Note that this inequality shows how rapidly the series ∑∞n=1 1/n! converges to its sum e.

(ii) Use (i) and a contradiction argument to prove e is irrational.

8.1.7. Construct a function h : R→ R satisfying the following properties and prove your result:

(i) h is increasing.

(ii) h is continuous at every c ∈ R\N.

(iii) h is discontinuous at every c ∈ N.

(iv) h is bounded. Hint: Split a positive bound b into countably many pieces as done with ε in
Scratch Work 8.1.14.

8.1.8. Prove that if an infinite decimal expansion is repeating, then the infinite decimal expansion
converges to a rational number.

8.1.9. Prove countable sets are arbitrarily small (as mentioned in Remark 8.1.15): If S is a
countable subset of a Euclidean space Rm, then for every ε > 0 there is a sequence of open
neighborhoods (Vn) where for each index n ∈ N ∪ {0} the neighborhood Vn is centered at some
point in S and has radius εn where

S ⊆
∞⋃
n=0

Vn and
∞∑
n=0

εn = ε. (8.1.69)

8.2 Properties of series
The primary motivation for this section is determining conditions under which a series converges
or diverges.

First up, the proof of Example 8.1.18 can be modified to yield a characterization of convergent
series when the terms are nonnegative.
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Theorem 8.2.1: Nonnegative and bounded partial sums

Suppose ∑∞n=1 an is a series of nonnegative real numbers (specifically, an ≥ 0 for all n ∈ N).
Then ∑∞n=1 an converges if and only if the sequence of partial sums (sk) is bounded.

Proof of Theorem 8.2.1. Suppose∑∞n=1 an is a series of real numbers where, throughout the proof,
an ≥ 0 for every n ∈ N.

For the forward implication, assume ∑∞n=1 an converges. Since a series converges when its
sequence of partial sums converge (Definition 8.1.3), and convergent sequences are bounded (The-
orem 2.3.15), it follows that the sequence of partial sums (sk) is bounded.

For the backward implication, assume the sequence of partial sums (sk) is bounded. For each
for each k ∈ N, ak+1 ≥ 0 implies

sk =
k∑

n=0
an ≤

(
k∑

n=0
an

)
+ ak+1 =

k+1∑
n=0

an = sk+1. (8.2.1)

Hence, (sk) is increasing as well. So by the Monotone and Bounded Convergence Theorem 2.4.9,
the sequence of partial sums (sk) converges. Therefore, the series

∑∞
n=1 an converges by Definition

8.1.3.

Convergent series are characterized by a Cauchy criterion. Like the other Cauchy criteria,
convergence is assured even without a candidate for the limit/derivative/integral/sum in mind.
However, the Cauchy criterion for series below looks a bit different from the others. We can
concentrate on the difference of partial sums, leading to a finite sum of terms starting at some
index past a threshold.

Theorem 8.2.2: Cauchy criterion for series

Suppose ∑∞n=1 xn is a series of real numbers. Then ∑∞
n=1 xn converges if and only if, for

every ε > 0, there is a threshold nε ∈ N such that for all j, k ∈ N where j > k ≥ nε we have∣∣∣∣∣∣
j∑

n=k+1
xn

∣∣∣∣∣∣ = |xk+1 + xk+2 + · · ·+ xj−1 + xj| < ε. (8.2.2)

Scratch Work 8.2.3: Apply the Cauchy criterion for sequences
to the partial sums

The threshold follows from the Cauchy criterion for sequences 2.6.5 when the partial sums of
the series are taken into consideration. The sum in inequality (8.2.2) comes from canceling
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the first k terms from the jth partial sum of the series, like this:

sj − sk =
j∑

n=1
xn −

k∑
n=1

xn (8.2.3)

= (x1 + · · ·+ xk + xk+1 + · · ·+ xj−1 + xj) (8.2.4)
− (x1 + · · ·+ xk) (8.2.5)

= xk+1 + · · ·+ xj−1 + xj (8.2.6)

=
j∑

n=k+1
xn. (8.2.7)

On to the proof.

Proof of Theorem 8.2.2. Suppose∑∞n=1 xn is a series of real numbers and j, k ∈ N such that j > k.
By taking the difference of the jth and kth partial sums as in Scratch Work 8.2.3, we have∣∣∣∣∣∣

j∑
n=1

xn −
k∑

n=1
xn

∣∣∣∣∣∣ =
∣∣∣∣∣∣

j∑
n=k+1

xn

∣∣∣∣∣∣ = |xk+1 + xk+2 + · · ·+ xj−1 + xj|. (8.2.8)

So, the hypothesis for the backward implication is identical to the definition of a Cauchy sequence
(Definition 2.6.1) when applied to the sequence of partial sums, meaning it is also equivalent to
the convergence of the series. That is, by the definition of convergence for series as the converge
of the sequence of partial sums (Definition 8.1.3) and the Cauchy criterion for sequences 2.6.5
applied to the partial sums, we have the desired result: The series ∑∞n=1 xn converges if and only
if, for every ε > 0, there is a threshold nε ∈ N such that for all j, k ∈ N where j > k ≥ nε we have∣∣∣∣∣∣

j∑
n=1

xn −
k∑

n=1
xn

∣∣∣∣∣∣ =
∣∣∣∣∣∣

j∑
n=k+1

xn

∣∣∣∣∣∣ = |xk+1 + xk+2 + · · ·+ xj−1 + xj| < ε. (8.2.9)

The harmonic series∑∞n=1(1/n) from Example 8.1.16 shows us that even if the terms of a series
converge to zero, we cannot conclude the series itself converges. On the other hand, a corollary
of the Cauchy criterion for series 8.2.2 tells us that when a series of real numbers converges, its
sequence of terms must converge to zero. This result is also known as the “nth term test”.

Corollary 8.2.4: Convergent series have terms converging to zero

If ∑∞n=1 xn converges, then (xn) converges to zero. That is,
∞∑
n=1

xn converges =⇒ lim
n→∞

xn = 0. (8.2.10)

Equivalently, the contraposition states

lim
n→∞

xn 6= 0 =⇒
∞∑
n=1

xn diverges. (8.2.11)
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Proof of Corollary 8.2.4. Suppose ∑∞n=1 xn converges. Then by Cauchy criterion for series 8.2.2
applies to the difference between consecutive partial sums. Thus, for every ε > 0 there is a
threshold nε ∈ N such that for all k ∈ N where k + 1 > k ≥ nε, we have

∣∣∣∣∣
k+1∑
n=1

xn −
k∑

n=1
xn

∣∣∣∣∣ = |xk+1| = |xk+1 − 0| < ε. (8.2.12)

Therefore, the index nε + 1 serves as a threshold for the convergence of the sequence of terms to
zero (Definition 2.2.1) and

lim
n→∞

xn = 0. (8.2.13)

The convergence of a series comes with an interesting dichotomy when we consider the corre-
sponding series of absolute values.

Definition 8.2.5: Absolute and conditional convergence

Consider a series of real numbers ∑∞n=1 an along with the series of absolute values ∑∞n=1 |an|.

(i) If ∑∞n=1 |an| converges, then
∑∞
n=1 an converges absolutely.

(ii) If ∑∞n=1 |an| diverges but
∑∞
n=1 an converges, then ∑∞n=1 an converges conditionally.

The lack of symmetry between the definitions of absolute and conditional convergence can be
explained by the following example and another corollary of the Cauchy criterion for series 8.2.2.

Example 8.2.6: Alternating harmonic series

The series
∞∑
n=1

(−1)n+1

n
= 1− 1

2 + 1
3 −

1
4 ± · · · (8.2.14)

is known as the alternating harmonic series. This series converges, as shown in a bit once
we have more tools at our disposal (see Example 8.2.10). On the other hand, its series of
absolute values is the divergent harmonic series from Example 8.1.16. That is,

∞∑
n=1

∣∣∣∣∣(−1)n+1

n

∣∣∣∣∣ =
∞∑
n=1

1
n
. (8.2.15)

Hence, the alternating harmonic series is conditionally convergent by Definition 8.2.5.

Corollary 8.2.7: Absolute convergence implies convergence

If ∑∞n=1 |an| converges, then
∑∞
n=1 an converges.
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Proof of Corollary 8.2.7. Suppose∑∞n=1 an converges absolutely so that
∑∞
n=1 |an| converges. Then

by induction on the triangle inequality (1.2.35) and the Cauchy criterion for series 8.2.2 applied to∑∞
n=1 |an|, for every ε > 0 there is a threshold nε ∈ N such that for all j, k ∈ N where j > k ≥ nε

we have∣∣∣∣∣∣
j∑

n=k+1
an

∣∣∣∣∣∣ = |ak+1 + ak+2 + · · ·+ aj| ≤ |ak+1|+ |ak+1|+ · · ·+ |aj| =
∣∣∣∣∣∣

j∑
n=k+1

|an|

∣∣∣∣∣∣ < ε. (8.2.16)

Therefore, by the Cauchy criterion for series 8.2.2 applied to ∑∞n=1 an this time, the series ∑∞n=1 an
converges.

Remark 8.2.8: Summary of absolute and conditional convergence

Now that Corollary 8.2.7 has been established:

A series ∑∞n=1 an converges absolutely when both the series of absolute values∑∞
n=1 |an| and the original series ∑∞n=1 an converge.

On the other hand:

A series ∑∞n=1 an converges conditionally if and only if the series of absolute
values ∑∞n=1 |an| diverges while the original series ∑∞n=1 an converges.

The remainder of the section develops tests that determine the convergence or divergence of
series.

There are many ways for us to determine whether a given series of real numbers converges or
not. However, in general it can be very difficult to determine the value of the sum when a series
converges. The focus of this section is to develop tests for convergence or divergence of series, but
not the values of sums.

Theorem 8.2.9: Alternating Series Test

Suppose (an) is decreasing and converges to zero. Then the alternating series given by
∞∑
n=1

(−1)n+1an = a1 − a2 + a3 − a4 + · · · (8.2.17)

converges.

Proof of the Alternating Series Test 8.2.9. Suppose (an) is decreasing and converges to zero. So,
limn→∞ an = 0 and for each n ∈ N

an ≥ an+1 ⇐⇒ an − an+1 ≥ 0. (8.2.18)

Multiplying by −1 and rearranging a bit yields we

−(an − an+1) ≤ 0. and − (an+1 − an) ≥ 0. (8.2.19)
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Also, since convergent series are bounded, the Mononotone and Bounded Convergence Theorem
2.4.9 tells us

inf(an) = lim
n→∞

an = 0. (8.2.20)

An infimum is a lower bound by Definition 1.1.14, so for each n ∈ N we have

an ≥ 0 = inf(an). (8.2.21)

That is, an is nonnegative, a fact used throughout the proof.
To establish the hypothesis of the Cauchy criterion for series 8.2.2, let j, k ∈ N where j > k

and consider the difference of the partial sums

sj − sk =
j∑

n=k+1
(−1)n+1an. (8.2.22)

From here, the argument depends on the parity of k and j as either even or odd and its effect
on the sum in (8.2.22).

First, suppose k is odd. Then by regrouping the terms starting with k + 1, we have

sj − sk =
j∑

n=k+1
(−1)n+1an (8.2.23)

= ak+1 − ak+2 + ak+3 − ak+4 + ak+5 + · · ·+ (−1)j+1aj (8.2.24)

= ak+1−(ak+2 − ak+3)︸ ︷︷ ︸
≤ 0

−(ak+4 − ak+5)︸ ︷︷ ︸
≤ 0

+ · · ·+
−(aj−1 − aj), if j is odd,
− aj, if j is even.︸ ︷︷ ︸

≤ 0

(8.2.25)

The grouped summands that follow ak+1 are all nonpositive (≤ 0) thanks to the inequalities from
the beginning of the proof. Hence,

sj − sk ≤ ak+1 ≤ ak. (8.2.26)

Now suppose k is even. Then by regrouping the terms starting with k + 1, we have

sj − sk =
j∑

n=k+1
(−1)n+1an (8.2.27)

= −ak+1 + ak+2 − ak+3 + ak+4 − ak+5 + · · ·+ (−1)j+1aj (8.2.28)

= −ak+1−(ak+3 − ak+2)︸ ︷︷ ︸
≥ 0

−(ak+5 − ak+4)︸ ︷︷ ︸
≥ 0

+ · · ·+
+ aj, if j is odd,
−(aj − aj−1), if j is even.︸ ︷︷ ︸

≥ 0

(8.2.29)

This time, the grouped summands that follow ak+1 are all nonnegative (≥ 0). Hence,

sj − sk ≥ −ak+1 ≥ −ak. (8.2.30)
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So, whether k is even or odd, inequalities (8.2.26) and (8.2.30) both incorporate even and odd
via k and k + 1. As a result, for every j, k ∈ N where j > k we have

−ak ≤ sj − sk ≤ ak ⇐⇒ |sj − sk| ≤ ak. (8.2.31)

Finally, since (an) converges to zero, by the definition of sequential limit (Definition 2.2.1) there
is a threshold nε ∈ N such that for all j > k ≥ nε we have

|sj − sk| ≤ ak = |ak − 0| < ε. (8.2.32)

Therefore, by the Cauchy criterion for series, ∑∞n=1(−1)n+1an converges.

Example 8.2.10: Revisiting the alternating harmonic series

The alternating harmonic series
∞∑
n=1

(−1)n+1

n
= 1− 1

2 + 1
3 −

1
4 ± · · · (8.2.33)

is indeed conditionally convergent (Definition 8.2.5). As noted in Example 8.2.6, its series
of absolute values is the divergent harmonic series from Example 8.1.16. That is,

∞∑
n=1

∣∣∣∣∣(−1)n+1

n

∣∣∣∣∣ =
∞∑
n=1

1
n
. (8.2.34)

On the other hand the alternating harmonic series itself converges thanks to the Alternating
Series Test 8.2.9 where we set an = 1/n for each n ∈ N. Hence,

∑
n=1

(−1)n+1an =
∞∑
n=1

(−1)n+1

n
= 1− 1

2 + 1
3 −

1
4 ± · · · (8.2.35)

converges conditionally (Definition 8.2.5).

