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ABSTRACT

Digital image watermarking is a method by whi
h a message 
an be hidden in an image

for the purpose of information prote
tion. In this thesis, the host data into whi
h the

message are embedded is 
hosen as the highest-magnitude 
oeÆ
ients from a subset of the

full-frame image transform, and the watermark is inserted through multipli
ative embedding.

To 
omplete the watermarking system, a dete
tor that is 
apable of a

urately determining

the presen
e or absen
e of a watermark in a given image must be developed.

This thesis fo
uses on the formulation of statisti
ally optimal watermark dete
tors

that in
orporate the use of side information in the form of an image hash, 
reating a joint

hashing/watermarking system. The 
lassi
al Weibull and power exponential distributions

are 
onsidered as probabilisti
 models of the host data. The not
hed power exponential

distribution is also proposed to better represent the data sele
ted for watermarking. For ea
h

distribution, dete
tors are derived using the te
hniques of likelihood ratio testing, maximum

likelihood estimation, and lo
ally optimal dete
tion. Cherno� bounds on performan
e are

found for the likelihood ratio test dete
tors, and Cherno� distan
e is used to quantify the

diÆ
ulty of the dete
tion problem, in
luding that of an eavesdropper's problem.

Through analysis and experimentation using synthesized data and real-world test

images, the use of the not
hed power exponential distribution and likelihood ratio testing is

observed to produ
e a vastly superior dete
tor, as measured by the probabilities of false alarm

and dete
tion. Although the dete
tor derivations do not in
lude models of atta
ks, the e�e
ts

of additive white Gaussian noise and JPEG 
ompression are explored, and the not
hed power

exponential likelihood ratio test dete
tor again yields the highest-quality performan
e. The

exemplary results obtained 
learly demonstrate that the 
ombination of statisti
al modeling

and dete
tion theory permit the development of promising dete
tors, thereby fa
ilitating the

use of joint digital image hashing/watermarking in pra
ti
al appli
ations.
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CHAPTER 1

INTRODUCTION

1.1 Purpose

The purpose of this thesis is to develop statisti
ally optimal watermark dete
tors that 
om-

bine the use of hashes into the watermarking pro
ess, 
reating a joint hashing/watermarking

te
hnique. Theoreti
al bounds are also found on the behavior of these dete
tors. The de-

gree of diÆ
ulty experien
ed by an eavesdropper attempting to dete
t the watermark is

also 
onsidered. Monte Carlo simulations are then performed using both syntheti
 and real-

world data. Finally, various atta
ks on the watermarked obje
t are introdu
ed to study the

robustness of the derived dete
tors.

1.2 Problem

The desire and ability to hide information in a 
ommonly used medium have been present in

so
iety for thousands of years. Throughout the generations, the te
hniques used to a

om-

plish these 
overt goals have varied, and, with the 
urrent prevalen
e of digital multimedia

data, these methods 
ontinue to evolve. Data hiding has a vast array of appli
ations, in-


luding the newly developing sub�eld of digital watermarking. Watermarking is a type of

information hiding where the purpose is data prote
tion. Typi
ally, a watermark is employed

to prote
t the rights of a 
reator of a multimedia obje
t. For example, a watermark 
an be

introdu
ed as a means of identifying the owner of a digital image, or it 
ould 
ontain a

unique serial number for ea
h individual who has been given a

ess rights to a digital movie.

Regardless of the spe
i�
 instan
e of watermarking, the unifying feature is the utilization of

1



data hiding te
hniques to bene�t the owner of a multimedia obje
t. In general, the insertion

of a watermark should be imper
eptible in the host obje
t (invisible watermarking); how-

ever, the less 
ommon visible watermarking is preferred in 
ertain situations. Also, sin
e the

reliability of a watermark rests on se
urity, a property of a watermarking method is that it

should be robust against atta
ks. A trade-o� exists between the two properties of invisibility

and robustness, thereby providing a 
hallenge in developing an ideal watermarking s
heme.

The pro
ess of watermarking 
an be divided into three distin
tly di�erent portions,

namely, data modeling, watermark embedding, and watermark dete
tion. Sin
e mu
h previ-

ous watermarking resear
h has fo
used on the embedding pro
ess, this thesis mainly 
onsiders

the development of dete
tion te
hniques, spe
i�
ally for multipli
ative embedding. However,

the derivations found herein are easily applied to other embedding pro
esses. To produ
e

more robust dete
tors, side information is provided to the dete
tor in the form of a hash

of the original obje
t, 
reating a joint hashing/watermarking system. A hash fun
tion is

a fun
tion that takes in a set of data (in this 
ase the original multimedia obje
t) and a


ryptographi
 key, and produ
es a simpli�ed representation of that data. This resulting

hash is quite small and, thus, is easily provided to the watermark dete
tor. The parti
ular

hash fun
tion sele
ted for use in this thesis leads to an expansion of the methods 
urrently

employed in data modeling. Although joint hashing/watermarking systems have been ex-

amined in other works [1℄, they have not been 
onsidered from a statisti
al standpoint. By

formulating the watermarking pro
ess in the 
ontext of a 
ommuni
ations system, the theo-

ries of signal dete
tion and estimation 
an be employed. Furthermore, performan
e bounds


an be 
al
ulated to determine the worst-
ase behavior of the dete
tors. Similarly, measures


an be developed to illustrate the relative diÆ
ulty of di�erent dete
tion problems, in
lud-

ing the problem seen by an eavesdropper attempting to dete
t a watermark. Using these

insights from the �eld of 
ommuni
ations, this thesis develops and analyzes statisti
ally op-

timal means of dete
ting a watermark that has been multipli
atively embedded into a digital

image.

2



1.3 Thesis Organization

This thesis is divided into eight 
hapters. Chapter 1 presents the problem addressed by

the thesis and des
ribes the need for further solutions. Chapter 2 formulates the joint

hashing/watermarking system in a mathemati
al framework so that optimal dete
tors 
an be

developed in Chapter 3. Chapter 4 then derives theoreti
al bounds on the performan
e of the

studied dete
tors. In Chapter 5, experiments are dis
ussed and performed using syntheti
ally

generated data to determine the abilities of the dete
tion te
hniques. In Chapters 6 and 7, the

developed dete
tors are applied to real-world test images in both the absen
e and presen
e

of an atta
k, respe
tively. Finally, Chapter 8 provides 
on
lusions based on the development

and analysis presented in the thesis, and o�ers re
ommendations for the future dire
tions of

the watermarking problem.

3



CHAPTER 2

PROBLEM FORMULATION

In this 
hapter the watermarking problem is presented mathemati
ally. First, the watermark-

ing system, in
luding the embedding te
hnique, is dis
ussed. This s
heme is then spe
ialized

for use with digital images using a joint hashing/watermarking setup. Then, three di�erent

methods that may be used to model the host data are developed. Finally, for the purpose

of implementation, te
hniques allowing syntheti
 host data to be generated are presented.

2.1 Basi
 Watermarking Problem

The basi
 watermarking problem 
an be des
ribed pi
torially by the diagram in Figure 2.1.

First, there is a ve
tor of host data, x, where the fx

i

g are assumed to be independent,

into whi
h a spe
i�
, known watermark ve
tor, m, is to be embedded. The result of this

embedding operation, y, may then be passed through an atta
k 
hannel, 
reating ~y, before

being presented to the dete
tor. Re
eiving this signal, the dete
tor must determine whether

or not the spe
i�
 message is present. To examine this system in more detail, �rst 
onsider

the watermark embedding pro
ess. A variety of methods is available to insert a watermark

into a set of host data; this thesis, however, is 
on
erned with multipli
ative watermark

embedding [2℄. In this setup, ea
h element of the watermarked data is generated a

ording

to the formula

y

i

= x

i

(1 + sm

i

)

where s is the strength of the watermark embedding. The sole restri
tion pla
ed on s is

that is should be a real number within the interval [0, 1). This limitation is applied be
ause

the watermark is to be visually undete
table in the host data. For simpli
ity, ea
h element

4



Watermark
Embedding

Attack
Watermark
Detection

x y y Decision
Statistic

~

m m

Figure 2.1 Basi
 watermarking pro
ess.

of the watermark message to be embedded is generated uniformly and independently from

a binary distribution with values f�1; 1g; however, the use of other modulation te
hniques

and of error 
orre
ting 
odes is also possible. By examining this embedding formula, it is

easily seen that the amount of error introdu
ed into an element is proportional to the size

of the element itself.

With the watermark now embedded into the host data, the watermarked obje
t is

released into the publi
 domain. Thus, the dete
tor has no knowledge of the manipulations

performed on the obje
t, whi
h 
ould in
lude simple image pro
essing operations or even

attempts to remove the watermark itself. Hen
e, an atta
k blo
k is introdu
ed into the

diagram, produ
ing the ve
tor
~
y.

Finally, the 
orrupted version of the watermarked data is presented to a dete
tor,

whi
h is responsible for determining whether or not the spe
i�
 watermark is present in

the sequen
e. Su
h a dete
tor may yield a number of possible types of output. First, the

dete
tor may simply give a yes or no answer regarding the presen
e of the spe
i�
 watermark.

Alternately, the dete
tor 
ould present a statisti
 indi
ating how 
ertain it is that the given

watermark is present, whi
h may then be 
ompared against a threshold to determine a yes

or no answer. Finally, the dete
tor 
an give an estimate of the a
tual embedding strength

parameter s, whi
h again 
an be 
ompared against a threshold to determine a binary answer.

2.2 Image Watermarking Problem

With the basi
 watermarking pro
ess formalized, the system is now spe
ialized for use in a

parti
ular appli
ation. First, the sour
e of the host data must be 
onsidered. Depending

on the goals of the watermark embedder, a multitude of sour
es of host data is possible.

This thesis deals with the problem of watermarking a digital grays
ale image using a joint

5



hashing/watermarking te
hnique. The spe
ialized setup is des
ribed pi
torially in Figure 2.2.

In this 
ontext, a 
ommon sour
e of host data is image transform 
oeÆ
ients, as opposed to

the a
tual pixel intensities themselves. This 
hoi
e often results in watermarks that are more

robust to atta
ks. Transforms su
h as the dis
rete Fourier transform (DFT), the dis
rete


osine transform (DCT), and the dis
rete wavelet transform (DWT) are all viable 
andidates

for use in watermarking. The DCT is sele
ted for use in this thesis for simpli
ity, and the

full-frame transform is employed to in
rease robustness be
ause atta
ks in this domain will

be re
e
ted throughout the entire spatial image. An additional advantage of full-frame DCT

watermarking is that it is inherently robust against image resizing atta
ks.

To further in
rease the se
urity of the watermarking system, a subset of the transform


oeÆ
ients is de�ned, and forms a set of 
andidate points for embedding. This 
andidate set

is of size L and is des
ribed by its indi
es into the full-frame 
oeÆ
ients, C = f


1

; 


2

; : : : ; 


L

g,

where the 


i

are 
oeÆ
ient indi
es. Note that C will often be used to refer to the transform


oeÆ
ients themselves, as well as their index set. The parameter � denotes the fra
tion of


oeÆ
ients in
luded in the 
andidate set, � =

L

M

, where M is the total number of transform


oeÆ
ients. This set a
ts as a se
ret key, whi
h is image independent, and must be known

by both the embedder and the dete
tor.

The watermark will then be embedded in the transform 
oeÆ
ients of C having the

highest magnitudes. More spe
i�
ally, the host data set, x, 
ontains only those 
oeÆ
ients

with magnitudes greater than a �xed parameter, Æ. These 
oeÆ
ients are dominant in the

image and, thus, are expe
ted to be quite well preserved in the presen
e of a moderate

atta
k. Moreover, these high-magnitude 
oeÆ
ients are most robust against atta
ks (small-

magnitude 
oeÆ
ients may simply be dis
arded by an atta
ker) and, thus, are most e�e
tive

in terms of dete
tion performan
e. It should be noted that sin
e the same 
andidate set and


oeÆ
ient threshold are used for various images, the length of the host ve
tor, denoted by

N � L, will be image dependent.

The method by whi
h the watermark is 
onstru
ted depends partially on the spe
i�


image watermarking appli
ation. One te
hnique is for the en
oder to be given a binary

sequen
e, r with r

i

2 f�1; 1g, of the same size (L) as the 
andidate set. Ea
h element of this

longer sequen
e 
orresponds to a 
oeÆ
ient in C. Those elements of r 
oin
iding with the

6
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Figure 2.2 Image watermarking pro
ess.
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oeÆ
ients of x are denoted by m. Thus, m is of length N and forms the a
tual watermark

message that will be embedded in the image.

Using the above method, the pre
ise value ofm is dependent on the original image. If

more 
ontrol is desired over the sequen
e a
tually embedded, the en
oder 
ould be altered to

a

ept a shorter sequen
e (of length less than N) that, with padding, will be embedded into

the host ve
tor, thereby ensuring the presen
e of the spe
i�ed sequen
e. The en
oder would

then generate and output the full message, r, whi
h in
ludes the ve
tor m at appropriate

lo
ations, and random -1 and 1 padding for the remainder of the sequen
e. Although this

method guarantees that a parti
ular sequen
e will be embedded, the full message, r, will be

dependent on the original image.

With the development of the image watermarking en
oder 
omplete, the amount of

distortion introdu
ed by the multipli
ative embedding is now 
onsidered. To quantify this

amount, the mean squared error (MSE) distortion measure is de�ned as

D(u;v) =

1

M

M

X

k=1

ju

k

� v

k

j

2

: (2.1)

Although this measure is known to be not parti
ularly well suited to quantifying the 
hange in

an image as per
eived by the human visual system, it is widely used be
ause it is 
on
eptually

and 
omputationally simple. When the measure is applied to this spe
i�
 multipli
ative

setup, the MSE is given by

D

1

= D

1

(a;b) =

1

M

M

X

k=1

ja

k

� b

k

j

2

=

1

M

M

X

i=1

jA

i

� B

i

j

2

=

1

M

N

X

i=1

jx

i

� y

i

j

2

=

1

M

N

X

i=1

jx

i

� x

i

(1 + s

�

m

i

)j

2

=

1

M

N

X

i=1

(x

i

s

�

)

2
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where

a = the pixels of the original image,

b = the pixels of the watermarked image,

A = the transform 
oeÆ
ients of the original image, and

B = the transform 
oeÆ
ients of the watermarked image.

Note that Parseval's theorem is used to express the distortion in the transform domain.

The fo
us of the problem spe
i�
ation is now turned to the watermark dete
tor. For

ea
h image, the dete
tor will be presented with a ve
tor of side information that is similar

to a hash of the image. This ve
tor, h, 
ontains elements that 
orrespond to ea
h 
oeÆ
ient

in the 
andidate set. Ea
h h

i

will be either 0 or 1, with 1 indi
ating a 
oeÆ
ient magnitude

greater than Æ, and 0 indi
ating a magnitude less than or equal to Æ. Equivalently, ea
h h

i


an be viewed as a 1-bit quantized version of the 
orresponding original image 
oeÆ
ient.

With the spe
i�
ation of the 
andidate set, the hash ve
tor, the full message, and the

possibly watermarked image, the dete
tor is able to determine whi
h 
oeÆ
ients belong to the

possibly watermarked ve
tor,
~
y, and the 
orresponding watermark, m, for whi
h to sear
h.

Note that sin
e additional information is provided to the dete
tor (as opposed to simply the

message), this s
heme is not 
onsidered to be a blind watermarking system. However, sin
e

the original image is not required at the dete
tor, it is also not a non-blind system. Rather,

this image watermarking setup is best des
ribed as a joint hashing/watermarking system.

2.3 Host Data Modeling

Sin
e this thesis deals with the optimal dete
tion of watermarks, it relies heavily on the

statisti
al properties of the data involved. Thus, a realisti
 probabilisti
 representation of

the host data must be determined. In the 
ase of image transform 
oeÆ
ients, the Weibull

distribution (WB) or the power exponential distribution (PE) are often utilized to model

the resulting distributions. However, this thesis advo
ates the use of the not
hed power

exponential distribution (NPE) to re
e
t the fa
t that only large 
oeÆ
ients are sele
ted for

watermarking, as spe
i�ed by the hash. These three distributions are now de�ned, and their

properties are dis
ussed.
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2.3.1 Weibull distribution

The Weibull distribution [3℄ is given by

p(x) =

8

<

:

�

�

�

x

�

�

��1

exp

n

�

�

x

�

�

�

o

if x > 0

0 else

for x 2 R, � > 0, and � > 0. A plot of this distribution is given in Figure 2.3. The mean of

the Weibull distribution is given by

E[X℄ = ��

�

1 +

1

�

�

and the varian
e is given by

Var[X℄ = �

2

�

�

1 +

2

�

�

� (E[X℄)

2

= �

2

 

�

�

1 +

2

�

�

�

�

�

�

1 +

1

�

��

2

!

where �(z) =

R

1

0

e

�t

t

z�1

dtwithz > 0, is the Gamma fun
tion. By varying the two parame-

ters of the distribution, � and �, the mean, varian
e, and general shape of the 
urve 
an be

re�ned.

The Weibull distribution has been used to model the magnitude of the dis
rete Fourier

transform and dis
rete 
osine transform 
oeÆ
ients of an a
tual image [3℄, [4℄. However, the

parameters of the distribution may not be known. From the above expressions for mean and

varian
e, it is possible to estimate � and � from sample data by 
omputing the sample mean

and varian
e, where

Sample E[x℄ =

1

n

n

X

i=1

x

i

and

Sample Var[x℄ =

1

n� 1

n

X

i=1

(x

i

� �x)

2

:

From these values, a system of two equations 
an be solved to yield estimates of distribution

parameters.
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Figure 2.3 Weibull distribution with parameters � = 0:7 and � = 1:1.

2.3.2 Power exponential distribution

The power exponential distribution (also 
alled the generalized error distribution or the

generalized Gaussian distribution) is 
ommonly used to model the distribution of an image's

dis
rete 
osine transform 
oeÆ
ients [5℄. The power exponential distribution 
ontains two

parameters, � and �, with � relating to the varian
e and � relating to the heaviness of the

distribution tails. The distribution itself is given by

p(x) = C exp

�

�

�

�

�

x

�

�

�

�

�

�

where

C =

�

2��

�

1

�

�

for x 2 R, � > 0, and � > 0. Figure 2.4 
ontains a plot of the distribution. The se
ond

moment (varian
e) and fourth moment of the power exponential distribution [6℄ are given

by

Var[x℄ = M

2

=

�

2

�

�

3

�

�

�

�

1

�

�

and

M

4

=

�

4

�

�

5

�

�

�

�

1

�

�

:
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Note that when � = 1, whi
h is a 
ommon value when the distribution is utilized to model

image transform 
oeÆ
ients, the power exponential distribution redu
es to the Lapla
ian

distribution [5℄.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Power Exponential Distribution (α = 0.7, β = 1.1)

x

p
(x

)

Figure 2.4 Power exponential distribution with parameters � = 0:7 and � = 1:1.

When using the power exponential distribution to model the 
oeÆ
ients used in

watermarking, values of � and � must be determined on the basis of the a
tual image


oeÆ
ients. By 
omputing the se
ond and fourth moments of the data, the two parameters


an be estimated by solving a system of two equations.

2.3.3 Not
hed power exponential distribution

In the multipli
ative watermarking s
heme, the image transform 
oeÆ
ients 
an be modeled

using the power exponential distribution. However, the high-magnitude 
oeÆ
ients sele
ted

for watermarking reside in the tail portions of the power exponential distribution and o

ur

with lower probabilities. Therefore, the a
tual distribution of the host data is a not
hed

power exponential distribution. In addition to the original power exponential distribution

parameters, � and �, a new positive parameter, Æ, is introdu
ed. Here, fx : jxj > Æg is

the range of values of the 
oeÆ
ients that are watermarked, where Æ > 0. For 
onvenien
e,

the derived parameter � 2 (0; 1) is also introdu
ed to represent the 
umulative probability

under the power exponential distribution of the 
oeÆ
ients that are not sele
ted. These

12



two parameters are shown pi
torially with respe
t to the power exponential distribution in

Figure 2.5. The shaded areas represent the portions 
ontained within the not
hed power

exponential distribution.

k

Power Exponential Distribution with a = 0.7000, b = 1.10

p
 (

x
)

x

0 d-d

Figure 2.5 Power exponential distribution with not
hed distribution parameters Æ and �.

Due to the symmetry of the distribution, the parameters Æ and � are related a

ording

to the equation

1� �

2

=

Z

1

Æ

p(x)dx

=

Z

1

Æ

C exp

�

�

�

x

�

�

�

�

dx

=

�

2��

�

1

�

�

Z

1

Æ

exp

�

�

�

x

�

�

�

�

dx:

Performing the substitution w =

�

x

�

�

�

, this equation be
omes

1� �

2

=

Z

1

(

Æ

�

)

�

�

2��

�

1

�

�

expf�wg

�

�

w

�

(

1�

1

�

)

dw

=

1

2�

�

1

�

�

Z

1

(

Æ

�

)

�

expf�wg

�

�

w

�

(

1�

1

�

)

dw

1� � =

1

�

�

1

�

�

�

 

1

�

;

�

Æ

�

�

�

!
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� = 1�

1

�

�

1

�

�

�

 

1

�

;

�

Æ

�

�

�

!

(2.2)

where �(a; z) =

R

1

z

expf�tgt

a�1

dt with a > 0, is the in
omplete Gamma fun
tion.