The Comparison Test is a classic result from calculus which we are now in position to prove.
Essentially, part (i) tells us that when the absolute values of terms are eventually bounded by the
terms of a convergent series, the original series converges absolutely. Part (ii) says that if when
the absolute values of terms are eventually bounded below by the terms of a divergent series of
nonnegative terms, the series of absolutely values diverges.

Note that the conclusion of part (ii) of only addresses the series of absolute values ∑∞n=1 |an|,
not the original series ∑∞n=1 an.

Theorem 8.2.11: Comparison Test

Suppose ∑∞n=1 an and ∑∞n=1 bn are series of real numbers where bn ≥ 0 for all n ∈ N.
(i) If ∑∞n=1 bn converges and there is an index j0 ∈ N such that

n ∈ N with n ≥ j0 =⇒ |an| ≤ bn, (8.2.36)
then ∑∞n=1 an converges absolutely.
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(ii) If ∑∞n=1 bn diverges and there is an index k0 ∈ N such that

n ∈ N with n ≥ k0 =⇒ bn ≤ |an|, (8.2.37)

then ∑∞n=1 |an| diverges.

Scratch Work 8.2.12: Use the Cauchy criterion for series once again

Part (i) of the Comparison Test follows from yet another manipulation of partial sums
with an application of the Cauchy criterion for series 8.2.2. This time, we must be careful
to choose an index that satisfies both the Cauchy criterion and the implication (8.2.36).
By the way, the implication (8.2.36) can be taken to mean the terms |an| are eventually
less than or equal to bn.

Part (ii) follows from part (i) via contradiction and switching the roles of the series.

Proof of the Comparison Test 8.2.11. Throughout, suppose∑∞n=1 an and
∑∞
n=1 bn are series of real

numbers where bn ≥ 0 for all n ∈ N.
Part (i): Assume ∑∞n=1 bn converges and there is an index j0 ∈ N such that

n ∈ N with n ≥ j0 =⇒ |an| ≤ bn. (8.2.38)

Since ∑∞n=1 bn converges, by the Cauchy criterion for series 8.2.2, there is a threshold nε ∈ N such
that for all j, k ∈ N where j > k ≥ nε we have∣∣∣∣∣∣

j∑
n=k+1

bn

∣∣∣∣∣∣ = bk+1 + bk+2 + · · ·+ bj < ε. (8.2.39)

Now define qε = max{j0, nε} ∈ N and suppose j > k ≥ qε. Then both (8.2.38) and (8.2.39) hold
and we have

j∑
n=k+1

|an| = |ak+1|+ |ak+2|+ · · ·+ |aj| = bk+1 + bk+2 + · · ·+ bj < ε. (8.2.40)

Therefore, ∑∞n=1 |an| converges by Cauchy criterion for series 8.2.2, so ∑∞n=1 an converges abso-
lutely.

Part (ii): Assume ∑∞n=1 bn diverges and there is an index k0 ∈ N such that

n ∈ N with n ≥ k0 =⇒ bn ≤ |an|. (8.2.41)

To argue via contradiction, assume ∑∞n=1 |an| converges and so ∑∞n=1 an converges absolutely (Def-
inition 8.2.5). Since bn ≥ 0 implies bn = |bn| ≤ |an| for large enough n, part (i) of the Comparison
Test 8.2.11 (with the roles of |an| and bn reversed) implies we have ∑∞n=1 |bn| =

∑∞
n=1 bn converges.

This contradicts the assumption that ∑∞n=1 bn diverges.

Next up is a result due to Augustin-Louis Cauchy, the same person whose name is attached
to so many of the Cauchy criteria found throughout the book.
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Theorem 8.2.13: Cauchy Condensation Test

Suppose (an) is a decreasing sequence of nonnegative terms (0 ≤ an+1 ≤ an for all n ∈ N).
Then

∞∑
n=1

an converges ⇐⇒
∞∑
k=0

2ka2k converges. (8.2.42)

When these series converge we have

1
2

∞∑
k=0

2ka2k ≤
∞∑
n=1

an ≤
∞∑
k=0

2ka2k . (8.2.43)

Scratch Work 8.2.14: A subtle comparison of terms

The powers of 2 have shown up from time to time, like with one of the geometric series
that sums to 1 in Example 8.1.12 and in Scratch Work 8.1.16 which leads to a proof of the
divergence of the harmonic series in Example 8.1.16. Here, they give us a way to compare
the partial sums of the related series in the statement of Theorem 8.2.13 that allow us to
take advantage of the Comparison Test 8.2.11 to get the convergence of one of the series to
yield the other. In particular, by the Geometric Sum Formula 2.7.2, the geometric sum of
2n from n = 0 to k simplifies nicely to a positive integer:

k∑
n=0

2n = 1 + 2 + 4 + · · ·+ 2k = 1− 2k+1

1− 2 = 2k+1 − 1 ∈ N. (8.2.44)

This fortuitous result allows us to compare not just the terms but the indices of the series
in question, facilitating the proof.

Also, since the terms in both series are nonnegative, their partial sums define increasing se-
quences which, if they converge, they converge to suprema as in the Monotone and Bounded
Convergence Theorem 2.4.9.

Proof of Theorem 8.2.13. Suppose (an) ⊆ R where 0 ≤ an+1 ≤ an for all n ∈ N, and consider the
pair of series

∞∑
n=1

an and
∞∑
k=0

2ka2k . (8.2.45)

For each j ∈ N and q ∈ N ∪ {0}, let sj denote the jth partial sum of ∑∞n=1 an and let tq denote
the qth partial sum of ∑∞k=0 2ka2k so that

sj = a1 + a2 + a3 + · · ·+ aj and (8.2.46)
tq = a1 + 2a2 + 4a4 + · · ·+ 2qa2q . (8.2.47)

Then both sequences of partial sums (sj) and (tq) are increasing. So, by the
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From here, we split the argument into two parts depending on which series is assumed to
converge and how the index j compares to the index 2q.

To prove the forward implication, assume ∑∞n=1 an converges and j ≥ 2q. So as in Scratch
Work 8.2.14, we have

q−1∑
n=0

2n = 1 + 2 + 4 + · · ·+ 2q−1 = 1− 2q
1− 2 = 2q − 1 ≤ 2q ≤ j. (8.2.48)

Since 0 ≤ an+1 ≤ an for every n ∈ N, we have

1
2tq = 1

2 (a1 + 2a2 + 4a4 + 8a8 + · · ·+ 2qa2q) (8.2.49)

= 1
2a1 + a2 + 2a4 + 4a8 + · · ·+ 2q−1a2q (8.2.50)

= 1
2a1 + a2 + (a4 + a4)︸ ︷︷ ︸

2 terms

+ (a8 + a8 + a8 + a8)︸ ︷︷ ︸
4 terms

+ · · ·+ (a2q + · · ·+ a2q)︸ ︷︷ ︸
2q−1 terms

(8.2.51)

≤ a1 + a2 + (a3 + a4)︸ ︷︷ ︸
2 terms

+ (a5 + a6 + a7 + a8)︸ ︷︷ ︸
4 terms

+ · · ·+ (a2q−1+1 + · · ·+ a2q)︸ ︷︷ ︸
2q−1 terms

(8.2.52)

≤ a1 + a2 + a3 + a4 + · · ·+ a2q + · · ·+ aj (8.2.53)
= sj. (8.2.54)

Now, since ∑∞n=1 an converges and (sj) is increasing, the Monotone and Bounded Convergence
Theorem 2.4.9 implies

1
2tq ≤ sj ≤ sup{sj : j ∈ N} = lim

j→∞
sj =

∞∑
n=1

an. (8.2.55)

Thus, ∑∞n=1 an is an upper bound for (tq/2). Therefore, by another application of the Monotone
and Bounded Convergence Theorem 2.4.9 along with the fact that a supremum is the least upper
bound (Theorem 1.3.10), the series ∑∞k=0 2ka2k converges and

1
2 sup{tq : q ∈ N} = 1

2 lim
q→∞

tq = 1
2

∞∑
k=0

2ka2k ≤
∞∑
n=1

an. (8.2.56)

Therefore, the forward implication holds.
To prove the backward implication, assume ∑∞k=0 2ka2k converges and j ≤ 2q. Again, as in is

Scratch Work 8.2.14, we have

j ≤ 2q ≤
q∑

n=0
2n = 1 + 2 + 4 + · · ·+ 2q = 1− 2q+1

1− 2 = 2q+1 − 1 ∈ N. (8.2.57)

Then, as done in Scratch Work 8.1.16 on the divergence harmonic series, by grouping the terms
of the partial sum sj by taking indices in successive chunks of powers of two, and keeping in mind
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0 ≤ an+1 ≤ an for every n ∈ N, we get

sj = a1 + a2 + a3 + · · ·+ aj (8.2.58)
≤ a1 + (a2 + a3) + (a4 + a5 + a6 + a7) + · · ·+ (a2q + · · ·+ a2q+1−1) (8.2.59)
≤ a1 + (a2 + a2)︸ ︷︷ ︸

2 terms

+ (a4 + a4 + a4 + a4)︸ ︷︷ ︸
4 terms

+ · · ·+ (a2q + · · ·+ a2q)︸ ︷︷ ︸
2q terms

(8.2.60)

= a1 + 2a2 + 4a4 + · · ·+ 2qa2q (8.2.61)
= tq. (8.2.62)

Now, since ∑∞k=0 2ka2k converges converges and (tq) is increasing, the Monotone and Bounded
Convergence Theorem 2.4.9 implies

sj ≤ tq ≤ sup{tq : q ∈ N ∪ {0}} = lim
q→∞

tq =
∞∑
k=0

2ka2k . (8.2.63)

Thus, ∑∞k=0 2ka2k is an upper bound for (sj). Therefore, by another application of the Mono-
tone and Bounded Convergence Theorem 2.4.9 and noting a supremum is the least upper bound
(Theorem 1.3.10), ∑∞n=1 an converges and

sup{sj : j ∈ N} = lim
j→∞

sj =
∞∑
n=1

an ≤
∞∑
k=0

2ka2k . (8.2.64)

Therefore, the backward implication holds.
Overall, if either ∑∞n=1 an or ∑∞k=0 2ka2k converges, then both converge and

1
2

∞∑
k=0

2ka2k ≤
∞∑
n=1

an ≤
∞∑
k=0

2ka2k . (8.2.65)

One payoff of the Cauchy Condensation Test 8.2.13 is the p-series test from calculus.

Theorem 8.2.15: p-series

Suppose p ∈ R. Then the so-called p-series given by
∞∑
n=1

1
np

(8.2.66)

converges if and only if p > 1.

Proof of Theorem 8.2.15. First, suppose p ≤ 0. Then −p = α ≥ 0 and for each n ∈ N,
1
np

= n−p = nα ≥ 1. (8.2.67)

So (1/np) = (nα) does not converge to zero. Hence, the series
∞∑
n=1

1
np

=
∞∑
n=1

nα. (8.2.68)
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diverges by Corollary 8.2.4.
Now suppose p > 0. The Cauchy Condensation Test 8.2.13 tells us

∞∑
n=1

(1/np) converges ⇐⇒
∑
k=0

(2k/2kp) converges. (8.2.69)

Note that for each k ∈ N ∪ {0} we have

2k · 1
2kp = 2k

2kp = 2(1−p)k. (8.2.70)

So taking series over k yields

∞∑
k=0

2k · 1
2kp =

∞∑
k=0

2(1−p)k. (8.2.71)

The series on the right is a geometric series with initial term a = 1 and common ratio r = 2(1−p).
So by Theorem 8.1.10, the series converges if and only if |r| = 2(1−p) < 1. Since

2(1−p) < 1 ⇐⇒ 1− p < 0 ⇐⇒ p > 1, (8.2.72)

both ∑∞n=1(1/np) and ∑∞k=0(2k/2kp) converge if and only if p > 1.

Geometric sums and series have already appeared multiple times so far. They provide a vital
basis for comparison in the scratch work and proofs even more results from calculus, such as the
Ratio and Root Tests, two classic results from calculus.

The Ratio Test tells us that a series∑∞n=1 an converges when the ratios |an+1|/an| are eventually
less than some constant strictly less than one.

Theorem 8.2.16: Ratio Test

Suppose ∑∞n=1 an is a series of nonzero real numbers.

(i) If there is a bound 0 < b < 1 and an index j0 ∈ N such that

n ∈ N with n ≥ j0 =⇒
∣∣∣∣an+1

an

∣∣∣∣ ≤ b, (8.2.73)

then ∑∞n=1 an converges absolutely.

(ii) If there is an index k0 ∈ N such that

n ∈ N with n ≥ k0 =⇒
∣∣∣∣an+1

an

∣∣∣∣ ≥ 1, (8.2.74)

then ∑∞n=1 an diverges.
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Scratch Work 8.2.17: Compare to a geometric series

Part (i) of the Ratio Test 8.2.16 follows from a comparison with the geometric series defined
by the bound 0 < b < 1. Part (ii) holds since the terms do not converge to zero.

Proof of the Ratio Test 8.2.16. Throughout the proof, suppose ∑∞n=1 an is a series of nonzero real
numbers.

Part (i): Assume there is a bound 0 < b < 1 and an index j0 ∈ N such that

n ∈ N with n ≥ j0 =⇒
∣∣∣∣an+1

an

∣∣∣∣ ≤ b. (8.2.75)

Then we have

|aj0+1| ≤ b|aj0|, (8.2.76)
|aj0+2| ≤ b|aj0+1| ≤ b2|aj0|, (8.2.77)

... (8.2.78)
|aj0+q| ≤ bq|aj0|, (8.2.79)

for all q ∈ N. Hence, for any n ∈ N where n ≥ j0 it follows that

|an| ≤ bn−j0|aj0| = b−j0|aj0|bn. (8.2.80)

Since 0 < b < 1 and after a bit of reindexing, ∑∞n=1 b
−j0|aj0|bn is a convergent geometric series

by Theorem 8.1.10. Therefore, by part (i) of the Comparison Test 8.2.11, ∑∞n=1 an converges
absolutely.