Thus, the not
hed power exponential 
an be expressed as

p(x) =

8

<

:

C

1��

exp

n

�

�

�

x

�

�

�

�

o

if jxj > Æ

0 else

where

C =

�

2��

�

1

�

�

(2.3)

for x 2 R, � > 0, � > 0, Æ > 0, and 0 < � < 1.

In order to use the not
hed power exponential distribution to model sele
ted image

transform 
oeÆ
ients, the distribution parameters must be 
omputed from the data. The

� and � parameters are given by the same expressions as in the power exponential 
ase,

using all of the transform 
oeÆ
ients. The value of the not
h threshold, Æ, is identi
al to

the �xed system parameter used to determine the host ve
tor in the image watermarking

s
heme. Finally, � 
an be 
omputed from the other three parameters by using (2.2).

2.4 Host Data Generation

Watermark dete
tion and host data modeling are two separate problems and should be

treated as su
h. Thus, to a

urately evaluate a watermark dete
tor under a spe
i�ed statis-

ti
al model for the host data, syntheti
 data are generated. For ea
h of the three distributions


onsidered, the 
umulative density fun
tion, P (z), is found. Then, random numbers fv

i

g

between [0; 1℄ 
an be generated a

ording to a uniform distribution. Finally, for ea
h v

i

generated, the 
umulative density fun
tion is inverted to �nd the data point, z

i

= P

�1

(v

i

).

Using this pro
ess, it is possible to generate data a

ording to the required distributions.
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2.4.1 Weibull distribution

The 
umulative density fun
tion for the Weibull distribution is given by

P (z) =

Z

z

0

�

�

�

x

�

�

��1

exp

�

�

�

x

�

�

�

�

dx

= 1�

Z

1

z

�

�

�

x

�

�

��1

exp

�

�

�

x

�

�

�

�

dx:

Performing a 
hange of variables, w =

�

x

�

�

�

, yields

P (z) = 1�

Z

1

(

z

�

)

�

�

�

�

x

�

�

��1

exp f�wg

�

�

x

�

��1

�

�

dw

= 1�

Z

1

(

z

�

)

�

exp f�wg dw

= 1� exp

�

�

�

z

�

�

�

�

:

This fun
tion is now inverted to solve for the data point, z:

exp

�

�

�

z

�

�

�

�

= 1� P (z)

�

�

z

�

�

�

= ln(1� P (z))

�

z

�

�

�

= � ln(1� P (z))

z

�

= (� ln(1� P (z)))

1

�

z = �(� ln(1� P (z)))

1

�

:

2.4.2 Power exponential distribution

For the power exponential distribution, the 
umulative density fun
tion is given by

P (z) =

Z

z

�1

C exp

�

�

�

�

�

x

�

�

�

�

�

�

dx

= 1�

Z

1

z

C exp

�

�

�

�

�

x

�

�

�

�

�

�

dx:

Considering the 
ase when z � 0 yields

P (z) = 1�

Z

1

z

C exp

�

�

�

x

�

�

�

�

dx:
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Using a 
hange of variables, w =

�

x

�

�

�

, gives

P (z) = 1� C

Z

1

(

z

�

)

�

expf�wg

�

�

w

�

(

1�

1

�

)

dw

= 1�

C�

�

Z

1

(

z

�

)

�

expf�wgw

(

1

�

�1

)

dw

= 1�

C�

�

�

 

1

�

;

�

z

�

�

�

!

= 1�

1

2�

�

1

�

�

�

 

1

�

;

�

z

�

�

�

!

:

Similarly, for the 
ase when z < 0,

P (z) =

Z

z

�1

C exp

(

�

�

�x

�

�

�

)

dx

=

1

2�

�

1

�

�

�

 

1

�

;

�

�z

�

�

�

!

:

Finally, 
ombining the two 
ases for z yields

P (z) =

8

>

<

>

:

1�

1

2�

(

1

�

)

�

�

1

�

;

�

z

�

�

�

�

if z � 0

1

2�

(

1

�

)

�

�

1

�

;

�

�z

�

�

�

�

if z < 0:

Due to the diÆ
ulty in inverting the in
omplete Gamma fun
tion, this expression is not

solved expli
itly for the data point, z. To determine the required value, numeri
al te
hniques

are employed.

2.4.3 Not
hed power exponential distribution

For the purpose of data generation, the not
hed power exponential distribution is quite

similar to the power exponential distribution. The 
umulative density fun
tion is

P (z) =

Z

z

�1

p(x)dx:

Consider the 
ase when z > Æ. Then

P (z) = 1�

Z

1

z

C

1� �

exp

�

�

�

x

�

�

�

�

dx

= 1�

1

2(1� �)�

�

1

�

�

�

 

1

�

;

�

z

�

�

�

!
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where the expression for the integral is identi
al to that present for the 
ase of the power

exponential distribution. Now, 
onsider when �Æ � z � Æ. Here,

P (z) =

1

2

be
ause the not
hed power exponential is symmetri
, and has value 0 between �Æ and Æ.

Finally, when z < �Æ,

P (z) =

Z

z

�1

C

1� �

exp

(

�

�

�x

�

�

�

)

dx

=

1

2(1� �)�

�

1

�

�

�

 

1

�

;

�

�z

�

�

�

!

where again the integral was determined in the power exponential 
ase. Therefore, 
ombining

these results yields

P (z) =

8

>

>

>

>

<

>

>

>

>

:

1�

1

2(1��)�

(

1

�

)

�

�

1

�

;

�

z

�

�

�

�

if z > Æ

1

2

if � Æ � z � Æ

1

2(1��)�

(

1

�

)

�

�

1

�

;

�

�z

�

�

�

�

if z < �Æ:

On
e again, an expli
it formula for z is not found be
ause of the 
omplexity involved in in-

verting the in
omplete Gamma fun
tion. However, the expression 
an be solved numeri
ally

to yield the value for the generated data point.
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CHAPTER 3

WATERMARK DETECTION

This 
hapter develops three main te
hniques for dete
ting a watermark within a set of data.

These dete
tors are based on likelihood ratio testing (LRT), maximum likelihood estimation

(MLE), and lo
ally optimal dete
tion (LOD). All three are derived from statisti
al dete
tion

theory, and ea
h one is formulated for the three distributions, namely, Weibull, power expo-

nential, and not
hed power exponential. A fourth dete
tor is also 
onstru
ted for use with

not
hed distributions as a simpli�
ation of the likelihood ratio test dete
tor.

3.1 Simple Likelihood Ratio Test

The �rst dete
tion te
hnique 
overed is based upon binary hypothesis testing (BHT) using

a likelihood ratio test [7℄. In this setup, it is assumed that the embedding strength, s, is

a known, non-random parameter, say s

�

. Then, the dete
tion problem is formulated as a


hoi
e between two hypotheses, hypothesis 0 (H

0

) and hypothesis 1 (H

1

). H

0

states that

the data do not 
ontain any watermark, while H

1

states that the data 
ontain a spe
i�


watermark. Ea
h hypothesis has asso
iated with it a distribution for the data, p

0

(y) and

p

1

(y). To determine whi
h hypothesis to sele
t, a de
ision rule is developed that maps ea
h

possible data ve
tor to one hypothesis or the other. From statisti
al de
ision theory, it is

known that the optimal de
ision rule is given by a likelihood ratio test, with the ratio being

the distribution under H

1

to the distribution under H

0

,

L(y) =

p

1

(y)

p

0

(y)

:

18



For the sake of simpli
ity, the log of this ratio, the log-likelihood ratio, lnL(y), is often


onsidered.

To perform the a
tual likelihood ratio test, this log-likelihood ratio is 
ompared

against a threshold value, 
. If the ratio is greater than the threshold, then H

1

is sele
ted;

while if it is less than the threshold H

0

is 
hosen.

The remaining question in the development of a likelihood ratio test-based dete
tor is

how to best 
hoose the threshold value. The sele
ted approa
h is based on Neyman-Pearson

hypothesis testing [7℄. The probability of false alarm, P

F

, is de�ned to be the probability

with whi
h the dete
tor falsely dete
ts the watermark in a set of data. If a spe
i�
 value

of this probability, �, is sele
ted as the maximum permissible P

F

, then the 
orresponding

threshold, 
, 
an be determined su
h that P

F

= �. In the 
ase of the log-likelihood statisti
,

the false alarm probability is given by

P

F

= P [
hoosing H

1

j H

0

is true℄

= P

0

[lnL(y) > 
℄

=

Z

1




p

0;L

(`)d`

where p

0;L

(`) is the distribution of lnL(y) under H

0

. Thus, if this distribution is 
omputed,

the desired threshold value 
an be found by setting the resulting P

F

to � and solving for 
.

In summary, the likelihood ratio test dete
tor is formed by 
al
ulating a log-likelihood

ratio based on two hypotheses to yield a de
ision statisti
. This statisti
 is then 
ompared

against a threshold to determine a yes or no answer as to the presen
e of the spe
i�
 water-

mark in the data ve
tor.

3.1.1 Weibull distribution

The �rst distribution 
onsidered for modeling the 
oeÆ
ients is the Weibull distribution [3℄.

Here the two hypotheses used in the binary hypothesis test are

H

0

: s = 0

y

i

= x

i

; 1 � i � N

19



H

1

: s = s

�

y

i

= x

i

(1 + s

�

m

i

) ; 1 � i � N

where N is the number of (high-magnitude) 
oeÆ
ients that are watermarked. The distri-

bution under H

0

is given by

p

0

(y

i

) = p

x

i

(y

i

)

=

�

�

�

y

i

�

�

��1

exp

�

�

�

y

i

�

�

�

�

p

0

(y) =

N

Y

i=1

p

0

(y

i

)

=

N

Y

i=1

�

�

�

y

i

�

�

��1

exp

�

�

�

y

i

�

�

�

�

where p

x

i

(x

i

) is the Weibull distribution of the host data. The produ
t forming the dis-

tribution of the ve
tor follows from the assumption that all of the y

i

are independent and

identi
ally distributed (iid). Similarly, the distribution under H

1


an be written as

p

1

(y

i

) =

1

1 + s

�

m

i

p

x

i

�

y

i

1 + s

�

m

i

�

=

�

�(1 + s

�

m

i

)

�

y

i

�(1 + s

�

m

i

)

�

��1

exp

(

�

�

y

i

�(1 + s

�

m

i

)

�

�

)

p

1

(y) =

N

Y

i=1

p

1

(y

i

)

=

N

Y

i=1

�

�(1 + s

�

m

i

)

�

y

i

�(1 + s

�

m

i

)

�

��1

exp

(

�

�

y

i

�(1 + s

�

m

i

)

�

�

)

:

With the distributions of the data under ea
h hypothesis found, it is now possible to

evaluate the log-likelihood ratio:

lnL(y) = ln

p

1

(y)

p

0

(y)

= ln

N

Y

i=1

�

�(1 + s

�

m

i

)

�

y

i

�(1 + s

�

m

i

)

�

��1

exp

(

�

�

y

i

�(1 + s

�
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#

: (3.1)

To perform the a
tual likelihood ratio test, the log-likelihood ratio must be 
ompared

against a threshold value, 
. It should be noted that for a �xed watermark, m, the �rst

term in the summation in the ratio is a 
onstant and 
an thus be in
orporated into the

threshold to form a new threshold, if desired. At this point, a Neyman-Pearson approa
h


an be applied to �nd an appropriate value for the threshold, from whi
h a binary de
ision


an be made regarding the presen
e of the watermark in the data.

3.1.2 Power exponential distribution

The likelihood ratio test dete
tor is now developed for the 
ase when the power exponential

distribution is used to model the host 
oeÆ
ients [8℄. In this 
ase, the two hypotheses are

given by

H

0

: s = 0

y

i

= x

i

; 1 � i � N

H

1

: s = s

�

y

i

= x

i

(1 + s

�

m

i

) ; 1 � i � N

where N is the number of (high-magnitude) 
oeÆ
ients that are watermarked. The distri-

bution under H

0

is

p

0

(y

i

) = C exp

�

�

�

�

�

y

i

�

�

�

�

�

�

p

0

(y) =

N

Y

i=1

C exp

�

�

�

�

�

y

i

�

�

�

�

�

�
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while the distribution under H

1
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p
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(y
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:

Thus, the log-likelihood ratio is given by
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: (3.2)

As in the 
ase of the Weibull distribution, a threshold value 
an be 
ompared against

the de
ision statisti
 to �nd a yes or no dete
tor output.

It is interesting to note that this statisti
 is nearly identi
al to the simple likelihood

ratio test statisti
 (3.1) for the Weibull distribution. The di�eren
es are the presen
e of the

absolute values and a s
aling fa
tor of � on the 
onstant term. This similarity is expe
ted

be
ause the two distributions have similar forms, with the power exponential possessing

absolute value terms.

3.1.3 Not
hed power exponential distribution

Using likelihood ratio testing, a watermark dete
tor 
an be found for the 
ase when the

marked 
oeÆ
ients are modeled by the not
hed power exponential distribution. The two
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hypotheses are stated as

H
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: s = 0
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= x

i

; 1 � i � N
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1

: s = s
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y

i

= x

i

(1 + s

�
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i

) ; 1 � i � N

where N is the number of (high-magnitude) 
oeÆ
ients that are watermarked. The distri-

bution under H

0

is
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where C is de�ned in (2.3), and Æ

i

= Æ(1 + s

�

m

i

).

The likelihood ratio is given by

L(y) =

p

1

(y)

p

0

(y)

:

Due to the 
onditions in the de�nition of the two distributions, the likelihood ratio is also

de�ned 
onditionally as follows,
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Thus the log-likelihood ratio is
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(3.3)

These results are quite intuitive. In the �rst 
ase, when the y

i

are in the appropriate ranges,

the statisti
 is the same as in the 
ase of the power exponential. When one of the distribution


onditions is met but the other is not, one of the hypotheses is impossible, whi
h is 
learly

indi
ated by the presen
e of in�nities in the statisti
. Finally, when the range 
onditions fail

in both hypotheses (a zero-probability event), the regular statisti
 is again 
al
ulated.

Figure 3.1 illustrates the four regions present in the de
ision statisti
. Note that

Regions 1 and 4 
an o

ur for either m

i

= �1 or m

i

= 1, while Region 2 only o

urs when

m

i

= �1, and Region 3 only o

urs when m

i

= 1.

24



Region 1

yi

0 d-d di-di

p1 (yi)

p0 (yi)
(mi = 1)

(a)

Region 1

yi

0 d-d di-di

p1 (yi)

p0 (yi)
(mi = -1)

(b)

Region 2

yi

0 d-d di-di

p1 (yi)

p0 (yi)
(mi = -1)

(
)

Region 3

yi

0 d-d di-di

p1 (yi)

p0 (yi)
(mi = 1)

(d)

Region 4

yi

0 d-d di-di

p1 (yi)

p0 (yi)
(mi = 1)

(e)

Region 4

yi

0 d-d di-di

p1 (yi)

p0 (yi)
(mi = -1)

(f)

Figure 3.1 Four regions utilized in the likelihood ratio test statisti
 for the not
hed power

exponential distribution.
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3.2 Simple Dete
tor for Not
hed Distributions

The likelihood ratio test dete
tor developed for the not
hed power exponential distribution

reveals a key bene�t resulting from the use of a not
hed distribution: it is sometimes possible

to de
isively eliminate one of the two hypotheses simply by 
omparing the re
eived data

samples to the not
h thresholds. Using this idea, a simpli�ed version of the likelihood ratio

test dete
tor 
an be developed for any not
hed distribution. Consider the two hypotheses

presented to the LRT dete
tor,

H

0

: s = 0

y

i

= x

i

; 1 � i � N

H

1

: s = s

�

y

i

= x

i

(1 + s

�

m

i

) ; 1 � i � N

where N is the number of (high-magnitude) 
oeÆ
ients that are watermarked. As seen in

the previous development, a de
ision as to the presen
e of the watermark 
an be made with


ertainty if a single data sample, y

i

, is found to lie either in Region 2 or 3, as shown in Figure

3.1 (
) and (d). Now, de�ne E

2

and E

3

to be the events that either of these 
ases o

urs.

More formally,

E

2

= fy : Æ

i

< jy

i

j < Æ and m

i

= �1 for some ig

and

E

3

= fy : Æ < jy

i

j < Æ

i

and m

i

= 1 for some ig:

Now, the probability that E

3

o

urs under H

0

is found,

P

0
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3

℄ = P

0

[9i : Æ < jy

i

j < Æ

i

℄

= 1�

N

2

Y

i=1

P

0

[jy

i

j > Æ(1 + s

�

)℄

= 1� (2P

0

(�Æ(1 + s

�

)))

N

2

where P

0

(z) =

R

z

�1

p

0

(x)dx is the 
umulative density fun
tion of p

0

(x). Note that in the

produ
t, only

N

2

terms are in
luded be
ause E

3

only deals with m

i

= 1. Now, sin
e for a
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not
hed distribution, P

0

(�Æ) =

1

2

, and sin
e �Æ(1 + s

�

) < �Æ, it is 
lear that 0 < P

0

(Æ(1 +

s

�

)) <

1

2

. Thus, 0 < 2P

0

(�Æ(1+ s

�

)) < 1, implying that (2P

0

(�Æ(1+ s

�

)))

N

2

approa
hes 0 as

N approa
hes in�nity. Consequently, P

0

[E

3

℄ approa
hes 1 as N approa
hes in�nity. In other

words, if no watermark is present, the probability of a data point falling in Region 3 goes to

1 as N goes to in�nity.

Similarly, the probability that E

2

o

urs under H

1

is found as

P

1

[E

2

℄ = P

1

[9i : Æ

i

< jy

i

j < Æ℄

= 1�

N

2

Y

i=1

P

1

[jy

i

j > Æ℄

= 1� (2P

1

(�Æ))

N

2

where P

1

(z) =

R

z

�1

p

1

(x)dx is the 
umulative density fun
tion of p

1

(x). On
e again, only

N

2

terms have been in
luded in the produ
t be
ause E

2


an only o

ur when m

i

= �1. By an

argument similar to that given above, (2P

1

(�Æ))

N

2

approa
hes 0 as N approa
hes in�nity.

Hen
e, P

1

[E

2

℄ approa
hes 1 as N approa
hes in�nity. In other words, if a watermark is

present, the probability of a data point lying in Region 2 goes to 1 as N goes to in�nity.

With this knowledge of the asymptoti
 behavior of y, a simple dete
tor (SD) 
an be

designed. Using the same four regions de�ned for the LRT dete
tor, the simple dete
tor is

given by

D(y) =

8
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with probability �; if (jy
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j > Æ

i

8i) and (jy

i

j > Æ 8i)

H

1

with probability 1� �


hoose H

1

if (jy

i

j > Æ

i

8i) and

(9i : jy

i

j � Æ and m

i

= �1)


hoose H

0

if (9i : jy

i

j � Æ

i

and m

i

= 1)

and (jy

i

j > Æ 8i)


hoose H

0

with probability �; else

H

1

with probability 1� �

(3.4)

where � is a parameter that permits preferen
e to be given to a spe
i�
 hypothesis in the 
ase

of Regions 1 and 4. From the above derivation, it is known that, asymptoti
ally, the middle
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two 
ases in the de
ision statisti
 will o

ur with 
ertainty. Hen
e, this simple dete
tor

is equivalent to the optimal LRT dete
tor for not
hed distributions, as N goes to in�nity.

Finally, it should be noted that a de�nite yes or no de
ision is produ
ed by the dete
tor in

ea
h of the possible 
ases.

3.3 Maximum Likelihood Estimation

The previous dete
tor employed binary hypothesis testing using a likelihood ratio to deter-

mine, for a known embedding strength, s, the likelihood that a spe
i�
 watermark is present

in a signal. Another method of watermark dete
tion is to estimate the embedding strength

given the signal data [4℄. This estimate will indi
ate the strength of presen
e of a spe
i�


watermark in a set of data. Then, the estimate is used as the de
ision statisti
 in a binary

hypothesis test to determine the presen
e of the watermark. However, it should be noted

that this use of hypothesis testing is suboptimal be
ause a likelihood ratio test is the optimal

binary hypothesis test.

The assumption of an unknown embedding strength that is made in the derivation of

this dete
tor is often motivated as a simple means of 
ombating an atta
k on the watermarked

data. Although the a
tual embedding strength is known, an atta
k 
an be modeled, in a

simplisti
 sense, as a 
hange in this parameter. Then, the strength is no longer known

at the dete
tor and, thus, must be estimated. This approa
h is not an optimal means of

in
orporating an atta
k and, hen
e, results in a suboptimal dete
tor. However, this dete
tor

has been fairly widely studied and fa
ilitates interesting 
omparisons with the likelihood

ratio test dete
tor.

To develop the estimation dete
tor, the te
hnique utilized to perform the estimation

given the signal data is �rst de�ned. As the name suggests, maximum likelihood estimation

is a means of estimating the most likely value for a parameter on the basis of knowledge

of the distribution of the data given this parameter. Thus, the dete
tor should estimate a

value for s knowing the distribution of y given s, p

s

(y). The maximum likelihood estimate

is given by

ŝ = argmax

s

p

s

(y):
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To pro
eed, the fun
tion p

s

(y) is maximized over s to �nd the MLE. The resultant maxi-

mizing value for s will be the maximum likelihood estimate, ŝ.