Part (ii): Assume there is an index k0 ∈ N such that

n ∈ N with n ≥ k0 =⇒
∣∣∣∣an+1

an

∣∣∣∣ ≥ 1. (8.2.81)

Then for every q ∈ N we have

1 ≤ |ak0| ≤ |ak0+2| ≤ · · · ≤ |ak0+q|. (8.2.82)

Equivalently, for all n ∈ N with n ≥ k0 we have

|an| = |an − 0| ≥ 1 (8.2.83)

Hence, the sequence of terms (an) does not converge to 0. More specifically, the k0-tail (an≥k0) is
away from 0. So as in Remark 2.2.2, no neighborhood of 0 contains a tail of (an), thus (an) does
not converge to 0. Therefore, by Corollary 8.2.4, ∑∞n=1 an diverges.

The Root Test says a series ∑∞n=1 an converges when the nth roots
√
|an| are eventually less

than some constant strictly less than one.
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Theorem 8.2.18: Root Test

Suppose ∑∞n=1 an is a series of real numbers.

(i) If there is a bound 0 < b < 1 and an index j0 ∈ N such that

n ∈ N with n ≥ j0 =⇒
√
|an| ≤ b, (8.2.84)

then ∑∞n=1 an converges absolutely.

(ii) If there is an index k0 ∈ N such that

n ∈ N with n ≥ k0 =⇒
√
|an| ≥ 1, (8.2.85)

then ∑∞n=1 an diverges.

Scratch Work 8.2.19: Again, compare to a geometric series

The proof of the Root Test 8.2.18 follows from an argument similar to the proof of of the
Ratio Test 8.2.16. This time, for part (i) compare the given series to a convergent geometric
series defined by the bound 0 < b2 < 1. Part (ii) holds since the terms do not converge to
zero.

Proof of the Root Test 8.2.18. Throughout the proof, suppose ∑∞n=1 an is a series of nonzero real
numbers.

Part (i): Assume there is a bound 0 < b < 1 and an index j0 ∈ N such that

n ∈ N with n ≥ j0 =⇒
√
|an| ≤ b. (8.2.86)

Then for all q ∈ N we have √
|aj0+1| ≤ b

√
|aj0|, (8.2.87)√

|aj0+2| ≤ b
√
|aj1| ≤ b2

√
|aj0|, (8.2.88)

... (8.2.89)√
|aj0+q| ≤ bq

√
|aj0|. (8.2.90)

Hence, for any n ∈ N where n ≥ j0 it follows that√
|an| ≤ bn−j0

√
|aj0| =⇒ |an| ≤ b2(n−j0)|aj0|. (8.2.91)

Since 0 < b < 1 implies 0 < b2 < b < 1 and after a bit of reindexing, ∑∞n=1 b
−2j0|aj0 |b2n is a

convergent geometric series by Theorem 8.1.10. Therefore, by part (i) of the Comparison Test
8.2.11, ∑∞n=1 an converges absolutely.

Part (ii): Assume there is an index k0 ∈ N such that

n ∈ N with n ≥ k0 =⇒
√
|an| ≥ 1 =⇒ |an| ≥ 1. (8.2.92)
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Then for all n ∈ N with n ≥ k0 we have

|an| = |an − 0| ≥ 1 (8.2.93)

Hence, and as in the proof of part (ii) of the Ratio Test 8.2.16, the sequence of terms (an) does
not converge to 0. Therefore, by Corollary 8.2.4, ∑∞n=1 an diverges.

The next section investigates the last big topic of the book: series of functions.

Exercises
8.2.1. Determine whether each series converges or diverges.

(i)
∞∑
n=1

ln
(
n+ 1
n

)

(ii)
∞∑
n=1

(−1)n+1
√
n

(iii)
∞∑
n=1

(−1)n+1(n2 − 3)
n2 + 10

(iv)
∞∑
n=0

e−2n

(v)
∞∑
n=1

( 3
2n + 3

2n
)

(vi)
∞∑
n=1

1
(n+ 2)(3n− 2)

(vii)
∞∑
n=1

√
n+ 5

(2n− 1)(3n+ 4)

(viii)
∞∑
n=1

10√
n2 + 5 +

√
n2 + 6n+ 9

(ix)
∞∑
n=1

(
√
n+ 1−

√
n)

(x)
∞∑
n=1

√
n+ 1−

√
n

n

8.2.2. Consider what happens when a finite number of the terms of a sequence or series of real
numbers are changed.

(i) Prove that if (an) converges to ` and bn = an for all but finitely many n ∈ N, then (bn)
converges to `.

(ii) Prove that if ∑∞n=1 xn converges to s and yn = xn for all but finitely many n ∈ N, then∑∞
n=1 yn converges but perhaps not to s.

8.2.3. Consider the series ∑∞n=1 cn where

cn =


n+ 10, if n ≤ 100,
2
3n , if n > 100.

(8.2.94)

Prove ∑∞n=1 cn converges and determine the sum. Hint: Carl Gauss’ formula for the sum of the
first n consecutive positive integers gives us a nice closed form. We have

n∑
k=1

k = 1 + 2 + · · ·+ n = n(n+ 1)
2 . (8.2.95)
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8.2.4. Consider a series ∑∞n=1 xn along with the series of squares ∑∞n=1 x
2
n.

(i) Prove that if ∑∞n=1 xn and converges and xn ≥ 0 for all n ∈ N, then ∑∞n=1 x
2
n converges.

(ii) Find an example where ∑∞n=1 xn diverges but ∑∞n=1 x
2
n converges.

(iii) Find an example where ∑∞n=1 xn converges but ∑∞n=1 x
2
n diverges.

8.2.5. Suppose xn > 0 and limn→∞(nxn) = ` 6= 0. Prove ∑∞n=1 xn diverges.

8.2.6. Suppose xn > 0 and (n2xn) converges. Prove ∑∞n=1 xn converges.

8.2.7. Given a series ∑∞n=1 an, for each n ∈ N define

a+
n =

an, if an ≥ 0,
0, if an < 0,

anda−n =
0, if an ≥ 0,
an, if an < 0.

(8.2.96)

Prove ∑∞n=1 an converges absolutely if and only if both ∑∞n=1 a
−
n and ∑∞n=1 a

+
n converge. Also, in

this case we have
∞∑
n=1

an =
∞∑
n=1

a+
n −

∞∑
n=1

a−n and
∣∣∣∣∣
∞∑
n=1

an

∣∣∣∣∣ =
∞∑
n=1

a+
n +

∞∑
n=1

a−n . (8.2.97)

8.2.8. Prove the Summation by Parts formula: Consider sequences (xn) and (yn). Let

sn =
n∑
j=1

xj = x1 + x2 + · · ·+ xn (8.2.98)

and set s0 = 0. Show that

sn =
n∑
j=k

xjyj = snyn+1 − sk−1yk +
n∑
j=k

sj(yj − yj+1). (8.2.99)

8.2.9. Use the Summation by Parts formula above to prove Abel’s Test: If ∑∞n=1 xn converges and
(yn) is a decreasing sequence of nonnegative terms, i.e.,

y1 ≥ y2 ≥ y3 ≥ · · · ≥ 0, (8.2.100)

then ∑∞n=1 xnyn converges. Hint: Use the Comparison Test on ∑∞n=1 sn(yn − yn+1).

8.2.10. Use the Summation by Parts formula or Abel’s Test above to prove Dirichlet’s Test: If
the partial sums of ∑∞n=1 xn converges and (yn) is a decreasing sequence of nonnegative terms that
converges to zero, i.e.,

y1 ≥ y2 ≥ y3 ≥ · · · ≥ 0 and lim
n→∞

yn = 0, (8.2.101)

then ∑∞n=1 xnyn converges.
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8.2.11. Convergent series have an interesting dichotomy when the terms are rearranged: All rear-
rangements of an absolutely convergent series converge to the same sum; conditionally convergent
series can be rearranged to converge to given any extended real number in [−∞,∞].

A rearrangement of of ∑∞n=1 xn is a series ∑∞n=1 xf(n) where f : N→ N is a bijection (meaning
the same terms are used but reordered).

(i) Prove that if ∑∞n=1 xn converges absolutely to the sum s, then any rearrangement ∑∞n=1 xf(n)
converges absolutely to the same sum s.

(ii) Prove that if r ∈ R and ∑∞
n=1 xn converges conditionally, then there is a rearrangement∑∞

n=1 xf(n) which converges r.

(iii) Prove that if ∑∞n=1 xn converges conditionally, then for any −∞ ≤ α < β ≤ ∞ there is a
rearrangement ∑∞n=1 xf(n) whose partial sums (sf(n)) satisfy

−∞ ≤ α = lim inf
n→∞

sf(n) < lim sup
n→∞

sf(n) = β ≤ ∞. (8.2.102)

(iv) Prove that if ∑∞n=1 xn converges conditionally, then for any −∞ ≤ α < β there is a rear-
rangement ∑∞n=1 xf(n) whose partial sums (sf(n)) satisfy

Slim(sf(n)) = R. (8.2.103)

8.3 Series of functions
The final broad topic of topic of the book is the notion of an infinite sum of functions made precise
by series of functions. The topic is massive, our coverage of it is just the tip of the iceberg.

As in Remark 8.1.2 for series of real numbers, the indices of a series of functions can start at
any integer. For the sake of simplicity, the indices start at n = 1.

Definition 8.3.1: Series of functions

A series of functions is an object of the form
∞∑
n=1

fn(x) = f1(x) + f2(x) + f3(x) + · · · (8.3.1)

where D ⊆ R, x ∈ D, and (fn) is a sequence of real-valued functions defined on the common
domain D. For each index k ∈ N, the kth partial sum is the linear combination sk : D → R
defined for each x ∈ D by

sk(x) =
k∑

n=1
fn(x) = f1(x) + f2(x) + · · ·+ fk(x). (8.3.2)

Also, the k-tail of a series is the series of functions defined by the sequential k-tail (fn≥k)



8.3. SERIES OF FUNCTIONS 501

for each x ∈ D where
∞∑
n=k

fn(x) = fk(x) + fk+1(x) + fk+2(x) + · · · . (8.3.3)

Sometimes, the variable x is suppressed and we respectively write the series and its partial
sums as

∞∑
n=1

fn = f1 + f2 + f3 + · · · and sk =
k∑

n=1
fn = f1 + f2 + · · ·+ fk. (8.3.4)

The convergence of sequences of functions in Chapter 7 is explored by considering pointwise
and uniform versions. Pointwise convergence is when each output sequence converges and has its
own pointwise threshold (Definition 7.1.5). Uniform convergence is when all the output sequences
converge and respect a single uniform threshold (Sauron’s Nani, see Definition 7.2.1). A similar
pair is defined for convergence of series of functions through partial sums in Definition 8.3.1.

Definition 8.3.2: Pointwise and uniform convergence
of series of functions

A series of functions ∑∞n=1 fn converges pointwise at c if the sequence of partial sums
(sk) = (∑k

n=1 fn) converges pointwise at c. Also, ∑∞n=1 fn converges pointwise when it
converges pointwise at every point of the common domain. In this case, the pointwise limit
of ∑∞n=1 fn is the pointwise limit f of the sequence of partial sums (sk). See Definition
7.1.5.

Similarly, ∑∞n=1 fn converges uniformly if the sequence of partial sums (sk) converges uni-
formly. In this case, the uniform limit of ∑∞n=1 fn is the uniform limit f of the sequence of
partial sums (sk). See Definition 7.2.1.

The definitions for pointwise and uniform convergence for series are so dense that some un-
packing is order.

Remark 8.3.3: Unpacked pointwise and uniform convergence
of series of functions

Suppose D ⊆ R, c ∈ D, k ∈ N, and fn : D → R for every n ∈ N. Another way to think
of the pointwise convergence at c of a series of functions ∑∞n=1 fn is that the output series∑∞
n=1 fn(c) converges as a series of real numbers (Definition 8.1.3). In this case,

f(c) =
∞∑
n=1

fn(c) = lim
k→∞

k∑
n=1

fn(c) = lim
k→∞

sk(c) (8.3.5)

where sk(c) is the kth partial sum of the output series ∑∞n=1 fn(c).

So, considering each c ∈ D separately, for every ε > 0, by the definition of sequential limit
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(Definition 2.2.1) there is a pointwise threshold kε(c) ∈ N such that

k ∈ N with k ≥ kε(c) =⇒ (8.3.6)

|sk(c)− f(c)| =
∣∣∣∣∣
k∑

n=1
fn(c)−

∞∑
n=1

fn(c)
∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑

n=k+1
fn(c)

∣∣∣∣∣∣ < ε. (8.3.7)

NOTE: The pointwise threshold kε(c) ∈ N depends on the specific input c, and the
inequality in (8.3.6) only holds for the outputs of c.

On the other hand, for the uniform convergence a series of functions ∑∞n=1 fn to its uniform
limit f means for every ε > 0 and for all x ∈ D, by the definition of uniform convergence
(Definition 7.2.1) there is a uniform threshold kε ∈ N such that—for all x ∈ D—we have

k ∈ N with k ≥ kε =⇒ (8.3.8)

|sk(x)− f(x)| =
∣∣∣∣∣
k∑

n=1
fn(x)−

∞∑
n=1

fn(x)
∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑

n=k+1
fn(x)

∣∣∣∣∣∣ < ε. (8.3.9)

Here, the uniform threshold kε ∈ N is independent of the inputs and, as a result, serves as
the pointwise threshold kε(c) for every input c ∈ D at the same time.

As a first example, let’s revisit geometric series (Definition 8.1.9).

Example 8.3.4: Geometric series of functions

Let a ∈ R and consider the series of functions on (1, 1) defined by
∞∑
n=0

axn, for every x ∈ (−1, 1). (8.3.10)

For each c ∈ (−1, 1), the output series is a convergent geometric series with initial term
a and common ratio c by Theorem 8.1.10. Moreover, this series of functions converges
pointwise with pointwise limit g : (−1, 1)→ R given by

g(x) =
∞∑
n=0

axn = a

1− x, for each x ∈ (−1, 1). (8.3.11)

However, the series does not converge uniformly for a 6= 0. The proof is left as an exercise.

A result due to Weierstrass gives us a convenient way to check for the uniform convergence of
a series of functions.
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Theorem 8.3.5: Weierstrass M-Test

Suppose (fn) is a sequence of functions on D and (Mn) is a sequence of nonnegative uniform
bounds where

|fn(x)| ≤Mn for all x ∈ D and n ∈ N. (8.3.12)

If ∑∞n=1Mn converges, then ∑∞n=1 fn converges uniformly on D.

Scratch Work 8.3.6: Cauchy criteria yet again

The proof follows from Cauchy criteria for sequences 2.6.5 and uniform convergence 7.2.11
by considering the sequence of partial sums along with some induction on the triangle
inequality (1.2.35).

Proof of the Weierstrass M-Test 8.3.5. Suppose the hypotheses hold and let ε > 0. By the Cauchy
criterion for sequences 2.6.5, the sequence of partial sums (∑k

n=1Mn) is Cauchy. So by Definitions
2.6.1 and 8.3.1 along with the fact eachMn is a uniform bound for |fn|, there is a threshold nε ∈ N
such that for all inputs x ∈ D and all indices j, k ∈ N where j > k ≥ nε we have

|sj(x)− sk(x)| =
∣∣∣∣∣∣

j∑
n=k+1

fn(x)
∣∣∣∣∣∣ ≤

j∑
n=k+1

|fn(x)| ≤
j∑

n=k+1
Mn < ε, (8.3.13)

where the equation holds thanks to Scratch Work 8.2.3 and first inequality holds by induction
on the triangle inequality (1.2.35). Hence, the sequence of partial sums (sk) satisfies the Cauchy
criterion for uniform convergence 7.2.11 with uniform threshold nε. Therefore,

∑∞
n=1 fn converges

uniformly on D.

Example 8.3.7: Weierstrass functions

Suppose |b| < 1 and consider the series of functions defined on the real line by
∞∑
n=0

bn cosnx for every x ∈ R. (8.3.14)

This series converges uniformly on R and its uniform limit is an example of a Weierstrass
function. The original Weierstrass functions are similar and explored in the exercises.

Proof for Example 8.3.7. Let Mn = |b|n for each n ∈ N ∪ {0}. Note that for every x ∈ R and we
have

|bn cosnx| ≤ |b|n = Mn. (8.3.15)

Since |b| < 1, Theorem 8.1.10 tells us ∑∞n=0Mn is a convergent geometric series with
∞∑
n=0

Mn =
∞∑
n=0
|b|n = 1

1− |b| . (8.3.16)
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Therefore, by the Weierstrass M-Test 8.3.5 where we set fn(x) = bn cosnx,
∞∑
n=0

bn cosnx (8.3.17)

converges uniformly on R.

The Weierstrass functions in Example 8.3.7 are continuous, integrable over compact intervals,
and differentiable. This string of results follows from properties of uniform convergence applied
to partial sums.

First up: A uniformly convergent series of continuous functions converges to a continuous
limit.

Corollary 8.3.8: Continuity and uniformly convergent series

If ∑∞n=1 fn converges uniformly to f on D and fn is continuous on D for each n ∈ N, then
f is continuous on D.

Proof of Corollary 8.3.8. Suppose ∑∞n=1 fn converges uniformly to f on D and fn is continuous
on D for each n ∈ N. By Definition 8.3.2, the sequence of partial sums (sk) converges uniformly
to f on D. Since each partial sum sk is a linear combination of continuous functions, the uniform
limit f is continuous by Theorem 7.3.1.

Next, a uniformly convergent series of integrable functions converges to an integrable limit,
and the integral of the uniform limit is the series of integrals.

Corollary 8.3.9: Integration and uniformly convergent series

If ∑∞n=1 fn converges uniformly to f on [a, b] and fn is continuous on [a, b] for each n ∈ N,
then the uniform limit f is integrable over [a, b] and we have

∫ b

a
f =

∫ b

a

( ∞∑
n=1

fn

)
=
∞∑
n=1

(∫ b

a
fn

)
. (8.3.18)

Proof of Corollary 8.3.9. Suppose ∑∞n=1 fn converges uniformly to f on [a, b] and fn is continuous
on [a, b] for each n ∈ N. By Definition 8.3.2, the sequence of partial sums (sk) converges uniformly
to f on [a, b]. Since a partial sum is a linear combination and linear combinations of integrable
functions are integrable by Corollary 6.3.9, sk is integrable for each k ∈ N. Therefore, the uniform
limit f is integrable by Theorem 7.3.1. Additionally,∫ b

a
f =

∫ b

a

( ∞∑
n=1

fn

)
=
∫ b

a

(
lim
k→∞

sk

)
= lim

k→∞

(∫ b

a
sk

)
= lim

k→∞

(
k∑

n=1

∫ b

a
fn

)
=
∞∑
n=1

(∫ b

a
fn

)
.

(8.3.19)

Finally, the relationship between differentiation and uniform convergence of series has a dif-
ferent flavor. This relationship is codified by the following corollary of Theorem 7.3.8 by applying
it to partial sums of derivatives. The proof is omitted.
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Corollary 8.3.10: Differentiation and uniformly convergent series of derivatives

Suppose (fn) is a sequence of differentiable functions on [a, b] where the series of derivatives∑∞
n=1 f

′
n converges uniformly to a function g on [a, b]. If there is some x0 ∈ [a, b] whose

output series ∑∞n=1 fn(x0) converges, then there is a function f : [a, b]→ R such that

(i) ∑∞n=1 fn converges uniformly to f on [a, b] with

f(x) =
∞∑
n=1

fn(x) (8.3.20)

for every x ∈ [a, b]; and

(ii) f is differentiable on [a, b] and f is an antiderivative of g with

f ′(x) =
∞∑
n=1

f ′n(x) = g(x) (8.3.21)

for every x ∈ [a, b].

The next section explores the idea of “infinite polynomials” defined as power series.

Exercises
8.3.1. Use geometric series and the equation x = 1 − (1 − x) to find a series of functions that
converges pointwise on (0, 2) to f(x) = 1/x.

8.3.2. Use geometric series and the equation 1 + x2 = 1− (−x2) to find a series of functions that
converges pointwise on (−1, 1) to g(x) = 1/(1 + x2).

8.3.3. Prove the series
∞∑
n=1

x6 + 4n
x4 + 6n (8.3.22)

converges to a continuous function on the real line R.

8.3.4. Prove the series
∞∑
n=1

20 sin (πxn −
√

20n)
n2 (8.3.23)

converges to a continuous function on the real line R.

8.3.5. Give an example of a series of functions which converges uniformly but where the Weier-
strass M-Test 8.3.5 does not apply.
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8.3.6. Karl Weierstrass proved there are continuous which are nowhere differentiable, meaning
their derivatives do not exist at any input. This fact was derided by contemporaries who called
such functions monsters. The functions, now called Weierstrass functions, are defined by power
series of the form

∞∑
n=0

an cos (bnπx) (8.3.24)

where 0 < a < 1 and b ∈ N such that

ab > 1 + 3π
2 . (8.3.25)

(i) Prove every Weierstrass function defines a continuous function on the real line R.

(ii) Find a closed form for the integral integral of a Weierstrass function over [0, 1/2]:

∫ 1/2

0

∞∑
n=0

an cos (bnπx) dx. (8.3.26)

Proofs of the nowhere differentiability of these Weierstrass functions are labor-intensive, so only
those interested in how that works should attempt a proof themselves or search the literature.
(Maybe a proof will be included in a future edition of this book.)

8.4 Power series

Power series are a special case of series of functions that give meaning to the notion of polynomials
with infinite degree. The key motivation for the section is the determination of how and when
power series converge.

Definition 8.4.1: Power series

Given c ∈ R, a power series centered at c = 0 is a series of functions of the form
∞∑
n=0

an(x− c)n (8.4.1)

where (an) is a sequence of real numbers called the coefficients of the power series.

Power series give us a way to define the exponential function ex.
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Example 8.4.2: The exponential function ex

The exponential function ex is defined by the power series

ex =
∞∑
n=0

xn

n! . (8.4.2)

An application of the Ratio Test 8.2.16 shows that this power series converges pointwise on
the real line, meaning ex is well-defined. To that end, fix x ∈ R and note that for every
n ∈ N we have ∣∣∣∣∣xn+1/(n+ 1)!

xn/n!

∣∣∣∣∣ = |x|
n+ 1 . (8.4.3)

This ratio of terms is eventually less than 1 by the Archimedean Property 1.4.6 which says
there is some n|x| ∈ N such that |x| < n|x| where

n ∈ N with n ≥ n|x| =⇒
∣∣∣∣∣xn+1/(n+ 1)!

xn/n!

∣∣∣∣∣ = |x|
n+ 1 ≤

|x|
n|x|

< 1. (8.4.4)

(We also could have argued using the definition of sequential limit in Definition 2.2.1 since
limn→∞ |x|/(n + 1)! = 0.) Therefore, the Ratio Test 8.2.16 tells us the power series (8.4.2)
converges pointwise on R.

It is possible for a power series to converge only at its center.

Example 8.4.3: Divergence except at the center

Consider the power series centered at c = 0 given by
∞∑
n=0

n!xn. (8.4.5)

Another application of the Ratio Test 8.2.16 shows that this power series diverges at every
x 6= 0. To see this, fix x ∈ R\{0} and note that for every n ∈ N we have∣∣∣∣∣(n+ 1)!xn+1

n!xn

∣∣∣∣∣ = (n+ 1)|x|. (8.4.6)

This ratio of terms is eventually greater than 1 by the Corollary 1.4.8. That is, for some
n|x| ∈ N we have

1
n|x|

< |x| =⇒ 1 < n|x||x|. (8.4.7)

As a result, we have

n ∈ N with n ≥ n|x| =⇒
∣∣∣∣∣(n+ 1)!xn+1

n!xn

∣∣∣∣∣ = (n+ 1)|x| > n|x||x| > 1. (8.4.8)

Therefore, the Ratio Test 8.2.16 tells us the power series (8.4.5) diverges except at x = 0.
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In general, a power series converges on the whole real line, neighborhoods of its center c (and
maybe endpoints), or only at the center.

Theorem 8.4.4: Convergence of power series at an off-center point
implies convergence on an interval

If a power series ∑∞n=0 an(x − c)n converges at some x0 ∈ R, then for any r such that
0 < r < |x0 − c|, this power series converges uniformly on the compact interval

[c− r, c+ r] = {x ∈ R : |x− c| ≤ r}. (8.4.9)

In particular, if |y − c| < |x0 − c|, then
∑∞
n=0 an(y − c)n converges absolutely. Additionally,

when x0 6= c, ∑∞n=0 an(x− c)n converges pointwise on the open interval (c− |x0|, c+ |x0|).

Scratch Work 8.4.5: Use a multitude of results on series

The proof follows from a combination of results on series found in this chapter. Yet again,
a comparison with geometric series plays a key role.

Proof of Theorem 8.4.4. Suppose the series or real numbers ∑∞n=0 an(x0 − c)n converges for some
x0 ∈ R. Since the terms of convergent series converge to zero (Corollary 8.2.4), and since conver-
gent sequences are bounded (Theorem 2.3.15), there is a bound b > 0 such that for all n ∈ N we
have

|an(x0 − c)n| ≤ b. (8.4.10)

Next, suppose r satisfies 0 < r < |x0 − c|. Then for every x ∈ R where

|x− c| ≤ r < |x0 − c|, (8.4.11)

it follows that for each index n ∈ N we have

|an(x− c)n| = |an(x− c)n| |x0 − c|n

|x0 − c|n
≤ b
|x− c|n

|x0 − c|n
< b

(
r

|x0 − c|

)n
. (8.4.12)

Since 0 < r < |x0 − c| implies 0 < r/|x0 − c| < 1, the series

∞∑
n=0

b

(
r

|x0 − c|

)n
(8.4.13)

is a convergent geometric series by Theorem 8.1.10. Therefore, by the Weierstrass M-Test 8.3.5,
the power series ∑∞n=0 an(x− c)n converges uniformly on

[c− r, c+ r] = {x ∈ R : |x− c| ≤ r}. (8.4.14)

Also, we conclude ∑∞n=0 an(y − c)n converges absolutely when |y − c| < |x0 − c|.
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To show ∑∞
n=0 an(x − c)n converges pointwise on the open interval (c − |x0|, c + |x0|) when

x0 6= c, suppose t ∈ (c − |x0|, c + |x0|). If t = c, then t − c = 0 and the power series converges
absolutely at t with

∞∑
n=0

an(t− c)n = a0. (8.4.15)

If t 6= c, choose rt = |t− c| so that 0 < rt < |x0− c|. The above argument for uniform convergence
applies and tells us

∞∑
n=0

an(t− c)n (8.4.16)

converges. Therefore, ∑∞n=0 an(x− c)n converges pointwise on (c− |x0|, c+ |x0|).

Unlike the linear combinations of monomials that define polynomials (Definition 4.5.1), it is
not necessarily the case that a power series defines a function whose domain is the whole real line.
It can be a challenge to determine when a power series converges from scratch.

Example 8.4.6: An alternating power series

Consider the power series centered at c = 0 given by
∞∑
n=1

xn+1

n
= x2 − x3

2 + x4

3 −
x5

4 + · · · (8.4.17)

This power series converges pointwise on [−1, 1) and diverges on R\[−1, 1).