Now, a binary hypothesis test is employed to provide an answer stating whether or

not the watermark is present. The de
ision statisti
, ŝ, is 
ompared against a threshold, � ,

and the watermark is de
lared to be present if ŝ > � . Otherwise, the dete
tor states that

no watermark is present. To sele
t � , the distribution of the output statisti
 (MLE) 
an be

determined and then, for example, a Neyman-Pearson 
onstraint on the probability of false

alarm 
ould be used to solve for � . In any 
ase, � should be between 0 and 1 be
ause it

represents a 
uto� in the embedding strength, whi
h is known to be between 0 and 1.

In summary, the maximum likelihood estimation-based dete
tor 
omputes the MLE

for s on the basis of the data ve
tor, yielding a measure of the strength of presen
e of the

spe
i�
 watermark. This output is then 
ompared against a threshold to determine a yes or

no answer for the presen
e of the watermark.

3.3.1 Weibull distribution

The �rst distribution 
onsidered for the maximum likelihood estimation dete
tor is the

Weibull distribution [4℄. From the likelihood ratio test se
tion, the required distribution

of y given s is found to be

p

s

(y) =

N
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�

�(1 + sm
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)
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�
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�
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(

�
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�

�

)

:

Now, the natural logarithm of this distribution is found to simplify 
al
ulations,

ln p

s

(y) = N ln� � �N ln� +

N

X

i=1

"

ln

 

y

��1

i

(1 + sm

i

)

�

!

�

�

y

i

�(1 + sm

i
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�

�

#

= N ln� � �N ln� +

N

X

i=1

"

(� � 1) ln y

i

� � ln(1 + sm

i

)�

�

y

i

�(1 + sm

i

)

�

�

#

:

To maximize this expression, its derivative is set to 0 and then solved for ŝ, the maximizing

value of s; hen
e,

0 =

� ln p

s

(y)

�s

�

�

�

�

s=ŝ
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Sin
e s is small, the approximation of a �rst-order Taylor series is used, yielding
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Hen
e, an expression for the estimated embedding strength of the given watermark

has been found. The dete
tor 
an now 
ompare this value against an appropriate threshold,

for example, one based on a Neyman-Pearson 
onstraint, to de
ide whether or not the spe
i�


watermark is present in the data.

3.3.2 Power exponential distribution

As expe
ted, the derivation of the maximum likelihood estimation-based dete
tor for the


ase of power exponentially distributed data is quite similar to that for Weibull distributed
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data. Again, the maximum likelihood estimate of s is given by

ŝ = argmax

s

p

s

(y)

where p

s

(y) is the distribution of the data, y, given the strength parameter, s. From the like-

lihood ratio test se
tion for the power exponential distribution, this 
onditional distribution
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:

This fun
tion is now maximized over s to �nd the MLE, noting again that it is

equivalent to maximize ln p

s
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ause ln(x) is an in
reasing fun
tion:
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The derivative of this expression is now set to 0 and solved for ŝ, the maximizing value of s:
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:

Sin
e s is small, the approximation of a �rst-order Taylor series is again used, yielding
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ause m
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zero-mean sequen
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As in the 
ase of the Weibull distribution, Neyman-Pearson 
onstraints 
an be utilized

to provide a binary dete
tion response based on the estimate.

Similar to the likelihood ratio test, the MLE statisti
 for the power exponential dis-

tribution bears resemblan
e to that for the Weibull distribution, Equation (3.5). The major

di�eren
e is the presen
e of absolute values in the power exponential 
ase, re
e
ting its

in
lusion of both positive and negative valued data.

3.3.3 Not
hed power exponential distribution

The maximum likelihood estimate is now determined for the 
ase of the not
hed power

exponential distribution. From the likelihood ratio testing se
tion, the distribution of the

output data y given s for this distribution is

p

s

(y) =
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0 else .

To �nd the MLE, this distribution should be maximized over the parameter s. However, sin
e

the distribution is de�ned over two ranges where the boundary is a fun
tion of s (be
ause

Æ

i

= Æ(1 + sm

i

)), the maximization problem be
omes more 
ompli
ated.
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To maximize p

s

(y), the maximizing value of s, ŝ, must ensure that jy

i

j > Æ

i

8i. This

requirement will present a restri
tion on the range of possible values for ŝ. The data y is

split into two groups depending on the value of m

i

. Let I

+

denote the set of indi
es for

whi
h m

i

= 1 and let I
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denote the set of indi
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= �1. Then,
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h provides a lower bound on ŝ. Combining these restri
tions with the known range of

embedding strengths yields an overall bound of
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Let this range of a

eptable ŝ values be denoted by S. Therefore, the MLE is given by

ŝ = argmax

s2S
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: (3.7)

This expression 
an be solved numeri
ally to yield the estimate of the embedding strength.

As before, the resulting estimate may now be 
ompared against a threshold in the range [0,

1) to yield a binary output from the dete
tor.

3.4 Lo
ally Optimal Dete
tor

The �nal dete
tor 
onsidered makes use of the knowledge that s takes on small values. Thus,

a lo
ally most powerful test is 
onsidered, as des
ribed by Poor [7℄. This test �nds a de
ision
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rule for the 
ase when the data distributions under the two hypotheses are known to be quite


lose together. To apply this type of test to the watermark dete
tion problem, a 
omposite

binary hypothesis test is formulated. A 
omposite binary hypothesis test is one in whi
h at

least one of the hypotheses in
ludes a range of values for the variable in question. In this


ase, hypothesis 0 states the embedding strength of the watermark in the data is s

0

, whi
h

here will be taken to be 0, meaning no watermark is present. Hypothesis 1 states that the

watermark is present with some non-zero strength.

Then, the lo
ally most powerful test is given by

argmax

D

P

0

D

(D; s

0

= 0)

subje
t to the 
onstraint that P

F

(D; s

0

) � �, where P

D

is the probability of dete
tion (the

probability of 
orre
tly dete
ting the watermark when it is present), P

F

is the probability

of false alarm, and D is a de
ision rule. The lo
ally optimal test 
an be formulated as a

modi�ed likelihood ratio test in whi
h p

1

(y) in the standard ratio is repla
ed by

�p

s

(y)

�s

�

�

�

s=s

0

.

This modi�ed likelihood ratio will yield a de
ision statisti
. As seen previously, a


omparison threshold 
an be found by 
onsidering the distribution of the statisti
, and

then applying a �-level Neyman-Pearson test, for example, to determine an appropriate

threshold, � . Using this threshold, the dete
tor 
an form a binary answer for the presen
e

of the watermark.

In summary, the dete
tor based upon a lo
ally optimal test is applied by 
omputing

a de
ision statisti
, based on a modi�ed likelihood ratio, whi
h indi
ates the strength of

presen
e of the spe
i�
 watermark in the data. The statisti
 
an then be 
ompared against

a threshold to yield a binary output.

3.4.1 Weibull distribution

The lo
ally optimal dete
tor is �rst developed for the situation when the host data is modeled

by the Weibull distribution. Here, the two hypotheses are given by
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The lo
ally most powerful test 
an now be formulated as a modi�ed likelihood ratio test.

Thus, the partial derivative

�p

s

(y)

�s

�

�

�

s=s

0

is required:

p

s

(y) =

�

N

�

�N

N

Y

i=1

y

��1

i

(1 + sm

i

)

�

exp

(

�

�

y

i

�(1 + sm

i

)

�

�

)

�p

s

(y)

�s

=

�

N

�

�N

N

X

i=1

 "

��y

�

i

m

i

(1 + sm

i

)

�

exp

(

�

�

y

i

�(1 + sm

i

)

�

�

)

+

y

�

i

m

i

�

�

(1 + sm

i

)

�+1

exp

(

�

�

y

i

�(1 + sm

i

)

�

�

)

y

��1

i

(1 + sm

i

)

�

#

�

N

Y

j=1;j 6=i

y

��1

j

(1 + sm

j

)

exp

(

�

�

y

j

�(1 + sm

j

)

�

�

)!

�p

s

(y)

�s

�

�

�

�

s=0

=

�

N

�

�N

N

X

i=1

 "

��y

�

i

m

i

exp

�

�

�

y

i

�

�

�

�

+

y

�

i

m

i

�

�

exp

�

�

�

y

i

�

�

�

�

y

��1

i

#

�

N

Y

j=1;j 6=i

y

��1

j

exp

�

�

�

y

j

�

�

�

�

!

:

Now, re
all that

p

0

(y) =

�

N

�

�N

N

Y

i=1

�

y

i

�

�

�

exp

�

�

�

y

i

�

�

�

�

:

Hen
e, the modi�ed likelihood ratio is given by
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where, as in the development of the MLE, the fa
t thatm is a zero-mean sequen
e has again

been used. A reasonable threshold against whi
h to 
ompare the output statisti
 may now

be determined in order to yield a binary dete
tor response.

It is interesting to note the relation between this statisti
 and the 
ommonly used


orrelation dete
tor [2℄, whose output is given by

N

X

i=1

y

i

m

i

. Sin
e the statisti
 given in Equa-

tion (3.8) has lo
ally optimal properties, it is expe
ted that the dete
tor based upon it will

have a lower probability of error than the standard 
orrelation dete
tor. This improvement

o

urs be
ause, for the lo
ally optimal 
ase, the separation of the distribution of the statisti


for when the watermark is present and when it is not present, is greater than in the basi



orrelator 
ase.

3.4.2 Power exponential distribution

In the 
ase of the lo
ally optimal dete
tor for power exponentially distributed data [8℄, the


omposite hypothesis test is formulated as follows:
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On
e again, a threshold 
an now be utilized so that the dete
tor provides a yes or no response.

Again, a strong parallel is seen between this statisti
 and that for the Weibull distri-

bution under lo
ally optimal dete
tion, whi
h is given in Equation (3.8). The only di�eren
es

between the two are the presen
e of the absolute value around the y

i

for the 
ase of the power

exponential distribution and a s
aling fa
tor.

3.4.3 Not
hed power exponential distribution

The �nal distribution 
onsidered for the lo
ally optimal dete
tor is the not
hed power expo-

nential distribution. To begin, the 
omposite hypothesis test is formulated as follows,
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Here, the distribution of the output 
onditioned on the embedding strength is given by
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To be able to perform the required derivative with respe
t to s, the 
ondition jy

i

j > Æ

i

should

be written expli
itly in terms of s. As in the 
ase of maximum likelihood estimation, the

ve
tor y is divided into two groups. Let I

+

denote the set of indi
es for whi
h m

i

= 1, and

let I

�

denote the set of indi
es for whi
h m

i

= �1. Then,
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Combining these bounds and the known bound on s, [0, 1), provides the overall 
ondition
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For simpli
ity, let this range on s be denoted by S. Note that if kI

�

k � 1, then the �rst


ase o

urs with high probability. The 
onditional distribution 
an now be rewritten with

the ranges shown in terms of s:
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When the derivative of this fun
tion is used in the modi�ed likelihood ratio test, it is eval-

uated at the point s = s

0

= 0. If 0 is not in
luded in S, then the numerator of the ratio is
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equal to 0. However, if 0 is in
luded in S, the derivative is non-zero. Thus, the 
onditions

must be found for whi
h the lower bound on S in
ludes 0:
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jy

i

j

Æ

� 0

min

i2I

�

jy

i

j � Æ:

Only when this 
ondition is met is the slope of p

s

(y) not equal to 0 at s = 0. More pre
isely,

the derivative is given by

�p

s

(y)

�s

�

�

�

�

s=s

0

= p

s

(y)

� ln p

s

(y)

�s

�

�

�

�

s=s

0

=

8

>

>

<

>

>
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N

Y
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C

(1� �)
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�

�

�

�

�

y

i

�

�

�

�

�

�

!

�

 

N

X

i=1

�

�

�

y

i

�

�

�

�

�

�m

i

!

if min

i2I

�

(jy

i

j) � Æ

0 else

where the fa
t that m is a zero-mean sequen
e is employed. Now, re
all that

p

0

(y) =

8

>

>

<

>

>

:

N

Y

i=1

C

1� �

exp

�

�

�

�

�

y

i

�

�

�

�

�

�

if jy

i

j > Æ 8i

0 else.

Thus, the modi�ed likelihood ratio is given by

L(y) =

�p

s

(y)

�s

�

�

�

s=s

0

p

0

(y)

=
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>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>
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j > Æ 8i)
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�

(jy

i

j) � Æ and (9i : jy

i

j � Æ)
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�

(jy

i

j) < Æ and (jy

i

j > Æ 8i)

1 if min

i2I

�

(jy

i
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i

j � Æ)

=

8

>

>

<

>

>

:

�

�

�

N

X

i=1

jy

i

j

�

m

i
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i2I

�

(jy

i

j) � Æ and (jy

i

j > Æ 8i)

1 if min

i2I

�

(jy

i

j) < Æ and (9i : jy

i

j � Æ)

(3.10)

where the �nal redu
tion 
an be performed be
ause the inner two 
ases 
an never o

ur. On
e

again, the result of the likelihood ratio 
an be 
ompared against a threshold to produ
e a

binary answer as to the presen
e of the watermark in the given data.
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Although this modi�ed likelihood ratio test does not take on the same form as the

ratio for the LRT of the same distribution, 
onditions still exist for whi
h the statisti
 will

attain in�nite values. In these instan
es, the presen
e of the watermark is 
lear and is

re
e
ted as su
h in the statisti
. Thus, it is expe
ted that the performan
e of the dete
tor

will be enhan
ed by the presen
e of the possible in�nities.
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CHAPTER 4

CHERNOFF BOUNDS

Simple binary hypothesis testing using a likelihood ratio test forms a 
on
eptually simple

statisti
al dete
tor. However, the 
omputation of su
h de
ision statisti
s 
an often be quite


omplex. Thus, bounds on the performan
e indi
ators P

D

and P

F

are desired. The approa
h

taken here is to 
onsider Cherno� bounds [7℄, whi
h are large-deviation bounds. The bound

provided for P

F

is an upper bound, while the bound provided for P

D

is a lower bound. Hen
e,

the bound on a re
eiver operating 
hara
teristi
 (ROC) 
urve (P

D

vs. P

F

) is also a lower

bound. Therefore, Cherno� bounds provide an indi
ation of the worst-
ase performan
e

of a dete
tor using binary hypothesis testing with a likelihood ratio test. In this 
hapter,

Cherno� bounds are formulated for the general 
ase of multipli
ative watermarking, and then

spe
ialized to the likelihood ratio test dete
tors based on the Weibull, power exponential,

and not
hed power exponential distributions.

4.1 Cherno� Bounds for Multipli
ative Watermarking

As noted in the development of the various likelihood ratio test dete
tors, when multipli
ative

watermarking is employed to insert a watermark into a set of host data, the distribution of

ea
h element of the output under H

1

is a s
aled version of the 
orresponding distribution

under H

0

:

p

1

(y

i

) =

1

1 + s

�

m

i

p

0

�

y

i

1 + s

�

m

i

�

:

This property allows Cherno� bounds to be 
onstru
ted in a general sense, and later spe-


ialized to individual distributions.
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To begin, the 
umulant generating fun
tion of lnL(y) under H

0

, �

0

(t

0

), for t

0

> 0, is

de�ned as [7℄

�

0

(t

0

) = ln

Z

p

1�t

0

0

(y)p

t

0

1

(y)dy:

Using the above s
aling property, the 
umulant generating fun
tion 
an be rewritten entirely

in terms of p

0

:

�
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(t

0

) = ln

Z
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0
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0
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�
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0
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(y

i

)

�

1

1 + s

�

m
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�
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0

p
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0

0

�

y

i

1 + s

�

m

i

�

dy

i

=

N

X

i=1

lnG

�

t

0

; p

0

;

1

1 + s

�

m

i

�

where the fun
tion G(t; f; z) =

R

f

1�t

(y)z

t

f

t

(yz)dy is introdu
ed to simplify notation. The


umulant generating fun
tion under H

1

is similarly given for t

1

< 0 by

�

1

(t

1

) = �

0

(t

1

+ 1)

=

N

X

i=1

lnG

�

t

1

+ 1; p

0

;

1

1 + s

�

m

i

�

:

With the 
umulant generating fun
tions de�ned, a bound on the probability of false

alarm 
an be written as [7℄

P

F

� expf�t

0


 + �

0

(t

0

)g

where 
 is the de
ision threshold. Then, the Cherno� bound is de�ned as the bound resulting

from 
hoosing a value, t

�

0

, whi
h maximizes t

0


 � �

0

(t

0

):

P

F

� expf�t

�

0


 + �

0

(t

�

0

)g:

Similarly, a bound on P

M

, and hen
e P

D

, is given by

P

M

� expf�t

1


 + �

1

(t

1

)g

1� P

D

� expf�t

1


 + �

1

(t

1

)g

P

D

� 1� expf�t

1


 + �

1

(t

1

)g:

Finally, the Cherno� bound on P

D

is found by maximizing t

1


 � �

1

(t

1

) over t

1

, yielding

P

D

� 1� expf�t

�

1


 + �

1

(t

�

1

)g:
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These Cherno� bounds developed for multipli
ative watermarking may now be spe-


ialized for the three modeling distributions simply by substituting the desired p

0

into the

fun
tion G de�ning the 
umulant generating fun
tions.

In addition to examining dete
tor performan
e using Cherno� bounds on the P

D

and P

F


urves, another related measure is often utilized. The Cherno� distan
e is de�ned as

D(t

�

0

) = ��

0

(t

�

0

), and measures the degree of separation between the distributions of the log-

likelihood statisti
 under the two hypotheses. Thus, a higher Cherno� distan
e 
orresponds

to a stronger dete
tor.

4.2 Weibull Distribution

The �rst Cherno� bound spe
ialized for the Weibull distribution is one on the probability

of false alarm, P

F

. Consider the 
umulant generating fun
tion of lnL(y) under H

0
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(4.1)
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Note that for the integral to 
onverge in (4.1), it is required that
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But when m

i

= �1,

(1+s

�

m

i

)

�

(1+s

�

m

i

)

�

�1

< 0, so the bound t

0

> 0 suÆ
es. However, the upper bound

holds for all i for whi
h m

i

= 1. But, sin
e only a single value of t

0

is sele
ted, if m

i

= 1 for

any i, then the upper bound must be in
luded. Thus, the overall range restri
tion is given

by

8

<

:

0 < t

0

<

(1+s

�

)

�

(1+s

�

)

�
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Using the equation for �

0

(t

0

) and the above bound, a bound on P

F

is given by

P
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� exp f�t
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 + �

0

(t
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)g :
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By maximizing t

0


 � �

0

(t

0

) numeri
ally over the allowable range of t

0

, the tightest

bound on P

F


an be a
hieved. The maximizing value of t

0

will be denoted by t

�

0

. Then, the

Cherno� bound on P

F

is given by

P
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� exp f�t

�

0


 + �

0

(t

�

0

)g :

Similarly, a lower bound on the probability of miss (not dete
ting a watermark when

it is present), P

M

, and, hen
e, an upper bound on the probability of dete
t, P

D

= 1� P

M

,


an be found. Consider the 
umulant generating fun
tion of lnL(y) under H
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, �
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Here the restri
tion on t

1

for 
onvergen
e is given by
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� 1 > 0, so the bound t
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< 0 suÆ
es. The lower bound holds

for all i for whi
h m

i

= �1. But, sin
e only one value of t

1

is 
hosen, the lower bound is

in
luded if m

i

= �1 for any i. Thus the overall bounds on t

1

are given by
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Then, a bound is given for the above restri
tions by
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In order to a
hieve the tightest bound, t

1
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) is numeri
ally maximized over t

1

to �nd the maximizing value t
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. Hen
e, the Cherno� bound is given by
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4.3 Power Exponential Distribution

Cherno� bounds are now developed for the 
ase when the 
oeÆ
ients are modeled using the

power exponential distribution. First, an upper bound on the probability of false alarm, P

F

,

is found. To begin, 
onsider the 
umulant generating fun
tion of lnL(y) under H
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Note that for the integral in the above expression to 
onverge, the same restri
tion on t

0

as

present in the 
ase of the Weibull distribution holds, namely,

�1 + t

0

�

t

0

(1 + s

�

m

i

)

�

< 0:

This expression leads to the overall restri
tions of

8

<

:

0 < t

0

<

(1+s

�

)

�

(1+s

�

)

�

�1

if 9i : m

i

= 1

0 < t

0

else.

Using the equation for �

0

(t

0

) and the above bound, a bound on P

F

is given by

P

F

� exp f�t

0


 + �

0

(t

0

)g :

To a
hieve the tightest bound, t

0


 � �

0

(t

0

) is maximized with respe
t to t

0

. By

performing this maximization numeri
ally to �nd the maximizing value, t

�

0

, the Cherno�

bound on P

F


an be written as

P

F

� exp f�t

�

0


 + �

0

(t

�

0

)g :

Now, using a similar 
onstru
tion, a lower bound on the probability of miss, P

M

,

and, hen
e, an upper bound on the probability of dete
t, P

D

= 1� P

M

, is found. To begin,


onsider the 
umulant generating fun
tion of lnL(y) under H

1

, �

1

(t

1

), for t

1

< 0:

�

1

(t

1

) = �

0

(t

1

+ 1)

= �

N

X

i=1

�

1

�

ln

�

(1 + s

�

m

i

)

�

� (t

1

+ 1) (1 + s

�

m

i

)

�

+ (t

1

+ 1)

�

+ t

1

ln (1 + s

�

m

i

)

�

:

Here the restri
tion on t

1

for 
onvergen
e is also identi
al to that in the Weibull distribution


ase, namely,

t

1

m

i

=1

<

>

m

i

=�1

(1 + s

�

m

i

)

�

(1 + s

�

m

i

)

�

� 1

� 1:

Hen
e, the overall bounds on t

1

are given by

8

<

:

(1�s

�

)

�

(1�s

�

)

�

�1

� 1 < t

1

< 0 if 9i : m

i

= �1

t

1

< 0 else.
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Thus, a bound is given for the above restri
tions by

P

M

� exp f�t

1


 + �

1

(t

1

)g

1� P

D

� exp f�t

1


 + �

1

(t

1

)g

P

D

� 1� exp f�t

1


 + �

1

(t

1

)g :

Again, wishing to obtain the tightest bound, t

1


 � �

1

(t

1

) is numeri
ally maximized with

respe
t to t

1

to �nd the maximizing value, t

�

1

. Then, the Cherno� bound on P

D

is

P

D

� 1� exp f�t

�

1


 + �

1

(t

�

1

)g :

4.4 Not
hed Power Exponential Distribution

Finally, the Cherno� bounds on the probability of false alarm and the probability of dete
t

are now found for the 
ase of the not
hed power exponential distribution. To begin, an upper

bound on the probability of false alarm, P

F

, is found. Consider the 
umulant generating

fun
tion of lnL(y) under H

0

, �

0

(t

0

), for t

0

> 0, where

~

Æ

i

= max(Æ

i

; Æ):
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�
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�
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(4.2)

where �(a; z) =

R

1

z

expf�tgt

a�1

dt with a > 0, is the in
omplete Gamma fun
tion. As

seen in the 
ase of the power exponential distribution, t

0

must be bounded su
h that the

integral 
onverges. The resulting bound is the same as that found in the 
ase of the power

exponential, namely,

8

<

:

0 < t

0

<

(1+s

�

)

�

(1+s

�

)

�

�1

if 9i : m

i

= 1

0 < t

0

else.

Using this equation for �

0

(t

0

), a bound on P

F

is given by

P

F

� exp f�t

0


 + �

0

(t

0

)g :

To a
hieve the tightest bound, t

0


 � �

0

(t

0

) is maximized with respe
t to t

0

. This

maximization is performed numeri
ally to �nd the maximizing value, t

�

0

. Then, the Cherno�

bound on P

F


an be written as

P

F

� exp f�t

�

0


 + �

0

(t

�

0

)g :

Now, using a similar 
onstru
tion, a lower bound on the probability of miss, P

M

,

and hen
e an upper bound on the probability of dete
t, P

D

= 1 � P

M

, is found. To begin,
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onsider the 
umulant generating fun
tion of lnL(y) under H

1

, �

1

(t

1

) for t

1

< 0:

�

1
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1

) = �

0

(t

1

+ 1)
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�
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i
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�

��

:

Again, restri
tions on t

1

for 
onvergen
e are present and are the same as in the 
ase of the

power exponential,

8

<
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(1�s

�

)

�

(1�s

�

)

�

�1

� 1 < t

1

< 0 if 9i : m

i

= �1

t

1

< 0 else.

Thus, a bound is given by

P

M

� exp f�t

1


 + �

1

(t

1

)g

1� P

D

� exp f�t

1


 + �

1

(t

1

)g

P

D

� 1� exp f�t

1


 + �

1

(t

1

)g :

Again, wishing to obtain the tightest bound, t

1


 � �

1

(t

1

) is maximized with respe
t

to t

1

. By solving this equation numeri
ally for the maximizing value, t

�

1

, the Cherno� bound

on P

D


an be written as

P

D

� 1� exp f�t

�

1


 + �

1

(t

�

1

)g :
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CHAPTER 5

THEORETICAL ANALYSIS

This 
hapter des
ribes the analyzes and experiments performed in order to test the water-

mark dete
tors using syntheti
 data, and presents their results. First, the Cherno� bounds

on the likelihood ratio test dete
tors are presented to study the behavior of the dete
tors

over a range of watermark lengths. The performan
e of the simpli�ed dete
tor is then

derived and examined. Next, 
omments are made on the degree of diÆ
ulty experien
ed

by an eavesdropper attempting to dete
t the watermark. Finally, for a spe
i�
 watermark

length, the performan
e of the dete
tors is evaluated through Monte Carlo simulation using

data synthesized a

ording to the 
orresponding distributions. By 
omparing the Monte

Carlo simulation results for the likelihood ratio test dete
tor with the Cherno� bounds, the

tightness of the bounds 
an be assessed.

5.1 Evaluation of Cherno� Bounds

In order to demonstrate the behavior of the derived Cherno� bounds, the bounds are 
al
u-

lated for ea
h of the three distributions, averaging over 100 messages, for a range of message

sizes. The averaging is performed be
ause of the dependen
e of the bound on the message,

m. This dependen
e diminishes as the length of the message in
reases be
ause then the

number of instan
es of m

i

= 1 and of m

i

= �1 will ea
h be
ome 
loser to

N

2

. However,

small message sizes are also in
luded in the experiments, so multiple simulations are utilized

and averaged. The 
omputed bounds may be used to evaluate dete
tor performan
e without

the need for the large Monte Carlo simulations that are required for very high dete
tion

probabilities and low false alarm probabilities.
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Figures 5.1 and 5.2 
ontain the Cherno� bound results for the Weibull and power ex-

ponential distributions, respe
tively. Figure 5.3 
ontains the bounds for the not
hed power

exponential distribution on a logarithmi
 s
ale. Some general 
omments 
an be made re-

garding the plots for all of the distributions. In the 
ase of P

D

vs. Threshold and P

F

vs.

Threshold, the graphs demonstrate that as the number of watermark bits is in
reased, the

transition from high probabilities to low probabilities is spread out a
ross a larger range

of thresholds. For the P

D

vs. P

F

graph, the 
urves approa
h the top left-hand 
orner as

the number of bits in
reases. This result is expe
ted be
ause the number of bits used for

the watermark is in
reased; hen
e, more data are present, making the watermark easier to

dete
t. Thus, higher dete
tion probabilities are a
hieved for the same false alarm probabili-

ties. The latter plot demonstrates the bound on the re
eiver operating 
hara
teristi
 
urve.

For the Weibull and power exponential distributions, many of the sequen
e lengths result

in bounds lying below the line P

D

= P

F

. These bounds are trivial bounds be
ause better

performan
e 
ould be a
hieved simply by 
ipping a 
oin (yielding (P

D

; P

F

) = (0:5; 0:5)),

by always 
hoosing H

0

((P

D

; P

F

) = (0; 0)), or by always 
hoosing H

1

((P

D

; P

F

) = (1; 1)).

The logarithmi
 plots for the not
hed power exponential ROC 
urve are utilized be
ause,

unlike the Weibull and power exponential bounds, the dete
tion and false alarm probabilities

be
ome extremely 
lose to 1 and 0, respe
tively, as the number of bits is in
reased. Thus,

the log s
ale allows these pre
ise values to be examined more expli
itly. However, to plot

P

D

more 
learly in a log fashion, the aÆne transform P

D

� 1 = �P

M

is used. Finally, the


urves for 128, 256, and 512 watermark bits are not present on the P

D

or ROC graphs for the

not
hed power exponential 
ase be
ause their dete
tion probabilities were identi
ally equal

to 1 for the number of simulations performed.

The Cherno� distan
es are 
omputed for ea
h of the three 
oeÆ
ient modeling dis-

tributions, for the spe
i�
 threshold of zero, and for watermark length of 32. The results are

given in Table 5.1 for embedding strengths of 0.05 and 0.10. Similar to the ROC 
urves, the

Cherno� distan
es demonstrate 
learly higher performan
e by the not
hed power exponential

distribution over both the Weibull and power exponential distributions.
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Figure 5.1 Cherno� bounds on the WB

LRT dete
tor (s

�

= 0:10).
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Figure 5.2 Cherno� bounds on the PE

LRT dete
tor (s

�

= 0:10).
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Figure 5.3 Cherno� bounds on the NPE
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Table 5.1 Cherno� distan
es for the three modeling distributions using a threshold of zero.

Distribution

Cherno� distan
e

s

�

= 0:05 s

�

= 0:10

Weibull 0:0120 0:0497

Power exponential 0:0111 0:0452

Not
hed power exponential 5:0135 31:6715

5.2 Performan
e of the Simple Dete
tor for Not
hed

Distributions

In the previous se
tion, bounds were presented on the likelihood ratio test dete
tor based on

the not
hed power exponential distribution. The performan
e of the related simple dete
tor

(3.4) is now analyzed. First, exa
t expressions for the dete
tion and false alarm probabilities

are derived. Then, error exponents are 
omputed, indi
ating the rate of 
onvergen
e of these

probabilities as message length in
reases.

To begin, P

D

and P

F

are 
onsidered for the SD for any not
hed distribution, and will

be later spe
ialized to the not
hed power exponential. Using this dete
tor, false alarms will

o

ur with probability 1�� when the data fail to lie in Region 3 under H

0

. Mathemati
ally,

P

F

= (1� �) (1� P

0

[E

3

℄)

= (1� �)

�

1� 1 + (2P

0

(�Æ(1 + s

�

)))

N

2

�

= (1� �) (2P

0

(�Æ(1 + s

�

)))

N

2

: (5.1)

Similarly, misses will o

ur with probability � when the data fail to lie in Region 2 under

H

1

. Thus,

P

M

= � (1� P

1

[E

2

℄)

= �

�

1� 1 + (2P

1

(�Æ))

N

2

�

= � (2P

1

(�Æ))

N

2

P

D

= 1� P

M

= 1� � (2P

1

(�Æ))

N

2

: (5.2)
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For the 
ase of the not
hed power exponential distribution,

P

F

= (1� �)

"

2

Z

�Æ(1+s

�

)

�1

C

1� �

exp

�

�

�

�

�

y

�

�

�

�

�

�

dy

#

N

2

= (1� �)

�

2

C

1� �

Z

1

Æ(1+s

�

)

exp

�

�

�

y

�

�

�

�

dy

�

N

2

:

Performing the substitution w =

�

y

�

�

�

yields

P

F

= (1� �)

"

2C

1� �

Z

1

(

Æ(1+s

�

)

�

)

�

expf�wg

�

�

w

1

�

�1

dw

#

N

2

= (1� �)

"

2C�

(1� �)�

�

 

1

�

;

�

Æ(1 + s

�

)

�

�

�

!#

N

2

= (1� �)

2

4

0

�

1

(1� �)�

�

1

�

�

1

A

�

 

1

�

;

�

Æ(1 + s

�

)

�

�

�

!

3

5

N

2

:

Similarly,

P

D

= 1� �

"

2

Z

�Æ

�1

C

(1� �)(1� s

�

)

exp

(

�

�

�

�

�

y

�(1� s

�

)

�

�

�

�

�

)

dy

#

N

2

= 1� �

"

2

C

(1� �)(1� s

�

)

Z

1

Æ

exp

(

�

�

y

�(1� s

�

)

�

�

)

dy

#

N

2

:

Performing the substitution w =

�

y

�(1�s

�

)

�

�

yields

P

D

= 1� �

"

2C

(1� �)(1� s

�

)

Z

1

(

Æ

�(1�s

�

)

)

�

expf�wg

�(1� s

�

)

�

w

1

�

�1

dw

#

N

2

= 1� �

"

2C�(1� s

�

)

(1� �)(1� s

�

)�

�

 

1

�

;

�

Æ

�(1� s

�

)

�

�

!#

N

2

= 1� �

2

4

0

�

1

(1� �)�

�

1

�

�

1

A

�

 

1

�

;

�

Æ

�(1� s

�

)

�

�

!

3

5

N

2

:

These expressions fa
ilitate the 
omputation of dete
tion and false alarm probabil-

ities for the simpli�ed dete
tor. However, the resulting equations are rather 
omplex and
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produ
e values for P

D

and P

F

that are extremely 
lose to 1 and 0, respe
tively, whi
h makes


omparisons diÆ
ult. Thus, error exponents for these probabilities are now found.

To give meaning to the use of error exponents, it is �rst noted that the expressions

for P

F

and P

D

(Equations (5.1) and (5.2)) 
an be rewritten as

P

F

= (1� �) exp

�

N

2

ln (2P

0

(�Æ(1 + s

�

)))

�

and

P

D

= 1� � exp

�

N

2

ln (2P

1

(�Æ))

�

:

From these equations, it is 
lear that the error probabilities P

F

and P

M

= 1 � P

D

behave

as de
aying exponentials. Error exponents provide an indi
ation of the rate of 
onvergen
e

as N approa
hes 1, with a higher value 
orresponding to a faster 
onvergen
e. The error

exponent indi
ating the rate of 
onvergen
e of P

F

to 0 is given by

E

P

F

= � lim

N!1

1

N

lnP

F

= � lim

N!1

1

N

ln

�

(1� �) exp

�

N

2

ln (2P

0

(�Æ(1 + s

�

)))

��

= � lim

N!1

�

1

N

ln(1� �) +

1

2

ln (2P

0

(�Æ(1 + s

�

)))

�

= �

1

2

ln (2P

0

(�Æ(1 + s

�

)))

while the error exponent 
orresponding to the rate of 
onvergen
e of P

D

to 1 is given by

E

P

D

= � lim

N!1

1

N

ln(1� P

D

)

= � lim

N!1

1

N

ln

�

� exp

�

N

2

ln (2P

1

(�Æ))

��

= � lim

N!1

�

1

N

ln� +

1

2

ln (2P

1

(�Æ))

�

= �

1

2

ln (2P

1

(�Æ)) :

It is interesting to note that the error exponents do not depend on the randomization prob-

ability, �.
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To spe
ialize these expressions to the not
hed power exponential distribution, the

appropriate 
umulative density fun
tions are inserted, yielding

E

P

F

= �

1

2

ln

2

4

0

�

1

(1� �)�

�

1

�

�

1

A

�

 

1

�

;

�

Æ(1 + s

�

)

�

�

�

!

3

5

and

E

P

D

= �

1

2

ln

2

4

0

�

1

(1� �)�

�

1

�

�

1

A

�

 

1

�

;

�

Æ

�(1� s

�

)

�

�

!

3

5

:

For a given set of parameters, the expressions for the error exponents 
an be evaluated

numeri
ally. Using the parameter values � = 0:1700, � = 1:1, Æ = 0:7760, and s

�

= 0:10,

the resulting error exponents are

E

P

F

= 0:2978

and

E

P

D

= 0:3310:

Note that the error exponents for P

F

and P

D

are of similar values, indi
ating that P

F

approa
hes 0 at approximately the same rate that P

D

approa
hes 1. The simpli�ed dete
tor


an be 
ompared against the LRT not
hed power exponential dete
tor, whose error exponent

(for P

F

) is related to the Cherno� distan
e. Under the assumption of a message with an

equal number of elements having �1 and +1 values, the Cherno� distan
e (derived in Se
tion

4.4) 
an be written in terms of two 
onstants, K

+

and K

�

, whi
h are equal to the summand

in (4.2) with m

i

= 1 and m

i

= �1 substituted, respe
tively,

D(t

�

0

) =

N

2

�

K

+

+K

�

�

:

Then, sin
e the Cherno� bound using t

�

0

is tight in the exponent, the error exponent for P

F

is given by

E

P

F

= � lim

N!1

1

N

lnP

F

= � lim

N!1

1

N

ln exp f�t

�

0


 �D(t

�

0

)g

= � lim

N!1

1

N

(�t

�

0


 �D(t

�

0

))
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= lim

N!1

D(t

�

0

)

N

=

1

2

�

K

+

+K

�

�

:

Thus, the error exponent is found by 
al
ulating the Cherno� distan
e and dividing by the

length of the message used in its 
omputation. This distan
e is given for the NPE using

N = 32 in Table 5.1, yielding an error exponent of E

P

F

= 0:9897. The NPE value is higher

than that for the SD, thereby quantifying the performan
e de
rease resulting from the use of

the simpli�ed dete
tor. However, the 
orresponding error exponents for the LRT dete
tors

for the Weibull and power exponential distributions (0.0016 and 0.0014, respe
tively) are

lower than that for the SD, demonstrating a strong performan
e by the simple dete
tor,

despite its simpli
ity.

5.3 An Eavesdropper's Dete
tion Problem

Previously, Cherno� distan
es were employed to evaluate the diÆ
ulty of the dete
tion prob-

lem for various modeling distributions. Another problem worthy of study is the relative

diÆ
ulty of the image watermarking dete
tion problem as seen by the dete
tor 
ompared to

that seen by an eavesdropper. The goal of the eavesdropper is to dete
t whether a message

is present in an image without knowledge of the 
andidate region, C.

When an eavesdropper obtains an image, two hypothesis are possible: H

0

, whi
h

states the message is not present; and H

1

, whi
h states that the message is present. Under

H

0

, the distribution of the output, p

0

, is simply given by a power exponential. However,

sin
e the eavesdropper does not know the 
andidate set, the distribution under H

1

, p

1

, is

unknown. Thus, the eavesdropper would assume a mixture distribution, ~p

1

. To formulate

this distribution, a number of addition probability distributions are �rst de�ned:

p

0

: unmarked power exponential

p

0

(y) = C exp

�

�

�

�

�

y

�

�

�

�

�

�

p

2

: unmarked bandpass power exponential

p

2

(y) =

8

<

:

C

1��

exp

n

�

�

�

y

�

�

�

�

o

if jyj � Æ

0 else

59



p

3

: unmarked not
hed power exponential

p

3

(y) =

8

<

:

C

1��

exp

n

�

�

�

y

�

�

�

�

o

if jyj > Æ

0 else

p

+

4

: positively marked not
hed power exponential

p

+

4

(y) =

1

1 + s

�

p

3

�

y

1 + s

�

�

p

�

4

: negatively marked not
hed power exponential

p

�

4

(y) =

1

1� s

�

p

3

�

y

1� s

�

�

~p

4

: mixture watermarked not
hed power exponential

~p

4

(y) =

1

2

�

p

+

4

+ p

�

4

�

Note that in de�ning the mixture distributions, the assumption that the message is dis-

tributed as an iid binary sequen
e is employed. If a di�erent distribution were to be present

(for example if error 
orre
ting 
odes were utilized), then the mixtures need be adjusted

a

ordingly. Using these distributions, the distribution of the output data as seen by the

eavesdropper under H

1

is given by

~p

1

= �(1� �)~p

4

+ ��p

2

+ (1� �)p

0

:

Assuming that the data are iid, the Cherno� distan
e between the distributions under H

0

and H

1

as seen by the eavesdropper is given by

D(t

�

0

; p

0

; ~p

1

) = MD(t

�

0

; p

0

; �(1� �)~p

4

+ ��p

2

+ (1� �)p

0

): (5.3)

The situation is di�erent for the a
tual dete
tor, who has knowledge of the 
andidate

set. Thus, for ea
h 
oeÆ
ient, the dete
tor knows whi
h pair of distributions to 
onsider for

the two hypotheses. Hen
e, the Cherno� distan
e as seen by the dete
tor is given by

D(t

�

0

; p

0

; p

1

) = M�(1� �)

�

1

2

�

D(t

�

0

; p

0

; p

+

4

) +M�(1� �)

�

1

2

�

D(t

�

0

; p

0

; p

�

4

)

+M��D(t

�

0

; p

o

; p

2

) +M(1� �)D(t

�

0

; p

0

; p

0

)

= M�(1� �)

�

1

2

�

D(t

�

0

; p

0

; p

+

4

) +M�(1� �)

�

1

2

�

D(t

�

0

; p

0

; p

�

4

)

+M��D(t

�

0

; p

o

; p

2

): (5.4)

A 
omparison may now be made between the Cherno� distan
es, (5.3) and (5.4), seen

by the eavesdropper and the dete
tor, to provide insight into the relative diÆ
ulty of the
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dete
tion problems. With the above formulations and by the 
on
avity of Cherno� distan
e,

it is 
lear that

D(t

�

0

; p

0

; p

1

) > D(t

�

0

; p

0

; ~p

1

):

Thus, as is to be expe
ted, the Cherno� distan
e seen by the dete
tor is larger than that

seen by an eavesdropper. Hen
e, the dete
tion problem is more diÆ
ult for the eavesdropper

than for the dete
tor.

To quantify this e�e
t, the Cherno� distan
es are evaluated over the range of possible

� values using the parameters � = 0:17, � = 1:1, Æ = 0:7760, and s

�

= 0:10. Note that when

� = 0, the 
andidate set has size zero; while when � = 1, the 
andidate set 
onsists of the

entire M 
oeÆ
ients. The resulting Cherno� distan
e 
urves are given in Figure 5.4. These


urves illustrate that the dete
tor observes a signi�
antly larger Cherno� distan
e than the

eavesdropper and, hen
e, will be better able to dete
t the message.
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Figure 5.4 Cherno� distan
es as seen by (a) an eavesdropper and (b) the dete
tor as a

fun
tion of �.