Proof for Example 8.4.6. To kick things off, suppose x = −1. We get
∞∑
n=1

(−1)n+1

n
= 1− 1

2 + 1
3 −

1
4 + · · · , (8.4.18)

which is the convergent alternating harmonic series from Example 8.2.6. So by Theorem 8.4.4,∑∞
n=1(xn+1/n) converges uniformly on [−r, r] for any r where 0 < r < | − 1 − 0| = 1. Since r is

arbitrary, ∑∞n=1(xn+1/n) converges pointwise on [−1, 1).
To see that ∑∞n=1(xn+1/n) diverges on R\[−1, 1), first note that when x = 1 we get

∞∑
n=1

1
n

= 1 + 1
2 + 1

3 + 1
4 + · · · , (8.4.19)

which is the divergent harmonic series from Example 8.1.16.
Now suppose |x| > 1. After a bit of effort, we can show divergence with the Ratio Test 8.2.16.

For each index n ∈ N we have

|x|n+2/(n+ 1)
|x|n+1/n

= |x|
(

n

n+ 1

)
= |x|

(
1− 1

n+ 1

)
. (8.4.20)
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By the homogeneity of sequential limits (Theorem 2.3.9),

lim
n→∞

|x|
(

n

n+ 1

)
= |x|. (8.4.21)

Since |x| > 1 implies |x| − 1 > 0 (which we can treat as an error ε) and noting n/(n+ 1) < 1, by
the definition of sequential limit (Definition 2.2.1) there is a threshold nx such that

n ∈ N with n ≥ nx =⇒
∣∣∣∣|x|( n

n+ 1

)
− |x|

∣∣∣∣ = |x| − |x|
(

n

n+ 1

)
< |x| − 1 (8.4.22)

=⇒ −|x|
(

n

n+ 1

)
< −1 (8.4.23)

=⇒ |x|
(

n

n+ 1

)
> 1. (8.4.24)

Therefore, by part (ii) of the Ratio Test 8.2.16, ∑∞n=1(xn+1/n) diverges on R\[−1, 1).

Thanks to Theorem 8.4.4, we can split the domains on which a power series converges into
three types: The singleton {c} comprising the center of the power series; the whole real line R; or
a bounded interval centered at c.

Corollary 8.4.7: Classifying sets of convergence

Given a power series ∑∞n=0 an(x−c)n, the set of points S where the series converges is either

(i) the singleton {c},

(ii) the real line R, or

(iii) one of following bounded intervals:
(c− u, c+ u), (c− u, c+ u], [c− u, c+ u), or [c− u, c+ u],
where u = sup{|x− c| : x ∈ S} > 0.

Proof of Corollary 8.4.7. Let S denote the set of points where ∑∞n=0 an(x − c)n converges. We
have c ∈ S since ∑∞n=0 an(c− c)n converges to the first term a0.

If no other point is in S, then S = {c} and (i) holds.
Now, suppose S contains c at least one other element y 6= c, and consider the set

T = {|x− c| : x ∈ S}. (8.4.25)

Then T is nonempty with at least one positive element given by |y − c| > 0. From here, the set
T is either bounded above or not.

Suppose T is not bounded above. Then for any x ∈ R there is some t ∈ T where

|x− c| < t. (8.4.26)

By Theorem 8.4.4, we have x ∈ S. Therefore, S = R and (ii) holds.
Finally, suppose T defined the same way but is now bounded above. Then T has a supremum

by the Axiom of Completeness 1.3.8. Since a supremum is an upper bound, we have

0 < |y − c| ≤ supT = u. (8.4.27)
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Now, if x ∈ R where |x− c| > u, then |x− c| is too large to be in T , and so x /∈ S. Hence,

S ⊆ {x : |x− c| ≤ u} = [c− u, c+ u]. (8.4.28)

But if x ∈ R where |x− c| < u, then u− |x− c| > 0. Since a supremum is arbitrarily close to its
set (Definition 1.1.14), there is some x0 ∈ S with |x0 − c| ∈ T such that

0 < u− |x0 − c| < u− |x− c| =⇒ |x− c| < |x0 − c|. (8.4.29)

Since x0 ∈ S, Theorem 8.4.4 implies x ∈ S as well. And so by (8.4.28) we have

(c− u, c+ u) ⊆ S ⊆ [c− u, c+ u]. (8.4.30)

Therefore, (iii) holds since S must be either (c−u, c+u), (c−u, c+u], [c−u, c+u), or [c−u, c+u],
depending on whether S contains either, neither, or both c− u and c+ u.

Corollary 8.4.7 justifies the following trio of options to define the radius of convergence.

Definition 8.4.8: Radius of convergence

Given a power series ∑∞n=0 an(x− c)n centered at c with S denoting the set of points where
this series converges as in Corollary 8.4.7, the radius of convergence is the extended real
number R determined as follows:

(i) R = 0 if S = {0};

(ii) R =∞ if S = R; or

(iii) R = u = sup{|x− c| : x ∈ S} otherwise.

Also, the set S is called the interval of convergence.

Remark 8.4.9: Within, beyond, or at the radius of convergence

When a power series ∑∞n=0 an(x− c)n centered at c has radius of convergence R, Corollary
8.4.7 yields the following breakdown:

(i) If 0 < R ≤ ∞ and y ∈ (c − R, c + R), or equivalently |y − c| < R, then the series∑∞
n=0 an(y − c)n converges.

(ii) If 0 ≤ R <∞ and |z − c| > R, then ∑∞n=0 an(z − c)n diverges.

(iii) If 0 < R <∞ and |w− c| = R, then ∑∞n=0 an(w− c)n may converge or it may diverge.

An immediate consequence of Theorem 8.4.4 is the uniform convergence of a power series on
compact subsets of the interval of convergence.
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Corollary 8.4.10: Uniform convergence of power series

Suppose ∑∞n=0 an(x− c)n is a power series centered at c with radius of convergence R > 0.
If K is a compact set where

K ⊆ Vc(R) = (c−R, c+R), (8.4.31)

then ∑∞n=0 an(x− c)n converges uniformly on K.

Proof of Corollary 8.4.10. Suppose ∑∞n=0 an(x − c)n has radius of convergence R > 0 and K is
compact with K ⊆ (c − R, c + R). Since K is compact, both minK and maxK exist and are
elements of K. Also, there is some q ∈ (c−R, c+R) such that, by part (vi) of Theorem 1.3.2,

c−R < q ≤ minK ≤ y ≤ maxK ≤ q < c+R =⇒ |y − c| ≤ |q − c| < R (8.4.32)

for every y ∈ K we have. So, as in Remark 8.4.9, ∑∞n=0 an(q − c)n converges. Therefore, by
Theorem 8.4.4 and since K ⊆ [c− q, c+ q], the power series ∑∞n=0 an(x− c)n converges uniformly
on both K and [c− q, c+ q].

The connection between compact sets and the uniform convergence of power series established
in Corollary 8.4.10 leads to a string of results on continuity, integration, and differentiation of
power series thanks to results developed in Chapter 7.

Theorem 8.4.11: Continuity of power series

Suppose ∑∞n=0 an(x− c)n is a power series centered at c with radius of convergence R > 0.
If K is a compact set where

K ⊆ Vc(R) = (c−R, c+R), (8.4.33)

then the uniform limit f : K → R defined by

f(x) =
∞∑
n=0

an(x− c)n for all x ∈ K (8.4.34)

is uniformly continuous on K.

Proof of Theorem 8.4.11. Suppose ∑∞n=0 an(x− c)n is a power series centered at c with radius of
convergence R > 0 and K is a compact set where

K ⊆ Vc(R) = (c−R, c+R). (8.4.35)

By Corollary 8.4.10, the power series converges uniformly on K. Hence, the uniform limit f :
K → R given by

f(x) =
∞∑
n=0

an(x− c)n for all x ∈ K (8.4.36)
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is well-defined. Let (sk) denote the sequence of partials sums given by

sk(x) =
k∑

n=0
an(x− c)n for all x ∈ K and k ∈ N. (8.4.37)

Each sk is a linear combination of continuous polynomials, and so each sk is continuous by
Corollary 4.5.7. Moreover, by Theorem 7.3.1 applied to (sk), f is continuous on K since it is the
uniform limit of (sk) and

f(x) =
∞∑
n=0

an(x− c)n = lim
k→∞

sk(x) for all x ∈ K. (8.4.38)

Since K is compact, Theorem 4.7.13 tells us f is uniformly continuous on K.

The next theorem tells us the integral of a power series is a series of integrals. Its proof is
similar to that of Theorem 8.4.11.

Theorem 8.4.12: Integral of a power series

Suppose ∑∞n=0 an(x− c)n is a power series centered at c with radius of convergence R > 0.
If a compact interval [a, b] satisfies

[a, b] ⊆ Vc(R) = (c−R, c+R), (8.4.39)

then the uniform limit f : [a, b]→ R defined by

f(x) =
∞∑
n=0

an(x− c)n (8.4.40)

is integrable over [a, b] and we have
∫ b

a
f(x) dx =

∫ b

a

( ∞∑
n=0

an(x− c)n
)
dx =

∞∑
n=0

(∫ b

a
an(x− c)n dx

)
. (8.4.41)

Proof of Theorem 8.4.12. Suppose ∑∞n=0 an(x− c)n is a power series centered at c with radius of
convergence R > 0 and [a, b] is a compact interval satisfying

[a, b] ⊆ Vc(R) = (c−R, c+R). (8.4.42)

By Corollary 8.4.10, the power series converges uniformly on [a, b]. Hence, the uniform limit
f : [a, b]→ R given by

f(x) =
∞∑
n=0

an(x− c)n for all x ∈ K (8.4.43)

is well-defined. Let (sk) denote the sequence of partials sums given by

sk(x) =
k∑

n=0
an(x− c)n for all x ∈ [a, b] and k ∈ N. (8.4.44)
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Each sk is a linear combination of integrable polynomials, and so each sk is integrable over [a, b]
by Corollary 6.3.9. Moreover, by Theorem 7.3.4 applied to (sk), f is integrable over [a, b] and we
have

∫ b

a
f(x) dx =

∫ b

a

( ∞∑
n=0

an(x− c)n
)
dx (8.4.45)

=
∫ b

a

(
lim
k→∞

sk(x)
)
dx (8.4.46)

= lim
k→∞

(∫ b

a
sk(x) dx

)
(8.4.47)

= lim
k→∞

(∫ b

a

k∑
n=0

an(x− c)n dx
)

(8.4.48)

= lim
k→∞

(
k∑

n=0

∫ b

a
an(x− c)n dx

)
(8.4.49)

=
∞∑
n=0

(∫ b

a
an(x− c)n dx

)
. (8.4.50)

To conclude the section, an analogous result holds for derivatives of power series. The omitted
proof is comparable to those of Theorems 8.4.11 and 8.4.12, yet different enough to serve as a nice
exercise. See Theorem 7.3.8 and Remark 7.3.9.

Theorem 8.4.13: Derivative of a power series

Suppose ∑∞n=0 an(x− c)n is a power series centered at c with radius of convergence R > 0.
If a compact interval [a, b] satisfies

[a, b] ⊆ Vc(R) = (c−R, c+R), (8.4.51)

then the uniform limit f : [a, b]→ R defined by

f(x) =
∞∑
n=0

an(x− c)n for all x ∈ [a, b] (8.4.52)

is differentiable over [a, b] and we have

f ′(x) =
∞∑
n=0

(an(x− c)n)′ =
∞∑
n=1

nan(x− c)n−1. (8.4.53)

Additionally, the radius of convergence of the series of derivatives ∑∞n=1 nan(x−c)n−1 is also
R.
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Example 8.4.14: The derivative of ex is itself

Consider the exponential function ex from Example 8.4.2 where it is defined by the power
series centered at c = 0 given by

f(x) = ex =
∞∑
n=0

xn

n! , (8.4.54)

and note that the radius of convergence isR =∞. By taking large enough compact intervals,
Theorem 8.4.13 applies and tells us f(x) = ex is differentiable at every x ∈ R. Moreover, by
the Power Rule, the linearity of derivatives (Theorem 5.4.1), and some reindexing we have

f ′(x) =
∞∑
n=0

nxn−1

n! =
∞∑
n=1

xn−1

(n− 1)! =
∞∑
n=0

xn

n! = f(x) = ex. (8.4.55)

That is, ex is its own derivative.

The next section concludes the main content of the book with Taylor polynomials and Taylor
series.

Exercises
8.4.1. Prove Theorem 8.4.13.

8.4.2. Suppose ∑∞n=0 an converges conditionally. Prove that for every c ∈ R, the power series∑∞
n=0 an(x− c)n has radius of convergence R = 1.

8.4.3. Suppose (an) is a sequence of real numbers where

0 < ` ≤ |an| ≤ u (8.4.56)

for some `, u ∈ (0,∞) and all n ∈ N. Prove the power series ∑∞n=1 anx
n has radius of convergence

R = 1.

8.4.4. This exercise leads to a series expansion for π.

(i) Use geometric series to find a series representation for

g(x) = 1
1 + x2 (8.4.57)

which converges pointwise on (−1, 1).

(ii) Use part (i) and the antiderivative formula

arctan x =
∫ 1

1 + x2 dx (8.4.58)
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to show

arctan x =
∞∑
n=1

(−1)n−1

2n− 1 x2n−1. (8.4.59)

(iii) Use (ii) to find a series expansion for π.

8.4.5. Suppose the power series ∑∞n=0 anx
n is a power series whose terms (an) satisfy

an 6= 0 for each n ∈ N and lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = `. (8.4.60)

Prove the Ratio Test for power series from calculus:

(i) If ` = 0, then ∑∞n=0 anx
n converges pointwise for all x ∈ R.

(ii) If ` > 0, then 1/` is the radius of convergence of ∑∞n=0 anx
n.

8.4.6. Use the Ratio Test 8.2.16 to prove a stronger result than the previous exercise where the
condition

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = ` (8.4.61)

is replaced. Specifically,

(i) Suppose an 6= 0 for each n ∈ N and there exist q > 0 and nq ∈ N such that

n ∈ N with n ≥ nq =⇒
∣∣∣∣an+1

an

∣∣∣∣ ≤ q. (8.4.62)

Prove ∑∞n=0 anx
n converges absolutely for |x| < 1/q.

(ii) Suppose an 6= 0 for each n ∈ N and there exist p > 0 and np ∈ N such that

n ∈ N with n ≥ np =⇒
∣∣∣∣an+1

an

∣∣∣∣ ≥ p > 0. (8.4.63)

Prove ∑∞n=0 anx
n diverges |x| > 1/p.