5.4 Monte Carlo Simulations Using Syntheti
 Data

To begin testing the Weibull, power exponential, and not
hed power exponential dete
tors,

data are generated as previously dis
ussed a

ording to ea
h of the three distributions. More

spe
i�
ally, 512

2

= 262 144 
oeÆ
ients are generated for ea
h distribution to model image
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transform 
oeÆ
ients. The Weibull data utilize parameters of � = 0:4437 and � = 1:1, while

the power and not
hed power exponential use the parameter values of � = 0:1700, � = 1:1,

Æ = 0:7760, and � = 0:9961 (approximately 0.4% of the 
oeÆ
ients are watermarked), as

shown in Figure 5.5. The values sele
ted for the distribution parameters re
e
t the estimated

parameters for the Lena image, as will be presented in the next 
hapter.

As dis
ussed previously, multipli
ative watermarking is used to insert the watermark.

Experiments are performed using the two embedding strengths of 0.05 and 0.10. These values

are sele
ted to be quite small, so that the distortion introdu
ed into the original 
oeÆ
ients is

minimal. Using these watermarked 
oeÆ
ients, the performan
e of the watermark dete
tors

for a given distribution 
an be determined. A Monte Carlo simulation for ea
h distribution

is performed to analyze ea
h of the three main dete
tors. The simulations are done over a

range of thresholds, with either 10 000 or 500 000 runs for ea
h threshold (depending on the

required pre
ision), where ea
h run 
ontains a new message. In ea
h run, 32 
oeÆ
ients are

watermarked, and di�erent sets of 
oeÆ
ients are used for the di�erent runs. A large number

of runs is utilized so that data 
an be gathered for an average message and 
oeÆ
ient set,

and so as to a
hieve a higher degree of pre
ision in the probability values. From these data,

P

D

and P

F


urves 
an be plotted. For the simpli�ed dete
tor, a simulation utilizing 500

000 runs is performed for the 
ase where the dete
tor is spe
ialized to the not
hed power

exponential distribution.

The 
hoi
e of 32 watermark 
oeÆ
ients is motivated by 
onsidering the problem

of embedding a watermark within a small portion of an image. A typi
al image size is

512 � 512, hen
e, 32 is only a small fra
tion of the available 
oeÆ
ients. However, many

image 
oding te
hniques allow an image to be manipulated in smaller blo
ks. For example,

image transforms 
an be taken blo
k-wise, and di�erent levels of details may be stored for

ea
h blo
k. Thus, it is possible, and often desirable, to embed a watermark in only a redu
ed

region of the image. Furthermore, the small message length results in extremely minimal

distortion introdu
ed by the watermarking pro
ess. Hen
e, the 
hoi
e of 32 
oeÆ
ients is

reasonable.
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Figure 5.5 Generated 
oeÆ
ients for the (a) Weibull distribution with � = 0:4437 and

� = 1:1, (b) power exponential distribution with � = 0:1700 and � = 1:1, and (
) not
hed

power exponential distribution with � = 0:1700, � = 1:1, Æ = 0:7760, and � = 0:9961.
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5.4.1 Simple likelihood ratio test

The �rst dete
tor examined is that based on likelihood ratio testing. For ea
h distribution,

three �gures will be presented. The �rst will show the distribution of the test statisti


under ea
h hypothesis for two embedding strengths, s

�

= 0:05 and s

�

= 0:10. Due to the

diÆ
ulty in 
omputing these distributions analyti
ally, the 
urves are found using Monte

Carlo simulations. The separation between the distributions under H

0

and H

1

determines

dete
tor performan
e.

The se
ond and third �gures will present estimates of P

D

and P

F

based on Monte

Carlo simulations, with the 
orresponding Cherno� bounds overlaid. One �gure will 
ontain

these results for an embedding strength of s

�

= 0:05, while the other is for the 
ase when

s

�

= 0:10. In ea
h of these �gures, the P

D

vs. P

F


urves are the best performan
e indi
ators.

Ideally, these 
urves will be present in the top left of the graphs, demonstrating that high

dete
tion probabilities result for low false alarm probabilities. Finally, sin
e the Monte Carlo

results are plotted with the Cherno� bounds, it is observed that for the P

D

vs. Threshold

and P

D

vs. P

F

plots, the Monte Carlo 
urves are ne
essarily above the Cherno� bounds,

while for the P

F

vs. Threshold, the experimental 
urve is below the Cherno� bound.

5.4.1.1 Weibull distribution results

To evaluate the likelihood ratio test based-dete
tor, the host 
oeÆ
ients are �rst modeled

using a Weibull distribution. Figure 5.6 shows the distribution of the test statisti
, de�ned

by Equation (3.1), under the two hypotheses. From this �gure, it is 
lear that the H

0

and

H

1

distributions are more separated when a higher embedding strength is employed.

Now, the performan
e of the dete
tor is 
onsidered in terms of P

D

and P

F


urves.

Figures 5.7 and 5.8 ea
h 
ontain three plots showing the output of the Monte Carlo simulation


ompared to the Cherno� bounds for embedding strengths of 0.05 and 0.10, respe
tively.

First, it is noted that the bounds are mu
h tighter (
loser to the simulation 
urve) for

extremely high and low probabilities of dete
tion and false alarm. For example, when s

�

=

0:10 for the simulation point P

D

= 0:8, the Cherno� bound is only approximately P

D

=

0:2, while for P

D

= 0:99, the bound is 
loser to 0.97. It is in these regions of extreme

probabilities where Cherno� bounds most 
losely bound the performan
e. However, as
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Figure 5.6 Distribution of the test statisti
 for syntheti
 data using the WB distribution

and LRT with an embedding strength of (a) 0.05 and (b) 0.10.

seen in the previous 
hapter, the Cherno� bounds on the ROC 
urves do not 
onvey any

information be
ause they are below the trivial bound of P

D

= P

F

. Also, the 
urves depi
t a

small improvement gained by in
reasing the embedding strength. For an embedding strength

of 0.05, to obtain a dete
tion probability of approximately 65%, the false alarm probability

is approximately 50%. Conversely, for an embedding strength of 0.10, this same dete
tion

probability is a
hieved with a lower false alarm probability, just under 40%. Finally, these

�gures demonstrate that the likelihood ratio test dete
tor using the Weibull distribution

does not perform overly well, and is likely not suitable for pra
ti
al appli
ations.

5.4.1.2 Power exponential distribution results

The likelihood ratio test-based dete
tor is now evaluated when the power exponential dis-

tribution is used to model the host 
oeÆ
ients. Figure 5.9 shows the distribution of the

test statisti
, de�ned by Equation (3.2), under the two hypotheses. These results are similar

to those in the 
ase of the Weibull distribution; the in
reased embedding strength 
auses

the two distributions to be
ome further apart. Thus, an in
rease in performan
e is seen for

higher embedding strengths.
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Figure 5.7 P

D

and P

F


urves for the WB

LRT for syntheti
 data (s

�

= 0:05).
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Figure 5.9 Distribution of the test statisti
 for syntheti
 data using the PE distribution and

LRT with an embedding strength of (a) 0.05 and (b) 0.10.

Now, the P

D

and P

F


urves for the Monte Carlo simulations and their Cherno�

bounds are 
onsidered. Figures 5.10 and 5.11 ea
h 
ontain the three probability plots, the

�rst �gure for an embedding strength of 0.05, and the se
ond for 0.10. It 
an immediately be

seen that the power exponential results are almost identi
al to the Weibull results. In a
tual

fa
t, the Weibull results are just slightly better. Here, a dete
tion probability of just under

65% is a
hieved at the 
ost of approximately a 50% false alarm probability for s

�

= 0:05. It

is again noted that the 
urves do indeed obey the Cherno� bounds (whi
h are uninformative

in the ROC 
ase), and that the bounds be
ome tighter for probabilities near 0 and 1. Also,

an in
rease in performan
e is observed as the embedding strength is raised. However, it is


on
luded that the high false alarm probabilities render this dete
tor likely infeasible in a

pra
ti
al sense.

5.4.1.3 Not
hed power exponential results

The �nal likelihood ratio test-based dete
tor studied is that developed for the 
ase when the

host data are modeled using the newly de�ned not
hed power exponential distribution. To

begin, the distribution of the de
ision statisti
, de�ned by Equation (3.3), under ea
h of the

two hypotheses is 
onsidered. Figure 5.12 gives these distributions for embedding strengths of
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Figure 5.10 P
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and P
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urves for the PE

LRT for syntheti
 data (s

�

= 0:05).
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 data (s
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Figure 5.12 Distribution of the test statisti
 using for syntheti
 data the NPE distribution

and LRT with an embedding strength of (a) 0.05 and (b) 0.10.

0.05 and 0.10. Sin
e it is diÆ
ult to represent the in�nities that 
an be present in the de
ision

statisti
 for this distribution, the implementation of the dete
tor uses �1 � 10

8

instead. In

performing this simpli�
ation, it is assumed that the nonin�nite statisti
s will be mu
h less

than this value, whi
h appears to be quite valid for the simulations in question. From the

graphs, it is observed that for both embedding strengths, most of ea
h distribution's mass

lies at +1 or �1. The 
ongregation of the mass at these in�nity points indi
ates that the

majority of times the de
ision statisti
 is evaluated, a de�nitive response is provided for the

presen
e or absen
e of the watermark (be
ause one hypothesis is not possible). Furthermore,

these in�nities result when at least one data point lies below the not
h threshold, Æ

i

or the

distribution threshold, Æ, yielding �1 and1, respe
tively. For both hypotheses, the 
urves

possess mu
h smaller amounts of mass around the origin. These se
tions represent the

nonin�nite statisti
s in the Monte Carlo simulations, and the plots demonstrate that they

are quite diminished as the embedding strength in
reases. The de
rease in mass of the

nonin�nite statisti
s with in
reased embedding strength is 
aused by the larger strength

perturbing the data points greater distan
es. Thus, it is possible for more points to be

moved below the thresholds, making the in�nite statisti
s more probable. From these plots

it is 
lear that the separation between the distributions under H

0

and H

1

is profound.
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With the favorable results shown in the distribution of the test statisti
, the Monte

Carlo simulations and Cherno� bounds for the not
hed power exponential dete
tor are now


onsidered. Figures 5.13 and 5.14 ea
h 
ontain the three plots used to evaluate dete
tor

performan
e. First, it should be noted that, in the graphs, P

D

only ranges from 0.99 to 1

and P

F

only ranges from 0 to 0.01 be
ause values outside these ranges do not o

ur in the

bounds or simulation. In order to more a

urately represent these pre
ise probabilities, 500

000 runs are utilized in generating the P

D

and P

F


urves. As expe
ted, the experimental

probabilities satisfy the Cherno� bounds. Also, 
ontrary to the Weibull and power exponen-

tial distributions, the not
hed power exponential distribution displays a signi�
ant in
rease

in performan
e as the embedding strength is in
reased; the range of P

D

shrinks to approx-

imately [0.9995, 1℄, while that of P

F

de
reases to approximately [0, 0.0005℄. The impa
t of

the redu
ed and shrinking ranges is re
e
ted in the ROC 
urves, whi
h are now mu
h 
loser

to the top left 
orner, espe
ially when s

�

= 0:10. For example, even for the small embedding

strength, a dete
tion probability just over 99.8% in
urs a false alarm probability of approx-

imately 0.3%; while for an embedding strength of s

�

= 0:10, a 99.98% dete
tion is a
hieved

with a 0% false alarm probability (to the degree of a

ura
y provided by the simulation

runs). This is an astonishing improvement in performan
e over the dete
tors where the host


oeÆ
ients are modeled using the Weibull or power exponential distributions. The major


ontributing fa
tor to this improvement is the presen
e of the Æ and Æ

i

thresholds against

whi
h the y

i

are 
ompared. If even one y

i

value is below one threshold but not the other, one

hypothesis 
an be eliminated immediately. From the plots, it is seen that, even with as few

as 32 watermark bits, this situation o

urs quite frequently. Thus, employing the not
hed

power exponential distribution to model the data yields a system that 
ould quite easily be

used in pra
ti
al situations.

5.4.2 Simple dete
tor for not
hed distributions

The simple dete
tor derived from the likelihood ratio test dete
tor is now evaluated when

the not
hed power exponential distribution is employed. The behavior of the dete
tor is

examined in terms of the number of times a hypothesis is sele
ted with 
ertainty versus the

number of times one is sele
ted at random using the de
ision rule (3.4). Table 5.2 
ontains
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Figure 5.13 P

D

and P

F


urves for the

NPE LRT for syntheti
 data (s

�

= 0:05).
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and P
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urves for the

NPE LRT for syntheti
 data (s
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= 0:10).
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Table 5.2 Simple dete
tor output for syntheti
ally generated data.

Situation

Count

s

�

= 0:05 s

�

= 0:10

Certain H

0

under H

0

493 529 499 853

Certain H

1

under H

0

0 0

Random sele
tion under H

0

6471 147

Certain H

0

under H

1

0 0

Certain H

1

under H

1

494 862 499 932

Random sele
tion under H

1

5138 68

these 
ounts for the watermark embedding strengths of 0.05 and 0.10 using a value of � =

1

2

.

For ea
h embedding strength, 500 000 runs are performed �rst using data that have not

been watermarked (denoted \under H

0

"), and then for watermarked data (denoted \under

H

1

"). From these data, it is 
lear that a de
ision is made with 
ertainty for the majority of

the trials, with the per
entage in
reasing with the embedding strength. Sin
e the number of

times a de
ision is made randomly is small, the performan
e of the dete
tor is expe
ted to

be quite 
omparable to that of the likelihood ratio test dete
tor for the NPE distribution.

The 
omparison between the simple dete
tor and the likelihood ratio test dete
tor is

made more expli
it by 
onsidering the dete
tion and false alarm probabilities over a range of

� values. The ROC 
urve produ
ed by the simpli�ed dete
tor is overlaid with that resulting

from the LRT dete
tor, as shown in Figure 5.15 for both embedding strengths. In both

sub�gures, the axes have been redu
ed to re
e
t these pre
ise probabilities. These plots

illustrate the lower performan
e attained by the simple dete
tor by the presen
e of its ROC


urve to the lower right of the LRT ROC 
urve. However, the simple dete
tor still performs

extremely well, demonstrating the bene�t of the use of not
hed distributions.

5.4.3 Maximum likelihood estimation

The next dete
tor 
onsidered is that based upon the te
hnique of maximum likelihood esti-

mation. Be
ause of the poor performan
e of the Weibull and power exponential distributions

for the likelihood ratio test dete
tor, the MLE dete
tors based on these distributions are rel-
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Figure 5.15 ROC 
urves for the LRT and SD for the NPE distribution with syntheti
 data

using an embedding strength of (a) 0.05 and (b) 0.10.

egated to Appendix A. For the not
hed power exponential distribution, the three analyti
al

plot types used for the previous dete
tor are again employed to examine dete
tor perfor-

man
e.

The distributions of the test statisti
s (estimates), de�ned by Equation (3.7), found

through Monte Carlo simulations are presented in Figure 5.16. Unlike the 
orresponding

�gures found in the appendix for the Weibull and power exponential distributions, the sepa-

ration between the 
urves under H

0

and H

1

is quite signi�
ant for the not
hed distribution.

Under hypothesis 1, a 
lear peak is visible at the true value of the embedding strength. The

degree of separation, whi
h is due to this peak, be
omes more pronoun
ed as the embedding

strength is in
reased.

To fa
ilitate further examination, 
urves of the P

D

and P

F

statisti
s are given in

Figures 5.17 and 5.18. The �rst notable observation is the rapid de
rease in dete
tion prob-

ability as the threshold is raised above the a
tual embedding strength. This result is quite

intuitive be
ause it is illogi
al to threshold a strength estimate using a value signi�
antly

above the true strength. Next, by 
omparing the two �gures, an in
rease in performan
e

is seen for higher embedding strengths, as is expe
ted. For the low embedding strength, a

dete
tion probability of approximately 98% 
an be obtained at the 
ost of a 5% false alarm
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Figure 5.16 Distribution of the test statisti
 using the NPE distribution and MLE with an

embedding strength of (a) 0.05 and (b) 0.10.

probability. While these statisti
s possibly still render this dete
tor impra
ti
al in real-world

situations, they do represent a signi�
ant improvement over the Weibull and power exponen-

tial maximum likelihood estimators. However, the not
hed power exponential MLE dete
tor

performs substantially worse than the likelihood ratio test dete
tor for the same distribution,

whose ROC 
urves are presented in Figures 5.13 and 5.14.

5.4.4 Lo
ally optimal dete
tion

The �nal dete
tor examined is the lo
ally optimal dete
tor. On
e again, only the not
hed

power exponential distribution is 
onsidered in this se
tion, while the Weibull and power

exponential dete
tors are analyzed in Appendix A. As before, three �gures are presented

for the not
hed power exponential distribution dete
tor in order to analyze the experimental

results.

The distributions of the test statisti
, de�ned by Equation (3.10), as found through

Monte Carlo simulations, are given in Figure 5.19. These plots demonstrate on
e again the

large degree of separation that the not
hed power exponential dete
tors a
hieve. Nearly all

of the distribution mass under H

1

is lo
ated at the 1 point (represented here by 1 � 10

8

),

while, under H

0

, all the mass is 
lustered near the origin. An extremely small portion of the
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Figure 5.17 P

D

and P

F


urves for the

NPE MLE for syntheti
 data (s

�

= 0:05).
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Figure 5.18 P
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and P
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urves for the

NPE MLE for syntheti
 data (s

�

= 0:10).
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Figure 5.19 Distribution of the test statisti
 using the NPE distribution and LOD with an

embedding strength of (a) 0.05 and (b) 0.10.

H

1


urve is also lo
ated near the origin, indi
ating those trials for whi
h nonin�nite de
ision

statisti
s are found. When the two sub-�gures are 
ompared, the small portion of the H

1


urve be
omes imper
eptible as the embedding strength is in
reased.

Figures 5.20 and 5.21 
ontain the P

D

and P

F


urves resulting from the Monte Carlo

simulations. Note that the axes have been limited so that P

D

is shown in the range [0.99,

1℄. The values taken on by the dete
tion probability are all 
ontained in this range for the

simulations. As before, 500 000 runs for ea
h threshold are utilized to a
hieve a higher

degree of a

ura
y for these small probabilities. These plots 
learly indi
ate that the use of

the not
hed power exponential to model the 
oeÆ
ients has again produ
ed results superior

to the other two distributions, espe
ially when the embedding strength is 0.10. For the low

embedding strength, this dete
tor a
hieves approximately a 99.9% probability of dete
tion for

approximately a 50% probability of false alarm. When the stronger embedding is 
onsidered,

the dete
tor responds with approximately a 100% dete
tion probability for a 50% false

alarm probability. These values re
e
t the separation seen in the distributions of the test

statisti
. This separation is 
aused by the ease with whi
h H

0


an often be ruled out

simply by 
onsidering the data points. These results are just slight worse than those for the


orresponding likelihood ratio test dete
tor, Figures 5.13 and 5.14. As a result, the use of
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Figure 5.20 P

D

and P

F


urves for the

NPE LOD for syntheti
 data (s

�

= 0:05).
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Figure 5.21 P

D

and P

F


urves for the

NPE LOD for syntheti
 data (s

�

= 0:10).
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the not
hed power exponential with lo
ally optimal dete
tion would not likely be used in

real-world situations.

5.5 Summary of Simulation Results

This 
hapter has presented the results of simulations 
ondu
ted on the various dete
tor-

distribution pairs that are developed in this thesis. Ea
h of the dete
tors was evaluated using

data generated syntheti
ally a

ording to the appropriate distribution. The data shown in

the previous �gures and those in the appendix that examine the dete
tors in terms of their

probability of dete
tion and false alarm are now summarized in Table 5.3. The probabilities

are shown in per
entage form, rounded to the nearest whole number. Data points have been

sele
ted from the 
urves in an attempt to fa
ilitate 
omparison between the dete
tors and

distributions. More spe
i�
ally, points have been 
hosen to demonstrate the value of P

F

that must be tolerated in order to a
hieve a P

D

of approximately 98%. For the dete
tors

for whi
h su
h a dete
tion probability is not possible, the point 
orresponding to the highest

possible P

D

value is in
luded.

Table 5.3 Sele
ted results for syntheti
ally generated data.

Distribution
Dete
tor

s

�

= 0:05 s

�

= 0:10

P

D

(%) P

F

(%) P

D

(%) P

F

(%)

Weibull LRT 98 96 98 93

Weibull MLE 58 50 67 49

Weibull LOD 98 95 98 92

Power exponential LRT 98 97 98 93

Power exponential MLE 58 50 66 49

Power exponential LOD 98 96 98 93

Not
hed power exponential LRT 99 0 100 0

Not
hed power exponential MLE 98 0 98 0

Not
hed power exponential LOD 99 0 100 0

Not
hed power exponential SD 99 0 100 0
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A number of general 
on
lusions 
an be drawn from the data 
ontained in the table.

The main observation to be made is the di�eren
e in performan
e between the dete
tors

using the newly developed not
hed power exponential distribution and those based on the

Weibull or power exponential distributions. The addition of the not
h thresholds (Æ and Æ

i

)

in the NPE distribution provides additional information for dete
ting the watermark. By


omparing the data points to these thresholds, it is often possible to 
ompletely rule out

a hypothesis. Thus, the results agree with the intuitive 
on
lusion that the not
hed power

exponential provides a superior means of modeling the 
oeÆ
ients sele
ted for watermarking,

and thus yields superior results. To further illustrate the high quality of the not
hed power

exponential distribution, Figure 5.22 
ontains plots of the ROC 
urves resulting from the

LRT dete
tor for ea
h of the three modeling distributions. These plots are depi
ted on a

log s
ale using P

D

� 1 to illustrate the small probabilities under the NPE distribution. As a

result, the not
hed power exponential distribution data appear rather jagged for the higher

embedding strength be
ause of the �nite number of simulations performed. Also, the Weibull

and power exponential 
urves lie so 
lose together that it is diÆ
ult to dis
riminate between

them at this s
ale.
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Figure 5.22 ROC 
urves for the LRT using the WB, PE, and NPE for embedding strengths

of (a) 0.05 and (b) 0.10.
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It is also possible to 
ompare solely the dete
tors developed in this thesis for a par-

ti
ular distribution. First, it is noted that the maximum likelihood estimation dete
tors

are often not 
apable of produ
ing high dete
tion probabilities, regardless of the false alarm

probability. This result is due to the fa
t that the dete
tor is a
tually estimating the wa-

termark embedding strength. Thus, reasonable threshold values are restri
ted to the range

[0, 1). Therefore, the highest dete
tion probability is that found using a threshold of 0,

whi
h need not be 
lose to 100%. The other generalization that 
an be made is that the

likelihood ratio test dete
tor tends to perform better than the other three dete
tors. Also,

for the NPE distribution, the simple dete
tor performs just slightly worse than its optimal

LRT 
ounterpart. To highlight the performan
e di�eren
e between the dete
tors, Figure

5.23 
ontains plots of the resulting ROC 
urves for the not
hed power exponential distribu-

tion, for embedding strengths of 0.05 and 0.10. Note that a log s
ale has been utilized and,

hen
e, P

D

� 1 is plotted instead of P

D

. The 
urves appear somewhat jagged in these plots,

in parti
ular for the higher embedding strength be
ause of the �nite number of Monte Carlo

simulations performed. However, these graphs 
learly demonstrate the superior performan
e

of the LRT dete
tor and the poor performan
e of the MLE dete
tor.
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Figure 5.23 ROC 
urves for the LRT, MLE, LOD, and SD using the NPE for embedding

strengths of (a) 0.05 and (b) 0.10.
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Combining these observations yields the overall 
on
lusion that the likelihood ratio

test dete
tor derived for 
oeÆ
ients modeled by the not
hed power exponential distribu-

tion is far better suited for watermark dete
tion than the other dete
tor-distribution pairs


onsidered in this thesis.
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CHAPTER 6

IMAGE WATERMARKING

EXPERIMENTS

The previous 
hapter examined the dete
tors based on likelihood ratio testing, maximum

likelihood estimation, and lo
ally optimal dete
tion using data synthesized to follow the ap-

propriate distribution. Now, these dete
tors are applied to standard real-world test images to

as
ertain how well they perform on 
oeÆ
ients that do not ne
essary follow the distributions

upon whi
h they are based.

6.1 Implementation Details

The image watermarking experiments performed utilize the pro
edure des
ribed in Se
tion

2.2. As in the 
ase of the syntheti
 data, 262 144 
oeÆ
ients are used, but here the 
oeÆ
ients

are found by performing the dis
rete 
osine transform of a 512 � 512 test image. For

simpli
ity, the fra
tional size of the 
andidate set, �, is taken to be 1, so that the entire set

of transform 
oeÆ
ients 
an be in
luded in the watermarking pro
ess.

A �xed threshold of Æ = 0:7760 is employed, resulting in a value of N = 32 for the

test images 
onsidered. The other distribution parameters, � and �, must be estimated

be
ause the true distribution of the 
oeÆ
ients is unknown. As des
ribed in Se
tion 2.3,

these parameters 
an be found by 
onsidering the sample moments of the data. However,

during experimentation, it was found that the dete
tors yield better performan
e if the value

of the � parameters is sele
ted to be around 1, rather than 
al
ulated from the data. Thus,

for experimentation, a �xed value of � = 1:1 is utilized to improve performan
e without
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overly simplifying the de
ision statisti
s. Using this sele
ted �, � 
an then be estimated

from the sample moments.

With the details of the problem setup formalized, the performan
e of the dete
tors on

a
tual image data 
an now be analyzed. Be
ause of the overwhelmingly superior performan
e

of the not
hed power exponential distribution with syntheti
 data, this 
hapter fo
uses only

on its use for modeling the image 
oeÆ
ients. However, the Weibull and power exponential

distributions are 
onsidered in Appendix B. For ea
h dete
tor type, a Monte Carlo simulation

is performed to analyze the performan
e in terms of dete
tion and false alarm probabilities.

The simulations are performed over a range of thresholds, with either 10 000 or 40 000 runs

for ea
h threshold (depending on the required pre
ision), where a new message is generated

for ea
h trial.

6.2 Watermarking Lena DCT CoeÆ
ients

To 
ommen
e the study of the dete
tors using a
tual image data, 
oeÆ
ients are drawn from

the DCT of the Lena test image, whi
h is shown in Figure 6.1. Histograms of the 262 144

DCT 
oeÆ
ients and those sele
ted for watermarking are displayed in Figure 6.2. The graph

depi
ted for the 32 
oeÆ
ients is rather blo
ky due to the limited amount of data being

plotted.

The estimated values for the distribution parameters for the Lena 
oeÆ
ients are


al
ulated using a �xed value of � = 1:1, and are shown in Table 6.1 for all three of the

possible modeling distributions.

Table 6.1 Estimated distribution parameters for the Lena DCT 
oeÆ
ients (� = 1:1).

Distribution

Parameters

� Æ �

Weibull 0.4437 - -

Power exponential 0.1700 - -

Not
hed power exponential 0.1700 0.7760 0.9961
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Figure 6.1 The Lena image.
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Figure 6.2 (a) DCT 
oeÆ
ients of the Lena image and (b) those 
oeÆ
ients sele
ted for

watermarking.
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6.2.1 Simple likelihood ratio test

The setup used to present the likelihood ratio test results for the Lena data is identi
al to

that for syntheti
 data: three �gures are presented demonstrating the distribution of the test

statisti
, and the dete
tion and false alarm probabilities for embedding strengths of s

�

= 0:05

and s

�

= 0:10.

To begin, the distributions of the de
ision statisti
 for the not
hed power exponential,

as found through Monte Carlo simulations, are 
onsidered. Figure 6.3 gives these distribu-

tions for embedding strengths of 0.05 and 0.10. For the ease of viewing, the in�nities present

in the de
ision statisti
 have again been represented by the values �1 � 10

8

. The graphs

demonstrate that most of the mass of the distribution lies at these in�nite endpoints, with

a small amount near the origin. The small se
tions represent the non-in�nite values of the

statisti
 and diminish as the embedding strength is in
reased. From these �gures, it is 
lear

that there is an extreme degree of separation between the distributions under H

0

and H

1

.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

x 10
8

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Distribution of Test Statistic 

 (32 WM Bits, α = 0.2, β = 1.1, δ = 0.8, κ = 1.0, s
*
 = 0.05)

Test Statistic Value

C
o
u
n
t

Under H
0

Under H
1

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

x 10
8

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Distribution of Test Statistic 

 (32 WM Bits, α = 0.2, β = 1.1, δ = 0.8, κ = 1.0, s
*
 = 0.10)

Test Statistic Value

C
o
u
n
t

Under H
0

Under H
1

(b)

Figure 6.3 Distribution of the test statisti
 for the Lena image using the NPE distribution

and LRT with an embedding strength of (a) 0.05 and (b) 0.10.

At this point, the P

D

and P

F


urves are examined for the Monte Carlo simulations

on the Lena data. Figures 6.4 and 6.5 ea
h 
ontain the three plots of the dete
tion and false

alarm probabilities. It should be noted that the 
urves are graphed on a redu
ed s
ale be-


ause of the small probability values. P

D

is only plotted over the range of 0.9 to 1, while P

F

is
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Figure 6.4 P

D

and P

F


urves for the NPE

LRT for Lena data (s

�

= 0:05).
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Figure 6.5 P

D

and P

F


urves for the NPE

LRT for Lena data (s

�

= 0:10).
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shown between 0 and 0.1. Values outside these ranges do not o

ur in the simulation results.

Sin
e the resultant probabilities are quite small, the 
urves appear slightly jagged be
ause

of the �nite number of simulations performed. By 
omparing the plots in the two �gures, it

is seen that, unlike with the Weibull and power exponential distributions 
onsidered in the

appendix (Figures B.2, B.3, B.5, and B.6), a signi�
ant in
rease in performan
e is a
hieved

by in
reasing the embedding strength. However, even at the low embedding strength, the

dete
tor performs extremely well; a dete
tion probability of approximately 98% is a
hievable

with a false alarm probability of only 2%. These favorable values are re
e
ted in the ROC


urves, whi
h are situated near the top left 
orner of a standard range plot. The plots 
learly

indi
ate that using the not
hed power exponential distribution to model the 
oeÆ
ients of

the Lena image results in a powerful dete
tor. The 
onsiderable performan
e gain with this

distribution over the Weibull and power exponential is attributed to the ability to eliminate

a hypothesis if a data point is found to lie below one of the not
h thresholds, Æ or Æ

i

. It is

also expe
ted, in an intuitive sense, that the not
hed distribution will a
hieve better results

than either the Weibull or power exponential distributions be
ause only the largest magni-

tude 
oeÆ
ients are sele
ted for watermarking. Thus, if the entire distribution of the DCT


oeÆ
ients is well modeled using a power exponential distribution, the not
hed distribution

should be the natural 
hoi
e to model the few sele
ted for watermarking. Consequently,

the results demonstrate that the likelihood ratio test dete
tor based on the not
hed power

exponential distribution 
an quite 
on
eivably be used in pra
ti
al situations.

It is also interesting to 
ompare these ROC 
urves with those presented when the

LRT dete
tor is used with the not
hed power exponential on syntheti
 data (Figures 5.13

and 5.14). In the 
ase of the syntheti
 data with s

�

= 0:05, for P

D

values lying in the

range [0.99, 1℄, P

F

values only o

ur between 0 and 0.01. These data represent a de
reased

performan
e when the dete
tor is utilized with the Lena 
oeÆ
ients. A similar drop is noti
ed

when s

�

= 0:10. These drops in performan
e indi
ate that the Lena DCT 
oeÆ
ients do not

follow a not
hed power exponential distribution exa
tly. However, the use of this distribution

to model that of the 
oeÆ
ients does indeed produ
e a dete
tor of high quality.
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6.2.2 Simple dete
tor for not
hed distributions

The simpli�ed dete
tor spe
ialized to the not
hed power exponential distribution is now


onsidered for use in dete
ting a watermark in the Lena image. As in the 
ase for syntheti


data, a table is employed to demonstrate the behavior of the dete
tor for � =

1

2

. Table 6.2


ontains 
ounts of the de
isions produ
ed by the rule (3.4) under ea
h of the two hypotheses.

Although not as frequently as for syntheti
 data, a de
ision is made with 
ertainty for the

majority of the 40 000 simulation trials. Thus, strong performan
e is expe
ted from the

dete
tor.

Table 6.2 Simple dete
tor output for data from the Lena DCT 
oeÆ
ients.

Situation

Count

s

�

= 0:05 s

�

= 0:10

Certain H

0

under H

0

37 518 39 370

Certain H

1

under H

0

0 0

Random sele
tion under H

0

2480 630

Certain H

0

under H

1

0 0

Certain H

1

under H

1

37 496 39 653

Random sele
tion under H

1

2504 347

To further the 
omparison between the simpli�ed dete
tor and the likelihood ratio

test dete
tor, plots of the ROC 
urves for the LRT dete
tor are shown in Figure 6.6 with

those for the simple dete
tor overlaid. Note that the axes have been trun
ated in both

sub�gures to more 
learly illustrate the pre
ise probability values. In both sub�gures, the

simple dete
tor 
urve lies to the lower right of the LRT ROC 
urve, indi
ating the de
rease

in performan
e. However, the simpli�ed dete
tor still provides strong results for dete
ting a

watermark embedded in a test image.

6.2.3 Maximum likelihood estimation

Maximum likelihood estimation of the embedding strength, s, with the not
hed power ex-

ponential distribution is now 
onsidered for dete
ting a watermark that has been embedded
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Figure 6.6 ROC 
urves for the LRT and SD for the NPE distribution with Lena data using

an embedding strength of (a) 0.05 and (b) 0.10.

in the DCT 
oeÆ
ients of the Lena image. As with the other dete
tors, three �gures are

presented for performan
e analysis.

The distributions of the test statisti
s resulting from 10 000 Monte Carlo simulations

are provided in Figure 6.7. Similar to the syntheti
 data 
ase, the 
ompeting distributions

are well separated. For the 
ase of H

1

, a 
lear peak is observed in the estimate around the

true strength value. The lo
ation of this peak is more pronoun
ed and further separated

from the H

0

distribution when a higher embedded strength is employed.

The performan
e of the dete
tor is now examined in the 
ontext of P

D

and P

F


urves.

These plots are shown in Figures 6.8 and 6.9 for embedding strengths of 0.05 and 0.10,

respe
tively. On
e again, a sharp de
rease in the probability of dete
tion is observed as

the threshold is moved above the true embedding strength, as expe
ted. By 
omparing the

ROC 
urves in the two �gures, it is apparent that the dete
tor performs better when a

higher embedding strength is utilized. However, even when the true strength is 0.05, the

dete
tor a
hieves a 98% dete
tion probability for a false alarm probability of approximately

50%. Although these results are not as strong as the 
orresponding likelihood ratio test

dete
tor (Figures 6.4 and 6.5), they do represent a signi�
ant improvement over the MLE

dete
tors for Weibull and power exponential distributions (Figures B.8, B.9, B.11, and B.12) .
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Figure 6.7 Distribution of the test statisti
 for the Lena image using the NPE distribution

and MLE with an embedding strength of (a) 0.05 and (b) 0.10.

However, be
ause of the stronger performan
e of the LRT dete
tor, the maximum likelihood

estimation dete
tor using the not
hed power exponential distribution does not likely yield

adequate robustness for use in pra
ti
al appli
ations.

The ROC 
urves resulting from the appli
ation of the MLE dete
tor on a
tual water-

marked image 
oeÆ
ients are now 
ompared with those for the syntheti
 data 
ase, Figures

5.17 and 5.18. As expe
ted, the ROC 
urve is more favorable for the syntheti
 data than the

Lena 
oeÆ
ients. However, the use of the not
hed power exponential distribution to model

the image transform 
oeÆ
ients still produ
es a reasonably a

urate dete
tor.

6.2.4 Lo
ally optimal dete
tion

The �nal dete
tor examined for use in watermark dete
tion for the Lena image 
oeÆ
ients

is that based on lo
ally optimal dete
tion. As before, three �gures are presented to analyze

the performan
e of the lo
ally optimal dete
tor resulting from the use of the not
hed power

exponential distribution.

The distributions of the test statisti
 under ea
h of the two hypotheses are given for

embedding strengths of 0.05 and 0.10 in Figure 6.10. From this �gure, it is 
lear that most

of the distribution mass under H

1

lies at the endpoint 1, whi
h is represented by 1 � 10

8

for
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Figure 6.8 P

D

and P
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urves for the NPE

MLE for Lena data (s
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= 0:05).
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the purpose of viewing, while under H

0

, all of the mass is 
lustered near 0. A small portion

of the H

1

mass is lo
ated near the origin, indi
ating that non-in�nite de
ision statisti
s do

indeed o

ur under this hypothesis. The probability of their o

urren
e, however, de
reases

as the embedding strength is in
reased. On the basis of the given plots, strong performan
e

is expe
ted from the dete
tor be
ause a large degree of separation is present between the

distributions under the two hypotheses.
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Figure 6.10 Distribution of the test statisti
 for the Lena image using the NPE distribution

and LOD with an embedding strength of (a) 0.05 and (b) 0.10.

The dete
tor is now examined in terms of the P

D

and P

F


urves generated from

Monte Carlo simulations on the Lena data. Figures 6.11 and 6.12 ea
h 
ontain three plots

of the dete
tion and false alarm probabilities. Sin
e the values taken on by the dete
tion

probability in the simulation are in a limited range, the axes are restri
ted to [0.9, 1℄.

Be
ause of this in
rease in s
ale, the 
urves appear more jagged, whi
h is an artifa
t of

the �nite number of simulations performed and the use of a di�erent random message for

ea
h trial. When the two groups of plots are 
ompared, it is 
lear that an improvement in

performan
e results from in
reasing the embedding strength. For the 
ase when s

�

= 0:05,

the dete
tor performs moderately, with a dete
tion probability of approximately 98% yielding

a false alarm probability just over 50%. These statisti
s are signi�
antly worse than those

for the 
orresponding likelihood ratio test dete
tor; however, they represent a large gain
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Figure 6.11 P

D

and P

F


urves for the

NPE LOD for Lena data (s

�

= 0:05).

−50 −40 −30 −20 −10 0 10 20 30 40 50
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

P
D

 versus Threshold (32 WM Bits, β = 1.1, s
*
 = 0.10)

Threshold

P
D

(a)

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F
 versus Threshold (32 WM Bits, β = 1.1, s

*
 = 0.10)

Threshold

P
F

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

P
D

 versus P
F
 (32 WM Bits, β = 1.1, s

*
 = 0.10)

P
F

P
D

(
)

Figure 6.12 P
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urves for the

NPE LOD for Lena data (s
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= 0:10).
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over the lo
ally optimal dete
tors based on the Weibull and power exponential distributions

(Figures B.14, B.15, B.17, and B.18). This result supports the intuitive belief that the

not
hed distribution should o�er better performan
e be
ause it more 
losely models the


oeÆ
ients 
hosen for watermarking. In a mathemati
al sense, the improvement is 
aused

by the ability to eliminate a hypothesis when a data element is found below one of the not
h

thresholds. However, given the strong performan
e of the LRT dete
tor, the lo
ally optimal

dete
tor based on the not
hed power exponential distribution does not yield results that

would support its use in a real-world appli
ation.

It is interesting to 
ompare the data resulting from using the NPE lo
ally optimal

dete
tor on 
oeÆ
ients from the Lena image with those gathered when syntheti
 data is

utilized (Figures 5.20 and 5.21). As observed for both the likelihood ratio test and maximum

likelihood estimation dete
tors, a de
rease in performan
e is present for the Lena image data.

This result indi
ates that the DCT 
oeÆ
ients of the Lena image do not follow the not
hed

power exponential distribution exa
tly.

6.3 Watermarking Peppers DCT CoeÆ
ients

In order to further test the developed dete
tors on a
tual image data, the experiments per-

formed for the Lena image are repeated using the Peppers image given in Figure 6.13. The

not
hed power exponential distribution dete
tors are 
onsidered in this 
hapter, while the

Weibull and power exponential distribution analyzes are presented in Appendix B. His-

tograms of the DCT 
oeÆ
ients of this image and the 32 sele
ted for watermarking are

shown in Figure 6.14.

The values of the distribution parameters for all three modeling distributions are

estimated by using the moments of the sample data and assuming, as before, a value of

� = 1:1. The results are shown in Table 6.3.

Monte Carlo simulations are now performed for ea
h dete
tor to evaluate the perfor-

man
e in terms of P

D

and P

F

. Ea
h simulation 
onsiders a range of threshold values, with

40 000 runs for ea
h threshold, where a new message is 
reated for ea
h run.
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Figure 6.13 The Peppers image.
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Figure 6.14 (a) DCT 
oeÆ
ients of the Peppers image and (b) those 
oeÆ
ients sele
ted for

watermarking.
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Table 6.3 Estimated distribution parameters for the Peppers DCT 
oeÆ
ients (� = 1:1).

Distribution

Parameters

� Æ �

Weibull 0.4593 - -

Power exponential 0.1734 - -

Not
hed power exponential 0.1734 0.7758 0.9956

6.3.1 Simple likelihood ratio test

The �rst dete
tor examined for the Peppers image is that based on likelihood ratio testing

with the not
hed power exponential distribution. The results are again presented in the forms

of the distributions of the test statisti
, and the P

D

and P

F


urves from the simulations.

First, Figure 6.15 presents the distributions of the test statisti
s under ea
h hypothe-

sis. On
e again the two distributions do indeed 
ontain most of their mass at in�nite values

(represented here by �1 � 10

8

), with only small amounts of mass near the origin. These

small peaks are redu
ed to near invisibility on the depi
ted s
ale for the higher embedding

strength.
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Figure 6.15 Distribution of the test statisti
 for the Peppers image using the NPE distribu-

tion and LRT with an embedding strength of (a) 0.05 and (b) 0.10.
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The dete
tion and false alarm probability results for the Monte Carlo simulations

on the Peppers data are given in Figures 6.16 and 6.17. Note that the plots are shown

on redu
ed s
ales be
ause a limited range of probabilities o

urs during the simulations.

Thus, the 
urves still remain somewhat jagged be
ause of the randomness introdu
ed by the

di�erent message in ea
h run and the �nite number of runs performed. When the graphs in

the two �gures are 
ompared, a signi�
ant in
rease in performan
e is noti
ed for the higher

embedding strength. However, even when s

�

= 0:05, a dete
tion probability of approximately

99.25% is a
hieved for a false alarm probability of approximately 1%. These rates in
rease to

an astonishing 99.99% dete
tion with a 6 � 10

�6

% probability of false alarm when s

�

= 0:10.

Thus, it is 
lear that the use of the likelihood ratio test dete
tor with the not
hed power

exponential distribution o�ers great promise for use in real-world appli
ations.