8.4.7. Suppose the power series ∑∞n=0 anx
n is a power series whose sequence of terms (an) satisfies

lim
n→∞

√
|an| = `. (8.4.64)

Prove the Root Test for power series from calculus:

(i) If ` = 0, then ∑∞n=0 anx
n converges pointwise for all x ∈ R.

(ii) If ` > 0, then 1/` is the radius of convergence of ∑∞n=0 anx
n.
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8.4.8. A stronger version of the above Root Test for power series holds. Given a power series∑∞
n=0 anx

n, set

α = lim sup
n→∞

√
|an| ≤ ∞. (8.4.65)

Prove the radius of convergence R of the power series ∑∞n=0 anx
n is given by

R =


∞, if α = 0,
0, if α =∞,
1
α

if 0 < α <∞.
(8.4.66)

8.4.9. Fix c ∈ R and determine the radii and intervals of convergence of the power series

∞∑
n=0

n2(x− c)n and
∞∑
n=0

1
n2 (x− c)n. (8.4.67)

8.4.10. Let p ∈ R and consider the power series
∞∑
n=0

1
np
xn. Use p-series (Theorem 8.2.15) to

breakdown the cases of possible radii of convergence and prove your result.

8.4.11. Determine the radius and interval of convergence of the power series
∞∑
n=0

2nn!
nn

xn.

8.5 Taylor polynomials and Taylor series
Polynomials have played a key role throughout the book. They are extremely nice to work with
since they are continuous, differentiable, and integrable, and computers can evaluate them. They
are also arbitrarily close to all continuous functions on compact intervals in the uniform sense laid
out in the Weierstrass Approximation Theorem 7.4.7.

In this final section of the chapter, polynomials, along with their infinite extensions given by
power series, are shown to have deep relationships with differentiable functions of varying degree
established in a local sense through Taylor polynomials and Taylor series.

Notation 8.5.1: kth derivative

For an index k ∈ N∪{0} and a function real-valued function f which is k-times differentiable,
the kth derivative of f is denoted by f (k). In particular, the kth derivative is defined
recursively in that f 0 = f and f (k+1) = (f (k))′.

Taylor polynomials pop out from playing around with integration by parts. A version of this
theorem and a similar proof can be found in [8].
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Theorem 8.5.2: Taylor polynomial and remainder via
row integration by parts (RIP)

Suppose I ⊆ R is an interval, f : I → R, n ∈ N ∪ {0}, f is (n + 1)-times differentiable at
c ∈ I, and f (k) is continuous on I for k = 1, . . . , n+ 1. Then for every x ∈ I we have

f(x) =
n∑
k=0

f (k)(c)
k! (x− c)k +

∫ x

c

f (n+1)(t)
n! (x− t)n dt (8.5.1)

= f(c) + f ′(c)(x− c) + f ′′(c)
2 (x− c)2 + · · ·+ f (n)(c)

n! (x− c)n (8.5.2)

+
∫ x

c

f (n+1)(t)
n! (x− t)n dt. (8.5.3)

Scratch Work 8.5.3: Play around with RIP and
the Fundamental Theorem of Calculus

By thinking of f as an antiderivative of f ′, the Fundamental Theorem of Calculus I 6.1.15
tells us

f(x)− f(c) =
∫ x

c
f ′(t) dt =

∫ x

c
−f ′(t)(−1) dt. (8.5.4)

Here’s the sneaky part: To take advantage of row integration by parts (RIP), choose u =
−f ′(t) = −f (1)(t) and, hence, dv = −1 dt. In the table below, each pair of rows represents
an iteration of integration by parts and the fourth column encodes the new integral from
each iteration. Differentiation (diff.) and integration (int., that is, finding antiderivatives)
are performed with respect to t. The antiderivative of −1 is taken to be (x− t), where x is
treated as a constant. Other antiderivatives are chosen in a similar fashion. Ultimately, for
n ∈ N we have:

(alt.) (diff.) (int.) (±
∫

)
± u dv

∫
u dv

+ → −f (1)(t) −1
∫
f ′(t) dt

↘
− → −f (2)(t) (x− t)

∫
f ′′(t)(x− t) dt

↘

+ → −f (3)(t) −(x− t)2

2!

∫ f ′′′(t)
2 (x− t)2 dt

... ... ... ...

(−1)n−1 → −f (n)(t) (−1)n (x− t)n−1

(n− 1)!

∫ f (n)(t)
(n− 1)!(x− t)

(n−1) dt

↘

(−1)n → −f (n+1)(t) → (−1)n+1 (x− t)n
n!

∫ f (n+1)(t)
n! (x− t)n dt
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Therefore, by gathering succesive “uv” terms by following the arrows and noting the right-
most column contains the new integral that comes from each iteration of row integration
by parts, we have

f(x)− f(c) =
∫ x

c
−f (1)(t)(−1) dt (8.5.5)

=
[
−f (1)(t)(x− t)− f (2)(t)

2! (x− t)2 − · · · − f (n)(t)
n! (x− t)n

]x
c

(8.5.6)

+
∫ x

c

f (n+1)(t)
n! (x− t)n dt (8.5.7)

=
n∑
k=1

f (k)(c)
n! (x− c)k +

∫ x

c

f (n+1)(t)
n! (x− t)n dt, (8.5.8)

where the notation [. . .]xc means we evaluate the expression [. . .] at both x and c, then take
the difference.

The result follows from adding f(c) across the above equations. The proof amounts to
making sure the steps taken throughout this scratch work are valid.

Proof of Theorem 8.5.2. Suppose I ⊆ R is an interval, f : I → R, n ∈ N∪ {0}, f is (n+ 1)-times
differentiable at c ∈ I, and f (k) is continuous on I for k = 1, . . . , n + 1. Fix x ∈ I and treat
t ∈ I as a variable. Since polynomials are continuous (Theorem 4.5.2) and products of continuous
functions are continuous (Theorem 4.5.8), the functions

f (k+1)(t)
k! (x− t)k (8.5.9)

are continuous on I for each k = 0, . . . , n. Hence, each of these functions is integrable over the
compact interval with endpoints x and c by Theorem 6.2.17. From there, thinking of f as an
antiderivative of f ′ and following Scratch Work 8.5.3, the Fundamental Theorem of Calculus I
6.1.15 and iterations of integration by parts (via RIP) yield

f(x)− f(c) =
∫ x

c
−f (1)(t)(−1) dt (8.5.10)

=
[
−f (1)(t)(x− t)− f (2)(t)

2! (x− t)2 − · · · − f (n)(t)
n! (x− t)n

]x
c

(8.5.11)

+
∫ x

c

f (n+1)(t)
n! (x− t)n dt (8.5.12)

=
n∑
k=1

f (k)(c)
n! (x− c)k +

∫ x

c

f (n+1)(t)
n! (x− t)n dt, (8.5.13)

where the notation [. . .]xc means we evaluate the expression [. . .] at both x and c, then take the



520 CHAPTER 8. SERIES

difference. Adding f(c) produces the desired result

f(x) =
n∑
k=0

f (k)(c)
k! (x− c)k +

∫ x

c

f (n+1)(t)
n! (x− t)n dt (8.5.14)

= f(c) + f ′(c)(x− c) + f ′′(c)
2 (x− c)2 + · · ·+ f (n)(c)

n! (x− c)n (8.5.15)

+
∫ x

c

f (n+1)(t)
n! (x− t)n dt. (8.5.16)

It’s time to formally define the key objects of the section: Taylor polynomials.

Definition 8.5.4: Taylor polynomial

Suppose I is an interval, f : I → R, and f is n-times differentiable at c ∈ I. The nth Taylor
polynomial of f at c is the function Tn(f, c) : I → R given by

Tn(f, c)(x) =
n∑
k=0

f (k)(c)
n! (x− c)k (8.5.17)

= f(c) + f ′(c)(x− c) + f ′′(c)
2 (x− c)2 + · · ·+ f (n)(c)

n! (x− c)n. (8.5.18)

Tn(f, c) is also called the Taylor polynomial of f of degree n at c.

Example 8.5.5: Taylor polynomials of sin x

Consider the function g : R → R given by g(x) = sin x. For each j ∈ N ∪ {0} and every
x ∈ R we have

g(x) = sin x

g′(x) = cos x

g′′(x) = − sin x

g(3)(x) = − cosx

g(4)(x) = sin x

...

g(4j)(x) = sin x

g(4j+1)(x) = cos x

g(4j+2)(x) = − sin x

g(4j+3)(x) = − cosx

g(4j+4)(x) = sin x

...

So with n = 4 and c = 0 we have

T4(g, 0)(x) = g(0) + g′(0)x+ g′′(0)
2 x2 + g(3)(0)

3! x3 + g(4)(0)
4! x4 (8.5.19)

= x− x3

6 . (8.5.20)
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For n = 4 and c = π/2 instead, we have

T4 (g, π/2) (x) = g
(
π

2

)
+ g′

(
π

2

)(
x− π

2

)
+
g′′
(
π
2

)
2

(
x− π

2

)2
(8.5.21)

+
g(3)

(
π
2

)
3!

(
x− π

2

)3
+
g(4)

(
π
2

)
4!

(
x− π

2

)4
(8.5.22)

= 1− 1
2

(
x− π

2

)2
+ 1

24

(
x− π

2

)4
. (8.5.23)

Try plotting g(x) = sin x, T4(g, 0)(x), and T4 (g, π/2) (x) with some mathematical software.
T4(g, 0)(x) approximates sin x pretty well near c = 0 while T4 (g, π/2) (x) approximates sin x
near c = π/2, but neither is good approximation of sin x over larger intervals.

Remark 8.5.6: Differentiable functions are locally polynomial

As mentioned at the start of the section, continuous functions on compact intervals are
uniformly approximated by polynomials across their whole domain. Specifically, the Weier-
strass Approximation Theorem on [0, 1] 7.4.5 says that when f : [0, 1] → R is continuous,
then for every ε > 0 there is an index nε ∈ N whose Bernstein polynomial Bnε(f) yields

x ∈ [0, 1] =⇒ |Bnε(f)(x)− f(x)| < ε. (8.5.24)

(The more general Weierstrass Approximation Theorem 7.4.7 extends this result to
continuous functions on arbitrary compact intervals.)

In the current setting, n-times differentiable functions are locally approximated by their nth
Taylor polynomials. In fact, we have already seen a specific instance of the local linearity of
differentiable functions. By merging Lemma 5.3.10 with the 1st Taylor polynomial T1(f, c)
from Definition 8.5.4, we have for every ε > 0 there is a threshold δ > 0 where

|x− c| < δ =⇒ |f(x)− (f ′(c)(x− c) + f(c))| < ε (8.5.25)
⇐⇒ |f(x)− T1(f, c)(x)| < ε. (8.5.26)

The next chunk of the section leads to a generalization of Lemma 5.3.10 for n-times differ-
entiable functions where

|f(x)− Tn(f, c)(x)| < ε (8.5.27)

on some neighborhood of c.

To get at (8.5.27) and see how well Taylor polynomials approximate their function f , consider
the differences known as the remainders or error functions.



522 CHAPTER 8. SERIES

Definition 8.5.7: Remainder of a Taylor polynomial

Suppose I is an interval, f : I → R, and f is n-times differentiable at c ∈ I. The nth
remainder of f at c is the function Rn(f, c) : I → R given by

Rn(f, c)(x) = f(x)− Tn(f, c)(x) (8.5.28)

where Tn(f, c) is the nth Taylor polynomial of f at c.

A corollary of Theorem 8.5.2 identifies an integral form for the remainder of a Taylor polyno-
mial. The proof is omitted since it amounts to checking Definition 8.5.7 against the conclusion of
Theorem 8.5.2.

Corollary 8.5.8: Integral form of the remainder

Suppose I is an interval, f : I → R, n ∈ N ∪ {0}, f is (n+ 1)-times differentiable at c ∈ I,
and f (k) is continuous on I for k = 1, . . . , n + 1. Then for every x ∈ I, the remainder
Rn(f, c) : I → R is given by

Rn(f, c)(x) = f(x)− Tn(f, c)(x) =
∫ x

c

f (n+1)(t)
n! (x− t)n dt. (8.5.29)

The remainder of a Taylor polynomial is also given by derivatives.

Theorem 8.5.9: Lagrange form of the remainder

Suppose I is an interval, f : I → R, n ∈ N ∪ {0}, f is (n+ 1)-times differentiable at c ∈ I,
and f (k) is continuous on I for k = 1, . . . , n+ 1. Then for each x0 ∈ I, there is an input yn
between x0 and c where the value of the remainder Rn(f, c)(x0) is given by

Rn(f, c)(x0) = f (n+1)(yn)
(n+ 1)! (x0 − c)n+1. (8.5.30)

Scratch Work 8.5.10: The key input is from the
Intermediate Value Theorem

Continuous functions attain all values between any two outputs as described by the Inter-
mediate Value Theorem 4.6.5, essentially guaranteeing each output has an input. So, to get
the key input yn, the approach is to show the function

f (n+1)(t)
(n+ 1)! (x0 − c)n+1 (8.5.31)

is continuous on the compact interval between x0 and c, and then show the value of the
remainder Rn(f, c)(x0) is between outputs of this function. A wide variety of results come
into play for this proof!
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Proof of Theorem 8.5.9. Suppose the hypotheses of Theorem 8.5.9 hold and assume, without loss
of generality, that c < x0. Since f (n+1) is continuous on the compact interval [c, x0], it attains its
extreme values by the Extreme Value Theorem 4.6.9. So, let

`n = min f (n+1)([c, x0]) and un = max f (n+1)([c, x0]). (8.5.32)

For all for all t ∈ [c, x0] we have x0 − t ≥ 0, so the bounds `n ≤ f (n+1)(t) ≤ un imply

`n
n! (x0 − t)n ≤

f (n+1)(t)
n! (x0 − t)n ≤

un
n! (x0 − t)n. (8.5.33)

Since polynomials are continuous (Theorem 4.5.2) and products of continuous functions are con-
tinuous (Theorem 4.5.8), the three functions in (8.5.33) are continuous on [c, x0]. Hence, each is
also integrable over [c, x0] by Theorem 6.2.17. So by the order property of integrals (Corollary
6.3.10) and the linearity of integration (Theorem 6.3.6) together with the integral form of the
remainder in Corollary 8.5.8, we have

`n
n!