As in the 
ase of the Lena image, a drop in performan
e is observed when the dete
tor

is applied to the Peppers image 
oeÆ
ients as opposed to syntheti
 data (Figures 5.13 and

5.14). However, the size of this de
rease is very similar to that for the Lena image, suggesting

that the performan
e is not highly dependent on the parti
ular real-world image that is

watermarked.

6.3.2 Simple dete
tor for not
hed distributions

The next dete
tor examined for the Peppers image is the simple dete
tor using the not
hed

power exponential distribution. Table 6.4 
ontains statisti
s on the output of the dete
tor

under ea
h of the two hypotheses using the derived de
ision rule (3.4) with � =

1

2

. The values


ontained are similar to those for the Lena image, with slightly more 
ertain de
isions. Thus,

slightly stronger performan
e than that for the Lena image is expe
ted.

The simple dete
tor is now 
ompared against the likelihood ratio test dete
tor. Figure

6.18 shows the ROC 
urve for the LRT dete
tor with that for the simple dete
tor overlaid.

On
e again the axes have been redu
ed for ea
h sub�gure to highlight the small range of

probabilities. For both embedding strengths, the ROC 
urves for the SD lie to the lower

right of those for the LRT dete
tor, demonstrating that a slight drop in performan
e results

from simplifying the dete
tor. However, the derived dete
tor still performs well when applied

to the Peppers image.
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Figure 6.16 P

D

and P

F


urves for the

NPE LRT for Peppers data (s

�

= 0:05).
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urves for the

NPE LRT for Peppers data (s

�

= 0:10).
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Table 6.4 Simple dete
tor output for data from the Peppers DCT 
oeÆ
ients.

Situation

Count

s

�

= 0:05 s

�

= 0:10

Certain H

0

under H

0

38 762 39 846

Certain H

1

under H

0

0 0

Random sele
tion under H

0

1238 154

Certain H

0

under H

1

0 0

Certain H

1

under H

1

38 736 39 906

Random sele
tion under H

1

1264 94
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Figure 6.18 ROC 
urves for the LRT and SD for the NPE distribution with Peppers data

using an embedding strength of (a) 0.05 and (b) 0.10.
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6.3.3 Maximum likelihood estimation

The dete
tor based upon maximum likelihood estimation and the not
hed power exponen-

tial distribution is evaluated on its ability to dete
t a watermark embedded into the DCT


oeÆ
ients of the Peppers image. On
e again, three �gures are presented to demonstrate

the results.

Figure 6.19 
ontains plots of the distributions of the estimates for two di�erent em-

bedding strengths, found through 10 000 Monte Carlo simulations. As seen for the Lena

image, there is a 
lear separation between the distributions under H

0

and H

1

, with H

1

ex-

hibiting strong peaks around the true values of the embedding strength, parti
ularly for the

higher embedding strength.
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Figure 6.19 Distribution of the test statisti
 for the Peppers image using the NPE distribu-

tion and MLE with an embedding strength of (a) 0.05 and (b) 0.10.

In order to further study the dete
tor, 
urves for the performan
e indi
ators P

D

and

P

F

are given in Figures 6.20 and 6.21. The typi
al expe
ted result for MLE is found, where

the dete
tion probability falls o� dramati
ally as the threshold is in
reased above the a
tual

embedding strength. Through a 
omparison of the two �gures, it is evident that in
reasing

the embedding strength 
ontributes to the dete
tor's performan
e, as expe
ted. For the lower

embedding strength, a dete
tion probability of approximately 98% is a
hieved for a false

alarm probability of 50%. Although the use of the not
hed power exponential distribution
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NPE MLE for Peppers data (s
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= 0:05).
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improves the maximum likelihood estimation dete
tor substantially, the resulting dete
tor

does not perform as well as the 
orresponding likelihood ratio test dete
tor. Hen
e, it is

doubtful that this dete
tor would be employed in real-world situations.

By 
omparing these results to those for syntheti
 data, Figures 5.17 and 5.18, a drop

in performan
e is observed. However, the magnitude of this de
rease is 
omparable to that

observed for the Lena image, again suggesting the watermarking dete
tors are not highly

sensitive to the parti
ular sele
tion of the real-world image.

6.3.4 Lo
ally optimal dete
tion

To 
omplete the study of the not
hed power exponential dete
tors when a watermark is

inserted into the Peppers image, lo
ally optimal dete
tion is 
onsidered. As before, the

experimental results are presented in the form of three �gures.

The distributions of the test statisti
s under ea
h hypothesis are shown in Figure 6.22.

In these plots, the in�nite value that is possible for the statisti
 is represented by 1 �10

8

. The

graphs demonstrate that all of the mass of the distribution under H

0

is 
lustered near 0. On

the other hand, under H

1

, most of the mass is lo
ated at in�nity, parti
ularly for the high

embedding strength, where the non-in�nite lobe near 0 is all but invisible. Thus, a strong

performan
e is expe
ted from the dete
tor.

P

D

and P

F


urves are now presented to 
omplete the examination of the dete
tor

in question. Figures 6.23 and 6.24 
ontain the ne
essary graphs for embedding strengths

of 0.05 and 0.10, respe
tively. The axes in the �gures have been trun
ated su
h that P

D

is

shown between [0.95, 1℄. Values outside this area do not o

ur in the Monte Carlo simula-

tions performed. As a 
onsequen
e of the in
reased s
ale, the 
urves appear rather jagged

be
ause a �nite number of simulations is performed, ea
h using a di�erent random message.

By 
omparing the 
urves for the two embedding strengths, a signi�
ant improvement is

observed for the higher 
ase. However, even for s

�

= 0:05, a dete
tion probability of approx-

imately 98% 
an be a
hieved with a false alarm probability of 10%. These �gures improve

to approximately 99.95% and 0.44% for s

�

= 0:10. Thus, the dete
tor o�ers a 
ommanding

improvement over those for the Weibull and power exponential distributions given in the

appendix, but is slightly worse than the 
orresponding likelihood ratio test dete
tor. As a
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Figure 6.22 Distribution of the test statisti
 for the Peppers image using the NPE distribu-

tion and LOD with an embedding strength of (a) 0.05 and (b) 0.10.

result, its utilization in pra
ti
al appli
ations is unlikely.

It is also interesting to 
ompare the results from the Pepper image data to those for

syntheti
 data. As expe
ted, the dete
tor does not perform as well on the image data as

it does on the syntheti
 
oeÆ
ients. However, the degree of the drop is quite similar to

that observed for the Lena image, whi
h again supports the belief that the dete
tors are not

signi�
antly impa
ted by the real-world image sele
ted for watermarking.

6.4 Summary of Results

This 
hapter examined the four types of watermarking dete
tors based on the not
hed power

exponential distribution dis
ussed in this thesis for use on real-world test images. The dete
-

tion and false alarm probability results from these experiments, and those in the appendix

for the Weibull and power exponential distributions, are 
ondensed into Tables 6.5 and 6.6

for the Lena and Peppers images, respe
tively. The probabilities are shown in per
entage

form and are rounded to the nearest whole number. As with the summary for syntheti
 data,

the data points are sele
ted to demonstrate the false alarm probability that must be in
urred

in order to a
hieve a dete
tion probability of approximately 98%. When this probability 
an

not be a
hieved, the highest P

D

value is 
hosen.
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Figure 6.23 P
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and P
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urves for the

NPE LOD for Peppers data (s

�

= 0:05).
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NPE LOD for Peppers data (s
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Table 6.5 Sele
ted results for data from the Lena DCT 
oeÆ
ients.

Distribution
Dete
tor

s

�

= 0:05 s

�

= 0:10

P

D

(%) P

F

(%) P

D

(%) P

F

(%)

Weibull LRT 98 95 98 88

Weibull MLE 62 51 72 50

Weibull LOD 98 88 98 64

Power exponential LRT 98 95 98 91

Power exponential MLE 62 51 72 50

Power exponential LOD 97 84 98 63

Not
hed power exponential LRT 98 2 99 0

Not
hed power exponential MLE 96 4 98 1

Not
hed power exponential LOD 98 61 100 1

Not
hed power exponential SD 97 3 100 1

Table 6.6 Sele
ted results for data from the Peppers DCT 
oeÆ
ients.

Distribution
Dete
tor

s

�

= 0:05 s

�

= 0:10

P

D

(%) P

F

(%) P

D

(%) P

F

(%)

Weibull LRT 98 95 98 87

Weibull MLE 61 49 71 50

Weibull LOD 98 88 98 63

Power exponential LRT 98 95 98 91

Power exponential MLE 61 50 72 50

Power exponential LOD 98 88 98 62

Not
hed power exponential LRT 98 0 100 0

Not
hed power exponential MLE 98 1 98 0

Not
hed power exponential LOD 98 1 100 0

Not
hed power exponential SD 99 2 100 0
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The 
on
lusions that 
an be drawn from these tables in terms of the best performing

dete
tor and distribution are the same as those stated for the syntheti
 data in Se
tion

5.5. Namely, the likelihood ratio test dete
tor based on the not
hed power exponential

distribution is 
learly superior to the other dete
tor-distribution pairs 
onsidered.

Comparisons 
an also be made between the experimental results gathered from the

test images and those found for the syntheti
 data, Table 5.3. In general, a de
rease in

performan
e is observed when the dete
tors are applied to a
tual image DCT 
oeÆ
ients.

This result is expe
ted be
ause, here, the distributions are simply being used to model the

distribution of the transform 
oeÆ
ients, whi
h are not ne
essarily distributed a

ording to

the studied distributions. However, the performan
e drop is observed for both the Lena and

Peppers test images, and is of approximately the same amount: generally a 1% - 2% in
rease

in P

F

for the same P

D

for the not
hed power exponential distribution. Thus, the dete
tors

appear to be fairly robust to the image sele
ted for watermarking.
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CHAPTER 7

IMAGE WATERMARKING

EXPERIMENTS WITH ATTACKS

The previous 
hapter examined the performan
e of the developed dete
tors for use in de-

te
ting a watermark embedded into a real-world test image. The results demonstrated that

the likelihood ratio test dete
tor 
oupled with the not
hed power exponential distribution

yields the most promising means of watermark dete
tion. This 
hapter again 
onsiders the

dete
tion of a watermark in a natural image; however, an atta
k is now in
luded in the sys-

tem. Be
ause of its strong performan
e, only the LRT dete
tor is evaluated, and the not
hed

power exponential distribution is 
ompared with the power exponential distribution. It is

important to note that the development of these dete
tors did not in
lude a model of an

atta
k; hen
e, they are no longer optimal. However, the behavior of the dete
tors in the

presen
e of an atta
k remains worthy of study. This 
hapter dis
usses the types of atta
ks

introdu
ed and then presents the results when they are applied to a watermarked version of

the Lena test image.

7.1 Atta
k Types

Two atta
k methods are 
onsidered for appli
ation on an image in an attempt to redu
e a

dete
tor's ability to a

urately determine the presen
e of a watermark. These te
hniques in-


lude additive white Gaussian noise (AWGN) and Joint Photographi
 Experts Group (JPEG)


ompression. This se
tion des
ribes the implementation of ea
h atta
k, as well as the re-

sulting amount of distortion introdu
ed. In both 
ases, the atta
ker does not know whi
h
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transform 
oeÆ
ients are watermarked; hen
e, the atta
ks are applied to the entire image.

In the formulation of the distortion, the mean squared error measure is used to determine

the di�eren
e between the watermarked image and the atta
ked watermark image.

7.1.1 Additive white Gaussian noise

The �rst type of atta
k 
onsidered is the addition of white Gaussian noise to the watermarked

image. A matrix, having the same size as the image, of noise is generated randomly a

ording

to a zero-mean Gaussian distribution, Z � N (0; �

2

), with varian
e �

2

. The matrix is

then added to the watermarked image, or, equivalently, the transform 
oeÆ
ients of the

watermarked image, to produ
e an atta
ked image (or atta
ked 
oeÆ
ients).

In order to derive the amount of distortion introdu
ed by this atta
k, some additional

notation must �rst be de�ned:

Let

~

b = the pixels of the atta
ked watermarked image.

Let

~

B = the transform 
oeÆ
ients of the atta
ked watermarked image = B+ Z.

Then, the distortion (as de�ned in Equation (2.1)) introdu
ed by the AWGN is given by

D
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where Parseval's theorem is employed to 
hange the equation to the transform domain. The

expe
ted distortion is given by

E[D

2
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Thus, the expe
ted strength of the AWGN atta
k is 
ontrolled dire
tly by altering the

varian
e of the noise introdu
ed.

7.1.2 JPEG 
ompression

The next type of atta
k 
onsidered is that of JPEG 
ompression. JPEG 
ompression is a

means of redu
ing the number of bytes required to represent an image by removing some

of the information 
ontained in the image's transform. More spe
i�
ally, the pixels of an

image are 
onsidered in 8 � 8 blo
ks. The DCT of ea
h blo
k is taken, and the transform


oeÆ
ients are quantized to redu
e the number of bits required to represent the data values.

The image is then further 
ompressed without loss of information using entropy en
oding.

The degree of quantization employed is determined through the use of a quality fa
tor in the

range [0, 100℄, where a higher number produ
es a better-quality image.

The distortion introdu
ed by the JPEG 
ompression is given by

D
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~
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where Q

i

is the quantizer applied to 
oeÆ
ient i (as de�ned by the JPEG standard using

the spe
i�ed quality fa
tor), and q

i

is the step size 
orresponding to the applied quantizer.

Be
ause of the 
omplexity of this expression, it is diÆ
ult to dire
tly relate the quality

fa
tor to the 
orresponding distortion. Hen
e, to 
reate a suitable atta
k, a quality value

is sele
ted and the resulting distortion is 
omputed. Through experimentation, the quality


an be 
hosen su
h that the desired amount of distortion is introdu
ed.
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7.2 Simulation Results

To evaluate the performan
e of the likelihood ratio test dete
tors based on the not
hed

power exponential and power exponential distributions, Monte Carlo simulations are run

for ea
h of the noise types previously dis
ussed. The number of simulations performed is

40 000 for the 
ase of AWGN and 10 000 for JPEG 
ompression. The latter redu
tion is

due to the large amount of 
omputation required in implementing the atta
k. To illustrate

dete
tor performan
e, plots of the test statisti
 distributions, P

D

vs. Threshold, P

F

vs.

Threshold, and P

D

vs. P

F

are in
luded, with 
urves for the NPE and the PE displayed


on
urrently. Thus, the higher performan
e expe
ted from the not
hed distribution should

be 
learly visible.

7.2.1 Lena image with additive white Gaussian noise

To examine the LRT dete
tor in the presen
e of an AWGN atta
k, the Lena image is wa-

termarked multipli
atively, as before. The distortion introdu
ed through watermarking has

a value of D

1

= 0:000 193. Two sets of Monte Carlo simulations are performed for ea
h

distribution, the �rst where D

2

= D

1

and the se
ond where D

2

= 10D

1

. The appropriate

ve
tors of white Gaussian noise are 
reated and added to the image to produ
e the atta
ked

images shown in Figure 7.1. Be
ause of the small amount of distortion introdu
ed in the wa-

termarking pro
ess, the atta
ker is limited to a 
orrespondingly little amount of noise when

D

2

= D

1

. This restri
tion renders the distortion just barely visible in the more smooth

regions of the image. However, for the larger noise magnitude, the de
reased quality is quite

visible throughout the entire image.

The distributions of the test statisti
 for the power exponential distribution, as found

using 40 000 Monte Carlo simulations, are given in Figure 7.2. Little 
hange in the distribu-

tion is present as the atta
k strength is in
reased. However, these distributions are slightly

less separated than those for the Lena image when no atta
k is present, as seen in Figure B.4.

Thus, it appears that the performan
e of the LRT dete
tor based on the power exponential

distribution is not signi�
antly hindered by the AWGN atta
k.
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(a) (b)

Figure 7.1 The Lena image with AWGN with (a) D

2

= D

1

and (b) D

2

= 10D

1

.
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Figure 7.2 Distribution of the test statisti
 using the PE distribution and LRT under an

AWGN atta
k with (a) D

2

= D

1

and (b) D

2

= 10D

1

.
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Figure 7.3 Distribution of the test statisti
 using the NPE distribution and LRT under an

AWGN atta
k with (a) D

2

= D

1

and (b) D

2

= 10D

1

.

Using another 40 000 Monte Carlo simulations, the distributions of the test statisti


for the not
hed power exponential are found for ea
h distortion 
ase and are depi
ted in

Figure 7.3. Although, in both 
ases, most of the distribution mass is lo
ated at the in�nity

points, the 
enter lobes are mu
h larger than those seen when no atta
k is present, Figure

6.3. This in
rease in area is more pronoun
ed for the higher-varian
e atta
k. The movement

of mass to the inner region is 
aused by the introdu
tion of noise shifting more data points

to lie within Regions 1 and 4, thereby demonstrating the sensitivity of the dete
tor to points

around the threshold. Also, the addition of noise 
auses a small number of false instan
es of

Regions 2 and 3, as shown by the mass lo
ated at1 under H

0

and at �1 under H

1

. Overall,

these 
urves demonstrate that the LRT dete
tor based on the not
hed power exponential

distribution is moderately a�e
ted by the presen
e of noise, 
ausing an expe
ted de
rease in

performan
e.

To more 
learly illustrate the performan
e of the dete
tors, 
urves of the dete
tion

and false alarm probabilities are 
onsidered. Figures 7.4 and 7.5 depi
t these probabilities for

the two atta
ker distortion strengths, with both the power exponential and not
hed power

exponential results shown. The 
urves for the power exponential are virtually identi
al to

those for the unatta
ked 
ase, given in Figure B.6. On the other hand, a substantial de
rease
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in performan
e is present for the NPE 
ase when 
ompared with the data resulting from no

atta
k, Figure 6.5. This de
rease is ampli�ed in the higher-noise 
ase, and is 
onsistent with

the 
hange in the statisti
 distribution previously observed. However, the performan
e of

the likelihood ratio test dete
tor using the not
hed power exponential distribution remains

notably superior to that resulting from the use of power exponential distribution.

7.2.2 Lena image with JPEG 
ompression

The likelihood ratio test dete
tor is now examined in the 
ase where an atta
ker uses JPEG


ompression to manipulate the watermarked image. On
e again, Monte Carlo simulations

are performed for 
ompression qualities resulting in mean squared errors of D

2

= D

1

and

D

2

= 10D

1

. The quality fa
tors required to a
hieve these distortion levels are 81 and 6,

respe
tively, and the two 
ompressed images are presented in Figure 7.6. The small value

of D

1


auses the visible 
ompression artifa
ts present in the �rst image to be extremely

minimal. However, when the atta
ker is permitted to introdu
e 10 times the amount of

distortion as the embedding pro
ess, typi
al blo
king artifa
ts 
aused by JPEG 
ompression

are quite prevalent.

Be
ause of the large amount of 
omputation required for JPEG 
ompression, only

10 000 Monte Carlo simulations are performed to evaluate ea
h dete
tor. The resulting

distributions of the test statisti
 under both 
ompression strengths are given for the power

exponential in Figure 7.7. Similar to the atta
k using Gaussian noise, these 
urves are nearly

identi
al to those found when no atta
k is present, Figure B.4. Thus, little performan
e

degradation is expe
ted for the LRT power exponential dete
tor.

Considering the distribution of the statisti
 when the not
hed power exponential is

employed, Figure 7.8, somewhat di�erent results from the AWGN atta
k are observed. For

the lower atta
k strength, the statisti
 distribution appears quite similar to the unatta
ked


ase (Figure 6.3); most of the mass lies at the in�nity points with only a small amount

near the 0 point. However, the slight de
rease in mass at the endpoints observed when

D

2

= D

1

is signi�
antly ampli�ed when D

2

= 10D

1

. Thus, the LRT NPE dete
tor possesses

a robustness to lower rates of JPEG 
ompression, but su�ers 
onsiderably when severe


ompression is applied.
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(a) (b)

Figure 7.6 The Lena image with JPEG 
ompression with (a) D

2

= D

1

and (b) D

2

= 10D

1

.
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Figure 7.7 Distribution of the test statisti
 using the PE distribution and LRT under a

JPEG 
ompression atta
k with (a) D
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.
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Figure 7.8 Distribution of the test statisti
 using the NPE distribution and LRT under a

JPEG 
ompression atta
k with (a) D
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1

.

The performan
e of the likelihood ratio test dete
tors is now gauged using the indi-


ators of dete
tion and false alarm probabilities. Figures 7.9 and 7.10 present the resulting


urves for both the PE and NPE for the two atta
k strengths. As expe
ted, the 
urves for

the power exponential are nearly identi
al to those for the no-atta
k 
ase. Conversely, those

for the not
hed power exponential display a de
rease in performan
e. This drop is only slight

for the low-atta
k 
ase, but is more pronoun
ed for the larger atta
k. However, these �gures

again demonstrate the 
lear superiority of the not
hed power exponential distribution over

the power exponential distribution for modeling the sele
ted 
oeÆ
ients.

7.3 Summary of Results

This 
hapter has presented the results of experiments employed to evaluate the performan
e

of the likelihood ratio test dete
tor for the Lena test image when an atta
k is present. Tables

7.1 and 7.2 
ontain sele
ted data points from the P

D

and P

F


urves generated through Monte

Carlo simulations for AWGN and JPEG atta
ks, respe
tively. Points have been sele
ted to

illustrate the behavior of the dete
tors for a dete
tion probability of approximately 98%. The

probabilities are shown in per
entage form and are rounded to the nearest whole number.
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Table 7.1 Sele
ted results for data from the Lena DCT 
oeÆ
ients with an AWGN atta
k.