∫ x0

c
(x0 − t)n dt ≤ Rn(f, c)(x0) =

∫ x0

c

f (n+1)(t)
n! (x0 − t)n dt ≤

un
n!

∫ x0

c
(x0 − t)n dt. (8.5.34)

Evaluating the integrals on the left and right using the Fundamental Theorem of Calculus I 6.1.15
via antiderivative −(x0 − t)n+1/(n+ 1) yields

`n(x0 − c)n+1

(n+ 1)! ≤ Rn(f, c)(x0) ≤ un(x0 − c)n+1

(n+ 1)! . (8.5.35)

To take advantage of the Intermediate Value Theorem 4.6.5, note that (x0 − c)n+1/(n + 1) is a
positive constant. So scaling `n ≤ f (n+1)(t) ≤ un by this constant gives us

`n(x0 − c)n+1

(n+ 1)! ≤ f (n+1)(t)(x0 − c)n+1

(n+ 1)! ≤ un(x0 − c)n+1

(n+ 1)! (8.5.36)

for all t ∈ [c, x0]. Also, by (8.5.32), these new bounds are attained and we have

`n(x0 − c)n+1

(n+ 1)! = min (x0 − c)n+1

(n+ 1)! f (n+1)([c, x0]) and (8.5.37)

un(x0 − c)n+1

(n+ 1)! = max (x0 − c)n+1

(n+ 1)! f (n+1)([c, x0]). (8.5.38)

By the linearity of continuity (Theorem 4.5.5), the scaled function (x0−c)n+1

(n+1)! f (n+1) is continuous on
[c, x0]. Note (8.5.35) and (8.5.37) combine to say the remainder Rn(f, c)(x0) is between outputs of
this scaled function, so by the Intermediate Value Theorem 4.6.5, there is some input yn ∈ [c, x0]
where

Rn(f, c)(x0) = f (n+1)(yn)
(n+ 1)! (x0 − c)n+1. (8.5.39)

Taylor series provide the setting for the final results of the chapter.
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Definition 8.5.11: Taylor series

Suppose I is an interval, c ∈ I, and f : I → R where f (n)(c) exists for all n ∈ N. The
Taylor series of f at c is the power series

∞∑
n=0

f (n)(c)
n! (x− c)n. (8.5.40)

The special case where c = 0 is called the Maclaurin series of f . Note that kth partial sum
of a Taylor series is Tk(f, c), the kth Taylor polynomial of f at c as in Definition 8.5.4.

The Taylor series of a function is only meaningful when the derivatives of all orders exist at
a specified value c. When a function’s derivatives exist on a common interval, the function is
smooth

Definition 8.5.12: Smooth functions

Suppose I is an interval. A function f : I → R is smooth or infinitely differentiable I if the
kth derivative f (k) exists on I for every k ∈ N.

Smooth functions equal their Taylor series when the remainders tend to zero pointwise. The
same result can be found at the end of [6].

Theorem 8.5.13: Smooth functions and Taylor series

Suppose I is an interval, c ∈ I, and f is smooth on I. Then for a given x0 ∈ I,

f(x0) =
∞∑
n=0

f (n)(c)
n! (x0 − c)n ⇐⇒ lim

k→∞
Rk(f, c)(x0) = 0. (8.5.41)

Scratch Work 8.5.14: Limits of partial sums and
linearity of sequential limits

The proof relies on fundamentals of convergent series and sequences of real numbers: The
sum of a series is the limit of partial sums (Definition 8.1.3) and sequential limits are linear
(Theorem 2.3.9). However, the particular form of the remainder Rk(f, c) does not matter.

Proof of Theorem 8.5.13. Suppose f is smooth on interval I and x0, c ∈ I. Note that f(x0) is
constant with respect to k ∈ N, so

f(x0) = lim
k→∞

f(x0). (8.5.42)

Both implications follow from the same string of various equivalent statements, though followed
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in opposite directions:

f(x0) =
∞∑
n=0

f (n)(c)
n! (x0 − c)n ⇐⇒ lim

k→∞
f(x0) = lim

k→∞
Tk(f, c)(x0) (8.5.43)

⇐⇒ lim
k→∞

f(x0)− lim
k→∞

Tk(f, c)(x0) = 0 (8.5.44)

⇐⇒ lim
k→∞

(f(x0)− Tk(f, c)(x0)) = 0 (8.5.45)

⇐⇒ lim
k→∞

Rk(f, c)(x0) = 0. (8.5.46)

The first equivalence above follows from (8.5.42) and identifying the Taylor series as the limit of
the sequence of Taylor polynomials (Definitions 8.1.3, 8.5.4, and 8.5.11). The second follows from
subtracting/adding limk→∞ Tk(f, c)(x0). The third is the linearity of sequential limits (Theorem
2.3.9). And the last equivalence follows from the definition of the remainder as the difference
between the function and a Taylor polynomial (Definition 8.5.7).

A fundamental example of Taylor series closes out the main content of the book. First, a
lemma will help us get a hold of remainders. It also supplies a proof for Exercise 2.4.6.

Lemma 8.5.15: Factorials dominate monomials

For every x ∈ R we have

lim
n→∞

xn

n! = 0. (8.5.47)

Scratch Work 8.5.16: Ratios are eventually small

For each n ∈ N, the numerator and denominator of the ratio xn/n! each has n factors. So
we can write

xn

n! =
(
x

1

)(
x

2

)
· · ·

(
x

n− 1

)(
x

n

)
. (8.5.48)

The Archimedean Property 1.4.6 tells us there is an index n0 ∈ N large enough so that

|x| < n0 =⇒ 0 ≤ |x|
n0

< 1. (8.5.49)

For n > n0, we can split (8.5.48) at the index n0 − 1, like this

xn

n! =
(
x

1

)(
x

2

)
· · ·

(
x

n− 1

)(
x

n

)
(8.5.50)

=
(
x

1

)(
x

2

)
· · ·

(
x

n0 − 1

)(
x

n0

)
· · ·

(
x

n− 1

)(
x

n

)
. (8.5.51)

The factors to the left of the split stay constant as n continues to grow. On the other hand,
each factor to the right of the split has an absolute value less than some 0 < c0 < 1, and
we get more and more of them as n grows. Hence, with a little more effort, we can apply
Corollary 2.4.19 to complete the proof.
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Proof of Lemma 8.5.15. Fix x ∈ R. By the Archimedean Property 1.4.6, there is an index n0 ∈ N
large enough so that for all n ∈ N where n ≥ n0 ∈ N we have

|x| < n0 ≤ n =⇒ 0 ≤ |x|
n
≤ |x|
n0

< 1. (8.5.52)

Now set c0 = |x|/n0. Splitting the ratio |x|n/n! as in Scratch Work 8.5.16 yields

|x|n

n! =
(
|x|
1

)(
|x|
2

)
· · ·

(
|x|
n− 1

)(
|x|
n

)
(8.5.53)

=
(
|x|
1

)(
|x|
2

)
· · ·

(
|x|

n0 − 1

)
︸ ︷︷ ︸

n0−1 factors

·
(
|x|
n0

)
· · ·

(
|x|
n− 1

)(
|x|
n

)
︸ ︷︷ ︸

n−n0 factors

(8.5.54)

≤
(
|x|n0−1

(n0 − 1)!

)(
|x|
n0

)n−n0

(8.5.55)

=
(
|x|n0−1

(n0 − 1)!

)
cn−n0

0 (8.5.56)

=
(
|x|n0−1

cn0
0 (n0 − 1)!

)
︸ ︷︷ ︸

contstant w.r.t. n

cn0 . (8.5.57)

Since 0 ≤ c0 = |x|/n0 < 1, Corollary 2.4.19 applies and pairs with the linearity of sequential limits
(Theorem 2.3.9) to give us

lim
n→∞

|x|n

n! = 0. (8.5.58)

Finally, for every x ∈ R and n ∈ N we have

−|x|
n

n! ≤
xn

n! ≤
|x|n

n! . (8.5.59)

Therefore, by the linearity of and Squeeze Theorem for sequential limits (Theorems 2.3.9 and
2.4.3), for every x ∈ R we have

lim
n→∞

xn

n! = 0. (8.5.60)

One final example to conclude the book.

Example 8.5.17: Taylor series of ex

The Maclaurin series of f(x) = ex is exactly the power series that defines ex in Example
8.4.2. Moreover, f(x) = ex equals the sum of its Taylor series centered at any c ∈ R. That
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is, for every x, c ∈ R we have

f(x) = ex =
∞∑
n=0

xn

n! =
∞∑
n=0

f (n)(c)
n! (x− c)n =

∞∑
n=0

ec

n! (x− c)
n. (8.5.61)

Scratch Work 8.5.18: Show the remainders converge to zero

To show a function equals its Taylor series at a given input x0, Theorem 8.5.13 tells us it
suffices to show the sequence of remainders (Rn(f, c)(x0)) converges to 0. Example 8.4.14
tells us the exponential function ex is equal to all of its derivatives. Paired with some
assumptions about ex from calculus and the Lagrange form of the remainder as a derivative
from Theorem 8.5.9, we have enough to prove ex equals its Taylor series centered at any
c ∈ R.

Proof for Example 8.5.17. Consider the exponential function f(x) = ex given by

f(x) = ex =
∞∑
n=0

xn

n! (8.5.62)

as in Example 8.4.2. Fix c, x0 ∈ R with x0 6= c and let n ∈ N∪{0}. Since ex equals its derivatives
of all orders (Example 8.4.14), the nth remainder Rn(f, c)(x0) is given by

Rn(f, c)(x0) = f (n+1)(yn)
(n+ 1)! (x0 − c)n+1 = eyn

(n+ 1)!(x0 − c)n+1 (8.5.63)

for some yn between x0 and c. Also, since ex is increasing (a fact from calculus that is assumed
but not proven here) and −(|x0|+ |c|) ≤ yn ≤ |x0|+ |c|, we have

e−(|x0|+|c|) ≤ eyn ≤ e|x0|+|c|. (8.5.64)

Multiplying across by a key nonnegative number yields

e−(|x0|+|c|)

(n+ 1)! (x0 − c)n+1 ≤ Rn(f, c)(x0) = eyn

(n+ 1)!(x0 − c)n+1 ≤ e|x0|+|c|

(n+ 1)!(x0 − c)n+1. (8.5.65)

By the linearity of and Squeeze Theorem for sequential limits (Theorems 2.3.9 and 2.4.3) along
with Lemma 8.5.15 we have

lim
n→∞

Rn(f, c)(x0) = lim
n→∞

eyn

(n+ 1)!(x0 − c)n+1 = 0. (8.5.66)

Therefore, by Theorem 8.5.13, for every x0, c ∈ R we have

f(x) = ex =
∞∑
n=0

xn

n! =
∞∑
n=0

f (n)(c)
n! (x− c)n =

∞∑
n=0

ec

n! (x− c)
n. (8.5.67)
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Exercises
8.5.1. Determine Maclaurin series for g(x) =

√
1− x (i.e., Taylor series centered at c = 0). Prove

the series converges to g(x) =
√

1− x when −1 < x ≤ 0.

8.5.2. Determine Taylor series for h(x) = ln x centered at c = 1. Where does this series to
h(x) = ln x?

8.5.3. Suppose p : R→ R is a polynomial of degree n ∈ N ∪ {0} given by

p(x) =
n∑
k=0

akx
k = a0 + a1x+ a2x

2 + · · ·+ anx
n. (8.5.68)

(i) Prove that for each c ∈ R, the Taylor series of p centered at c is a finite sum (all terms with
index j > n are zero) and

p(x) =
n∑
k=0

f (k)(c)
k! (x− c)k. (8.5.69)

(ii) Consider the polynomial p(x) = 4x3−2x2+x−1. Use part (i) to determine other polynomials
equal to p derived from the Taylor series of p at c = −1, 1, and 2, respectively.

8.5.4. This exercise builds on the Taylor polynomials of sin x in Example 8.5.5 and the proof that
ex equals its Taylor series centered at any point (Example 8.5.17).

(i) Verify the formulas for the Taylor series centered at c = 0 (so, the Maclaurin series) of sin x
and cosx using the relationship between their derivatives from calculus:

(a) sin x =
∞∑
n=0

(−1)n
(2n+ 1)!x

2n+1 = x− x3

3! + x5

5! − · · · .

(b) cosx =
∞∑
n=0

(−1)n
(2n)! x

2n = 1− x2

2! + x4

4! − · · · .

(ii) Prove sin x and cosx equal their Maclaurin series at every x ∈ R.

(iii) Prove sin x is an odd function and cosx is an even function.

8.5.5. Suppose f : (−1,∞)→ R is given by f(x) = ln (1 + x). Use the fact from calculus that

f ′(x) = 1
1 + x

for all x ∈ (−1,∞) (8.5.70)

to establish the following results.

(i) Derive the formula for the Taylor series of f(x) = ln (1 + x) centered at c = 0 and determine
the radius of convergence.

(ii) Prove

ln 2 =
∞∑
n=1

(−1)n+1

n
= 1− 1

2 + 1
3 −

1
4 + 1

5 − · · · . (8.5.71)
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(iii) Derive the formula for the Taylor series of g(x) = ln (1 + x2) centered at c = 0 and determine
the radius of convergence.

8.5.6. Use previously established results and exercises to find Taylor series expansions of the
following functions and determine precisely for which values of x the original function equals the
sum of its Taylor series.

(i) x sin x3

(ii) x cosx2

(iii) ex − 1
x

(iv) ln (1 + x2)

8.5.7. Prove that if f is smooth on an interval I and there is a uniform bound b ≥ 0 on the
derivatives where

|f (n)(x)| ≤ b (8.5.72)

for all x ∈ I and n ∈ N ∪ {0}, then f equals its Taylor series on I.

8.5.8. Prove the following weaker form of Theorem 8.5.9: Suppose n ∈ N∪{0}, f is (n+1)-times
differentiable at c ∈ [0, x], f (k) is continuous on [0, x] for k = 1, . . . , n + 1, and there is a bound
b ≥ 0 on the derivatives where |f (n+1)(x)| ≤ b for all x ∈ [0, x]. Prove

Rn(f, 0)(x) ≤ bxn+1

(n+ 1)! . (8.5.73)

8.5.9. This exercise shows the extent to which a convergent Taylor series can differ from the
function that defined it, which is to say, completely. The derivatives make use of the ∞/∞
case of L’Hospital’s Rule, loosely stated and not proven here: Suppose limx→c |f(x)| = ∞ and
limx→c |g(x)| =∞. Then

lim
x→c

f ′(x)
g′(x) = ` =⇒ lim

x→c

f(x)
g(x) = `. (8.5.74)

Consider the function f : R→ R given by

f(x) =
e−1/x2

, if x 6= 0,
0, if x = 0.

(8.5.75)

(i) Prove f is uniformly continuous on R.

(ii) Prove f is smooth on R and f (n)(0) = 0 for every n ∈ N ∪ {0}.

(iii) Prove f is not equal to its Taylor series centered at c = 0 (i.e., its Maclaurin series) at any
x 6= 0. That is, despite the fact that the series converges at every point of the real line,
prove

f(x) 6=
∞∑
n=0

f (n)(0)
n! xn (8.5.76)

for all x 6= 0.
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Index

Q is arbitrarily small, 479
R is uncountable, 172
ε-neighborhoods are open, 201
nth term test, 486
p-series, 494

A characterization of intervals, 211
A consequence of the Archimedean Property, 54
A continuous function is the uniform limit of a

sequence of polynomials, 470
A point in a set is arbitrarily close, 60
Abel’s Test, 499
absolute convergence, 487
Absolute convergence implies convergence, 487
accumulation point, 239
addition, 73
algebraic number, 173
alternating series, 488
Alternating Series Test, 488
antiderivative, 376
arbitrarily close, 60
arbitrarily close (in the real line), 18
arbitrarily close (two sets), 214
Arbitrarily close and convergence, 109
Archimedean Property, 53
arithmetic mean, 49
away from, 64
away from (in the real line), 18

Banach Fixed-Point Theorem, 327
basic affine transformation, 266
Basic affine transformations preserve closeness,

266
Bernstein basis polynomial, 464
Bernstein polynomial, 465
bijection, 35
Binary decimals are distinct, 162

binary expansion (infinite), 165
binomial coefficient, 36
Binomial Theorem, 36
Bolzano-Weierstrass Theorem in R, 142
Bolzano-Weierstrass Theorem in Rm, 146
bound (function), 285
bound (sequence), 116
boundary, 237
bounded (function), 285
bounded (sequence), 116
bounded (set), 67
bounded above, 15
bounded below, 16
box, 144

Cantor set, 174, 236, 244
Cauchy Condensation Test, 492
Cauchy criterion for sequences, 152
Cauchy criterion for series, 485
Cauchy criterion for uniform convergence, 450
Cauchy Mean Value Theorem, 380
Cauchy sequence, 150
Cesaro mean, 138
Chain Rule, 362
Classifying sets of convergence, 510
closed, 191
closure, 65, 191
coda (sequence), 183
Coda of a convergent sequence, 186
coda-ccompact, 236
Codas of sequences are closed, 194
codomain, 34
coefficients (power series), 506
common ratio, 157, 477
compact, 222
compact (sequentially), 232
compact (topologically), 226
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Comparison Test, 490
complement, 198
Compositions of continuous functions are

continuous, 307
conditional convergence, 487
connected, 207
Connected and arbitrarily close, 211
Continuity and uniformly convergent series, 504
Continuity from limits, 341
Continuity implies convergence, 335
Continuity of basic affine transformations, 276
Continuity of power series, 512
Continuity on a compact set is uniform

continuity, 325
continuous, 271
Continuous functions are integrable, 409
Continuous functions are locally bounded, 285
Continuous images of compact sets are

compact, 313
Continuous images of connected sets are

connected, 312
Continuous images of coupled sets are coupled,

311
contraction, 327
Contraction Mapping Principle, 327
convergence (absolute), 487
convergence (conditional), 487
convergence (functional limit), 330
convergence (pointwise), 435
convergence (sequential limit), 97
convergence (series pointwise), 501
convergence (series uniform), 501
convergence (series), 474
convergence (uniform), 444
Convergence implies subsequential convergence,

135
Convergent sequences are bounded, 117
Convergent series have terms converging to

zero, 486
countable, 166
countably infinite, 170
coupled, 206

Darboux’s Theorem, 370
De Morgan’s, 205
decimal expansion (finite), 159
decimal expansion (infinite), 160
Decimals are series, 476

decreasing (function), 377
decreasing (sequence), 126
Definite integrals are uniformly continuous, 429
dense, 242
Density of irrationals in the reals, 58
Density of the rationals in the reals, 55
derivative, 350
Derivative of a power series, 514
difference quotient, 350
differentiable, 351
Differentiable implies continuous, 359
Differentiable implies locally linear, 354
Differentiation and uniformly convergent series

of derivatives, 505
digits, 159
Dini’s Theorem, 462
Dirichlet’s function, 268, 300, 349
Dirichlet’s Test, 499
disconnected, 210
Discontinuity Criteria, 315
Discontinuity Criteria, More, 342
discontinuous, 271
diverge to −∞ in R, 155
diverge to ∞ in R, 155
diverge to ∞ in Rm for m ≥ 2, 155
divergence (functional), 330
divergence (sequential), 97
divergence (series), 474
Divergence Criteria for Functions, 340
Divergence Criteria for Sequences, 154
domain, 34

enumeration, 170
Equal points are arbitrarily close, 61
Equivalence of Coda and Slim, 188
Equivalent forms of continuity, 295
Equivalent forms of convergence for functions,

337
Equivalent forms of derivatives, 356
Equivalent forms of integration, 405
error function, 522
Euler’s number, 482
even function, 311, 396
eventually, 106
Existence of lim sup and lim inf, 177
exterior, 238
exterior point, 238
Extreme Value Theorem, 314
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factorial, 36
Factorials dominate monomials, 525
finite, 36
finite subcover, 222
fixed point, 318
floor, 310
for large enough, 106
function, 34
Functional limits in Euclidean spaces are

unique, 345
Fundamental connection between
arbitrarily close and convergence, 109
Fundamental Theorem of Calculus I, 395
Fundamental Theorem of Calculus II, 430

geometric mean, 49
geometric series, 477
Geometric series (closed form), 477
geometric sum, 157
glued, 310
golden ratio, 173
greatest lower bound, 52

Heine-Borel Theorem, 226, 235

image (of a set), 34
image (of an input), 34
increasing (function), 377
increasing (sequence), 126
index, 37
index (sequence), 83
index set, 30
indexed family, 30
infimum, 22
Infimum is the greatest lower bound, 52
infinite, 36
Infinite decimal expansions converge, 160
infinitely differentiable on, 524
initial term, 157, 477
integrable, 386
integral, 386
integral (over a singleton), 387
integral (swap limits), 387
Integral form of the remainder, 522
Integral of a constant, 390
Integral of a power series, 513
Integral triangle inequality, 423
integrand, 386

Integration and uniformly convergent, 504
Integration by Parts (antiderivatives), 379
Integration by Parts (definite integrals), 419
interior, 237
Interior Extremum Theorem, 369
interior point, 237
intermediate value property, 318
Intermediate Value Theorem, 312
intersection, 30
intersection (over indexed family), 31
interval, 31
interval of convergence, 511
Intervals are the connected subsets of the real

line R, 212
isolated point, 239

L’Hospital’s Rule, 380
Lagrange form of the remainder, 522
least upper bound, 46
left-hand limit, 350
level set, 300
limit (functional), 330
limit (pointwise), 435
limit (preserve closeness), 336
limit (sequential), 97
limit (uniform), 444
limit inferior (lim inf), 178
limit superior (lim sup), 178
linear combination, 73
linear combination of sets, 76
Linearity of arbitrarily close, 77
Linearity of continuity, 302
Linearity of convergent series, 483
Linearity of differentiation, 358
Linearity of functional limits, 343
Linearity of integration, 415
Linearity of sequential limits, 113
Linearity of uniform continuity, 321
Linearity of uniform convergence, 448
Lines are continuous, 302
Lines are differentiable, 351
Lines are uniformly continuous, 320
Lipschitz, 327
local bound, 285
local extremum, 368
local maximum, 368
local minimum, 368
locally bounded, 285
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locally linear, 354
lower bound, 16
lower height, 385
lower sum, 386

maximum, 15
Mean Value Theorem, 373
minimum, 16
monomial, 75
Monomials are continuous, 306
monotone (function), 377
monotone (sequence), 126
Monotone and Bounded Convergence Theorem,

128
monsters, 506

neighborhood, 62
nested sets, 140
Nested, Closed, Bounded Boxes (NCBB)

Property, 145
Nested, Closed, Bounded Intervals (NCBI)

Property, 140
nowhere differentiable, 506

odd function, 311, 396
one-to-one (or 1-1), 35
onto, 35
open, 198
open cover, 220
Open sets in the real line R, 204
Open versus closed, 199
Order and arbitrarily close, 69
Order properties for functional limits in R, 339
Order properties for sequential limits in R, 122
Order properties of suprema and infima, 52
Order property of integration, 418
orthonormal basis, 81
output sequence, 434
output series, 501

p-series, 494
pairwise disjoint, 204
partial sum (of functions), 500
partial sum (of real numbers), 473
partition (of a compact interval), 384
perfect set, 174
period, 396
periodic, 396
pointwise convergence, 435

pointwise convergence (series), 501
pointwise limit, 435
pointwise limit (series of functions), 501
pointwise threshold (series), 502
polynomial, 75, 301
Polynomials are continuous, 301, 306
Power Rule, 357
Power Rule for definite integrals, 411
power series, 506
preimage, 250
preserve accumulation, 336
preserve closeness, 263
Probability and Bernstein basis polynomials,

464
Product Rule, 361
Products of continuous functions are

continuous, 305
Products of functional limits, 346
Products of sequential limits in R, 118

Quotient Rule, 363
Quotients of continuous functions are

continuous, 309
Quotients of functional limits, 346
Quotients of sequential limits in R, 121

radius of convergence, 511
range, 34
range (sequence), 84
rate of convergence (sequential), 106
Ratio Test, 495
Ratio Test (power series), 516
Rationals between rationals, 45
rearrangement, 500
Reciprocals of sequential limits in R, 120
refinement, 399
Refinements improve estimates, 403
remainder, 522
removable discontinuity, 336
right-hand limit, 349
Rolle’s Theorem, 373
root of a polynomial, 173
Root Test, 497
Root Test (power series), 516

scalar, 73
scalar multiplication, 73
scaled set, 76
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separation, 210
sequence, 83
Sequence of bounds implies uniform

convergence, 447
sequence of functions, 434
sequentially compact, 232
sequentially continuous, 295
series (of functions), 500
series (of real numbers), 473
sided-limits, 349
Slim (set of subsequential limits), 134
smooth, 524
Smooth functions and Taylor series, 524
span, 73
Square root of two is a real number, 57
Square root of two is irrational, 43
Squeeze Theorem for continuity, 314
Squeeze Theorem for derivatives, 367
Squeeze Theorem for functions, 347
Squeeze Theorem for sequences, 124
standard topology on Rm, 204
strictly decreasing (function), 377
strictly decreasing (sequence), 126
strictly increasing (function), 377
strictly increasing (sequence), 126
subsequence, 134
subsequential limit, 134
subspace, 75
Substitution (antiderivatives), 379
Substitution (definite integral), 411
sum (of a series), 474
sum of sets, 76
sum of squares, 396
Summation by Parts, 499
Suprema and infima are limits, 111
Suprema and infima of scaled functions, 413
Suprema and infima of subsets, 175
Suprema and infima of sums of functions, 412
supremum, 21
Supremum is the least upper bound, 47

tail (sequence), 88
tail (series of functions), 500
tail (series of real numbers), 473
tangent line, 354
Taylor polynomial, 520
Taylor polynomial and remainder, 518
term (sequence), 83

terms (series of real numbers), 473
ternary expansion (infinite), 174
Thomae’s function, 300, 349
threshold (continuity), 271
threshold (diverge to −∞ in R, 155
threshold (diverge to ∞ in R, 155
threshold (diverge to ∞ in Rm for m ≥ 2), 155
threshold (functional limit), 330
threshold (local maximum), 368
threshold (local minimum), 368
threshold (locally linear), 354
threshold (pointwise series), 502
threshold (pointwise), 441
threshold (sequential limit), 97
threshold (uniform continuity), 319
threshold (uniform convergence), 444
threshold (uniform series), 502
topologically compact, 226
topologically continuous, 301
Topologies comprise open sets, 202
topology, 202
triangle inequality, 37

unbounded (function), 285
unbounded (sequence), 116
uncountable, 166
uncoupled, 209
Uncoupled when split by disjoint open sets, 209
uniform convergence, 444
uniform convergence (series), 501
Uniform convergence and derivatives, 458
Uniform convergence of power series, 512
Uniform convergence preserves continuity, 453
Uniform convergence respects integration, 454
uniform limit (series of functions), 501
uniform threshold (series), 502
uniformly continuous, 319
union, 30
union (over indexed family), 31
Uniqueness of sequential limits, 111
upper bound, 15
upper height, 385
upper sum, 386

vector, 73
vector space, 73

Weierstrass Approximation Theorem, 468
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Weierstrass Approximation Theorem haiku, 471

Weierstrass Approximation Theorem on [0, 1],
465

Weierstrass functions (original), 506
Weierstrass M-Test, 503

zero set, 300
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