Distribution

No Atta
k D

2

= D

1

D

2

= 10D

1

P

D

(%) P

F

(%) P

D

(%) P

F

(%) P

D

(%) P

F

(%)

Power exponential 98 91 98 91 98 91

Not
hed power exponential 100 1 98 18 98 22

Table 7.2 Sele
ted results for data from the Lena DCT 
oeÆ
ients with a JPEG 
ompression

atta
k.

Distribution

No Atta
k D

2

= D

1

D

2

= 10D

1

P

D

(%) P

F

(%) P

D

(%) P

F

(%) P

D

(%) P

F

(%)

Power exponential 98 91 98 91 98 92

Not
hed power exponential 100 1 98 1 98 42

The values given in these tables reinfor
e the observations made previously regarding

the performan
e of the LRT dete
tors based on the two 
onsidered distributions. While the

use of the power exponential distribution results in very little performan
e loss when an

atta
k is applied, the outstanding behavior of the not
hed power exponential distribution

translates to a stronger dete
tor, despite signi�
ant drops in performan
e with the in
lusion

of an atta
k. However, it should again be noted that neither of these two dete
tors were

derived with atta
ks in
luded in the models; hen
e, they are not optimal. Thus, it is expe
ted

that the performan
e loss experien
ed by the not
hed power exponential dete
tor will be

redu
ed if the atta
k were to be in
luded in the formulation of the dete
tor.
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CHAPTER 8

CONCLUSIONS

8.1 Summary

This thesis deals with the problem of dete
ting a watermark that has been multipli
atively

embedded into the highest-magnitude transform 
oeÆ
ients of a digital image. In the setup


onsidered, the dete
tor has a

ess to side information about the original image in the form of

an image hash (a 1-bit quantized version of a se
ret subset of the original image DCT 
oeÆ-


ients), 
reating a joint hashing/watermarking system. The in
lusion of the side information

permits the development of dete
tors that o�er extremely high performan
e, even for small

messages. Various probability distributions, in
luding the Weibull distribution, the power

exponential distribution, and the not
hed power exponential distribution, are examined for

use in modeling the statisti
al distribution of the 
oeÆ
ients sele
ted for watermarking.

Through the use of signal dete
tion and estimation te
hniques prevalent in the �eld of 
om-

muni
ations, three dete
tors are developed and then further spe
ialized to the 
onsidered

probability distributions. The dete
tors are based on likelihood ratio testing, maximum like-

lihood estimation, and lo
ally optimal dete
tion. A fourth dete
tor is also 
onstru
ted as a

simpli�ed version of the likelihood ratio test dete
tor for the 
ase of not
hed distributions.

The pre
ise image watermarking setup employed is semi-blind be
ause some side information

is required at the dete
tor; however, the original image need not be available.

Cherno� bounds are formulated for the likelihood ratio test dete
tors to provide

insight into their worst-
ase performan
e. Evaluation of the bounds reveals tremendous

in
reases in a

ura
y when the not
hed power exponential is utilized for modeling, as opposed
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to the two more traditional approa
hes. These insights are supported by the study of the


orresponding Cherno� distan
es, whi
h provide an indi
ation of the relative diÆ
ulty of the

dete
tion tasks. The Cherno� distan
e as seen by an eavesdropper attempting to dete
t the

message is also 
onsidered, quantifying the in
rease in diÆ
ulty for this dete
tion problem.

Monte Carlo simulations are employed to analyze the behavior of the dete
tors using

both data generated syntheti
ally to follow the appropriate modeling distribution, and data

gathered from real-world test images. The performan
e is measured in terms of the probabil-

ity of falsely dete
ting a watermark, and the probability of 
orre
tly dete
ting a watermark.

In ea
h of the two simulation settings, the not
hed power exponential distribution displays

vastly superior performan
e over the Weibull and power exponential distributions, o�ering

de
reases in false alarm probabilities between 90% to 50%, depending on the dete
tor type,

for the same dete
tion probability. Furthermore, the likelihood ratio test dete
tor provides a

mu
h higher degree of performan
e than those based upon maximum likelihood estimation

and lo
ally optimal dete
tion. In the 
ase of the not
hed power exponential distribution,

the simpli�ed version of the likelihood ratio test dete
tor still produ
es remarkably strong

results, with only a small departure from the optimal LRT. Combining these results, it is


lear that the use of a likelihood ratio test and the not
hed power exponential distribution

forms a dete
tor that is unrivaled in the watermark dete
tion simulations.

Although the development of the dete
tors assumes no atta
ks are made on the water-

marked images, further experiments are performed to observe the reper
ussions of additive

white Gaussian noise and JPEG 
ompression on the output of the LRT dete
tors for the

power exponential and not
hed power exponential distributions. Trials are performed using

atta
k distortions up to 10 times that 
aused by the embedding pro
ess itself, in the mean

squared error sense. The false alarm and dete
tion probabilities for the power exponential

are only slightly a�e
ted by the introdu
tion of an atta
k, while the not
hed power exponen-

tial dete
tor is moderately hindered. However, the use of the power exponential distribution

results in a dete
tor that, in the presen
e of an atta
k, is still 
onsiderably inferior to that

based on the not
hed power exponential distribution. Moreover, the in
lusion of an atta
k

model in the dete
tor derivation will only strengthen these results, with larger improvements

expe
ted for the not
hed power exponential 
ase, where the degradation due to the atta
ks

is more severe.
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The analyses and experiments performed in this thesis demonstrate that the use of

statisti
al modeling, and signal dete
tion and estimation theory provides a stru
tured frame-

work in whi
h optimal watermark dete
tors 
an be developed and assessed. The exemplary

results attained 
learly reveal the promise of joint digital image hashing/watermarking as a

viable means of information prote
tion for real-world appli
ations.

8.2 Re
ommendations

The �eld of digital watermarking is still in its initial stages of development, providing a vast

array of topi
s worthy of study. Several possible re
ommendations for future dire
tions of

resear
h based upon the parti
ular te
hniques developed in this thesis follow:

� The simulations performed only 
onsider the use of the entire set of transform 
oeÆ-


ients as 
andidates for embedding (� = 1). Further experiments 
ould be 
ondu
ted

to examine the e�e
ts on the dete
tor performan
e of redu
ing the size of this set to

heighten robustness.

� Multipli
ative embedding is 
urrently used to insert the watermark into the highest-

magnitude 
oeÆ
ients be
ause it is believed these lo
ations will better withstand at-

ta
ks. Chara
teristi
s of the sensitivity of the human visual system to variations in

transform 
oeÆ
ients 
ould be in
orporated into the embedding pro
ess to better dis-

guise the watermark, while simultaneously in
reasing se
urity.

� The dete
tors derived in this thesis do not in
orporate models of any of the possible

atta
ks that 
ould be performed on the watermarked image. By 
ompensating for su
h

pro
esses, the watermark dete
tors would be
ome more suitable for use in pra
ti
al

situations.

� Digital grays
ale images represent only a single sour
e of multimedia obje
ts to whi
h

watermarking te
hniques may be applied. Although the dete
tion approa
hes des
ribed

in this thesis are independent of the host data, further 
onsiderations must be made

to frame the basi
 watermarking system for use with additional obje
ts su
h as 
olor

images, audio sequen
es, and video data.
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8.3 Contributions

The 
ontributions made by the resear
h and development of this thesis may be summarized

as follows:

� The 
onstru
tion of a joint image hashing/watermarking system based on multipli
a-

tive embedding into high-magnitude image transform 
oeÆ
ients.

� The extension of the power exponential distribution to the not
hed power exponential

distribution to better model the 
oeÆ
ients sele
ted for watermarking.

� The development of dete
tors based on likelihood ratio testing, maximum likelihood

estimation, and lo
ally optimal dete
tion using the not
hed power exponential distri-

bution.

� The derivation of Cherno� bounds on the performan
e of the likelihood ratio test

dete
tor for the not
hed power exponential distribution.

� The formulation of Cherno� distan
es for the not
hed power exponential likelihood

ratio test dete
tor, and for the dete
tion problem as seen by an eavesdropper.

� The simulation of the 
onsidered dete
tors, highlighting the substantial performan
e

gains resulting from the use of not
hed distributions.
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APPENDIX A

ADDITIONAL THEORETICAL

ANALYSIS

This appendix presents analyzes of the maximum likelihood estimation dete
tor and lo
ally

optimal dete
tor for the Weibull and power exponential distributions when syntheti
 data

are utilized. The setup of the experiments performed is identi
al to that des
ribed in Chapter

5.

A.1 Maximum Likelihood Estimation

The dete
tors based upon maximum likelihood estimation are now 
onsidered for the 
ases

when the Weibull and power exponential distributions are used to model the distribution of

image transform 
oeÆ
ients. As before, three plots are employed to examine the performan
e

of the dete
tors.

A.1.1 Weibull distribution results

The MLE dete
tor based on the Weibull distribution is now investigated. The distributions

of the test statisti
, de�ned by Equation (3.5), under the two hypotheses are shown in Figure

A.1. These plots demonstrate that the distributions of the estimates under ea
h hypothesis

nearly 
ompletely overlap. However, the higher embedding strength does result in slightly

more separation, as expe
ted. Under both hypotheses, a large number of the estimates are

of value 0, thus, a peak exists at this point. A sharp knee results around 0.05 be
ause of

the large peak and the �nite number of bins utilized when plotting the histograms of the

distributions.
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Figure A.1 Distribution of the test statisti
 using the WB distribution and MLE with an

embedding strength of (a) 0.05 and (b) 0.10.

The next two �gures, A.2 and A.3, 
ontain the results of the Monte Carlo simulations

using the MLE dete
tor. First, it should be noted that the threshold against whi
h the

estimate is 
ompared is in the range [0, 1℄ be
ause the strength must be in this range. As

a result, full ranges of probabilities are not ne
essarily present in the ROC 
urves. Sin
e

the �gures 
ontain estimates for a
tual embedding strengths of 0.05 and 0.10, it is expe
ted

that the dete
tion probability will be low when the threshold is above these values. By


omparing Figure A.2 and Figure A.3, the expe
ted in
rease in performan
e is observed as the

embedding strength is in
reased. However, neither strength presents a robust dete
tor. With

approximately a 50% false alarm probably for approximately a 60% dete
tion probability

for s

�

= 0:05, the MLE dete
tor performs slightly worse than the 
orresponding binary

hypothesis testing dete
tor, whose results are presented in Figure 5.7 (and Figure 5.8 for

the s

�

= 0:10 
ase). Hen
e, it is doubtful that the MLE dete
tor based on the Weibull

distribution will suÆ
e in pra
ti
al appli
ations.

A.1.2 Power exponential distribution results

Next, the maximum likelihood estimator that is based on modeling the host 
oeÆ
ients using

the power exponential distribution is evaluated. The distributions of the test statisti
, de�ned
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MLE for syntheti
 data (s
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= 0:05).
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by Equation (3.6), as found using Monte Carlo simulation are given in Figure A.4. Here the

results are quite similar to those for the MLE dete
tor using the Weibull distribution: the

distributions are greatly overlapped and a slight improvement is gained by in
reasing the

embedding strength.
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Figure A.4 Distribution of the test statisti
 using the PE distribution and MLE with an

embedding strength of (a) 0.05 and (b) 0.10.

The performan
e indi
ators of P

D

and P

F

are shown in the next two �gures, Figure

A.5 and Figure A.6. The 
urves depi
ted are nearly identi
al to those for the 
ase of the

Weibull distribution. An in
rease in performan
e as the embedding strength is in
reased is

observed; however, the dete
tor performs rather poorly overall. On
e again, for a dete
tion

probability of approximately 60%, a false alarm probability of approximately 50% must be

tolerated. These results are slightly worse than those for the likelihood ratio test dete
tor

for the same distribution, whose ROC 
urves are given in Figures 5.10 and 5.11. Thus,

it appears that the MLE dete
tor using the power exponential distribution is not a viable

solution.

A.2 Lo
ally Optimal Dete
tion

This se
tion examines the watermark dete
tors based on lo
ally optimal dete
tion for the

Weibull and power exponential distributions. On
e again, three �gures are utilized to analyze

the experimental results.
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Figure A.5 P

D

and P

F


urves for the PE

MLE for syntheti
 data (s

�

= 0:05).
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Figure A.6 P
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and P
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urves for the PE

MLE for syntheti
 data (s
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= 0:10).
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A.2.1 Weibull distribution results

To further evaluate the lo
ally optimal dete
tor, the dete
tor 
reated for the 
ase when the

host 
oeÆ
ients are modeled using the Weibull distribution is 
onsidered. The distributions

of the test statisti
, de�ned by Equation (3.8), under the two hypotheses are given in Figure

A.7. This �gure shows the two distributions overlap quite signi�
antly, with slightly more

separation present for the higher embedding strength.
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Figure A.7 Distribution of the test statisti
 using the WB distribution and LOD with an

embedding strength of (a) 0.05 and (b) 0.10.

The Weibull distribution lo
ally optimal dete
tor is now examined using the P

D

and

P

F

statisti
s. Figures A.8 and A.9 
ontain the results of the Monte Carlo simulations using

this dete
tor. The ROC plots illustrate a slight performan
e gain when the embedding

strength is in
reased to 0.10 from 0.05, whi
h is to be expe
ted. However, in general, the

results are not promising. In order to a
hieve approximately a 64% dete
tion probability

for the lower embedding strength, 
lose to a 50% false alarm probability results. These

statisti
s lie just below those for the 
orresponding binary hypothesis testing dete
tor, and

just above the maximum likelihood dete
tor. Therefore, it appears that the lo
ally optimal

dete
tor 
onstru
ted using the Weibull distribution does not o�er suÆ
ient performan
e to

be employed in pra
ti
e.
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Figure A.8 P

D

and P

F


urves for the WB

LOD for syntheti
 data (s

�

= 0:05).
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Figure A.9 P

D

and P
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urves for the WB

LOD for syntheti
 data (s

�

= 0:10).
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A.2.2 Power exponential distribution results

The next distribution 
onsidered for the lo
ally optimal dete
tor is the power exponential

distribution. The distributions of the test statisti
s, de�ned by Equation (3.9), resulting

from Monte Carlo simulations on this dete
tor are displayed in Figure A.10. The results

in this situation are quite similar to those of the LOD using the Weibull distribution: the

statisti
 distributions display mu
h overlap with a slight improvement in separation for the

higher embedding strength.
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Figure A.10 Distribution of the test statisti
 using the PE distribution and LOD with an

embedding strength of (a) 0.05 and (b) 0.10.

Figures A.11 and A.12 demonstrate the performan
e of the lo
ally optimal dete
tor in

terms of P

D

and P

F

. These results are quite similar to those seen previously. The ROC 
urve

moves slightly more to the top left 
orner of the plot as the embedding strength is in
reased;

but overall the dete
tor does not perform well. In order to a
hieve a dete
tion probability

of approximately 65% with the lower embedding strength, a false alarm probability of ap-

proximately 50% results. These statisti
s are more favorable than those for the maximum

likelihood estimator of the same distribution, and 
omparable to those of the 
orresponding

likelihood ratio test dete
tor. Consequently, it is unlikely that the lo
ally optimal dete
tor

using the power exponential distribution to model the 
oeÆ
ients will provide an adequate

watermark dete
tor in pra
ti
e.
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Figure A.11 P

D

and P

F


urves for the PE

LOD for syntheti
 data (s

�

= 0:05).
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Figure A.12 P
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and P
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urves for the PE

LOD for syntheti
 data (s
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= 0:10).
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APPENDIX B

ADDITIONAL IMAGE

WATERMARKING EXPERIMENTS

The analyzes of the watermark dete
tors based on the Weibull and power exponential dis-

tributions for use with the Lena and Peppers images are presented in this appendix. The

setup of the experiments performed is nearly identi
al to that des
ribed for the not
hed

power exponential distribution in Chapter 6. The main di�eren
e is that only 10 000 trials

are performed for ea
h Monte Carlo simulation be
ause the resulting probabilities for these

distributions are do not require the same �ne degree of pre
ision as those for the not
hed

power exponential. Also, note that sin
e the Weibull distribution requires non-negative data,

the absolute values of the DCT 
oeÆ
ients are utilized for watermarking.

B.1 Watermarking Lena DCT CoeÆ
ients

In this se
tion, the Lena image, as shown in Figure 6.1, is utilized as the sour
e of 
oeÆ
ients

into whi
h the watermark is to be inserted.

B.1.1 Simple likelihood ratio test

First, the dete
tors based upon likelihood ratio testing are examined for the Lena image

through the use of the three typi
al �gures.

B.1.1.1 Weibull distribution results

To 
ontinue the analysis of the likelihood ratio test dete
tor on the Lena image, the Weibull

distribution is utilized to model the sele
ted 
oeÆ
ients. The distribution of the test statisti
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under ea
h hypothesis is given in Figure B.1. As expe
ted, this �gure demonstrates that the

separation between the two distributions in
reases as the embedding strength in
reases.
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Figure B.1 Distribution of the test statisti
 for the Lena image using the WB distribution

and LRT with an embedding strength of (a) 0.05 and (b) 0.10.

At this point the performan
e of the dete
tor is 
onsidered using the dete
tion and

false alarms probabilities. Figures B.2 and B.3 ea
h 
ontain three plots demonstrating the

out
ome of the Monte Carlo simulations for embedding strengths of 0.05 and 0.10, respe
-

tively. From these graphs, it is seen that the dete
tor performs better as the embedding

strength is in
reased. However, for an embedding strength of 0.05, a false alarm probability

of approximately 50% must be tolerated to a
hieve a dete
tion probability just under 70%.

Thus, using the Weibull distribution to model the 
hosen Lena 
oeÆ
ients appears to not

result in a pra
ti
al watermark dete
tor.

B.1.1.2 Power exponential distribution results

The next distribution evaluated for use in a likelihood ratio test dete
tor is the power expo-

nential distribution. Figure B.4 shows the distribution of the test statisti
 under ea
h of the

two hypotheses. These results are similar to those in the 
ase of the Weibull distribution:

the in
reased embedding strength 
auses the two distributions to be
ome further apart. It

should be noted that the jaggedness in the se
ond plot is simply due to an in
rease in the

number of bins used to 
ompute the histogram.
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Figure B.2 P

D

and P

F


urves for the WB

LRT for Lena data (s

�

= 0:05).
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Figure B.3 P

D

and P

F


urves for the WB

LRT for Lena data (s

�

= 0:10).
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Figure B.4 Distribution of the test statisti
 for the Lena image using the PE distribution

and LRT with an embedding strength of (a) 0.05 and (b) 0.10.

The P

D

and P

F


urves for the Monte Carlo simulations are now 
onsidered. Figures

B.5 and B.6 present the three performan
e plots: the �rst �gure for an embedding strength

of 0.05, and the se
ond for a strength of 0.10. On
e again, it is noti
ed that the ROC

moves slightly 
loser to the top left 
orner when the embedding strength is in
reased, thus

indi
ating that the watermark is easier to dete
t. Unfortunately, to a
hieve a dete
tion

probability of approximately 64%, a false alarm probability of approximately 50% is in
urred.

This performan
e is slightly worse than that demonstrated for the binary hypothesis testing

dete
tor using the Weibull distribution to model the Lena image 
oeÆ
ients. Thus, the

dete
tor based on the power exponential distribution is likely also un�t for real-world use.

B.1.2 Maximum likelihood estimation

The dete
tor based on maximum likelihood estimation is now 
onsidered for the Weibull and

power exponential distributions. On
e again, �gures of the distribution of the test statisti


and P

D

and P

F


urves are employed to analyze dete
tor performan
e.
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Figure B.5 P

D

and P

F


urves for the PE

LRT for Lena data (s

�

= 0:05).

−15 −10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

 versus Threshold (32 WM Bits, β = 1.1, s
*
 = 0.10)

Threshold

P
D

(a)

−15 −10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F
 versus Threshold (32 WM Bits, β = 1.1, s

*
 = 0.10)

Threshold

P
F

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

 versus P
F
 (32 WM Bits, β = 1.1, s

*
 = 0.10)

P
F

P
D

(
)

Figure B.6 P
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and P
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urves for the PE

LRT for Lena data (s

�

= 0:10).
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B.1.2.1 Weibull distribution results

To 
ontinue the evaluation of the maximum likelihood estimation dete
tors, the 
ase when

the Weibull distribution is used to model the DCT 
oeÆ
ients is 
onsidered. The distribution

of the estimate under ea
h of the two hypotheses is given in Figure B.7. For both s = 0:05

and s = 0:10, the two distributions are nearly 
ompletely overlapping, but do 
ontain larger

values near the a
tual embedding strengths. The two distributions also be
ome slightly more

separated as the watermark embedding strength is in
reased, whi
h is to be expe
ted.
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Figure B.7 Distribution of the test statisti
 for the Lena image using the WB distribution

and MLE with an embedding strength of (a) 0.05 and (b) 0.10.

Figures B.8 and B.9 display the result of the Monte Carlo simulation in terms of

dete
tion and false alarm probabilities. As previously with maximum likelihood estimation,

the range of threshold is limited to [0, 1) be
ause the embedding strength must be inside

this range. Consequently, P

D

and P

F

do not ne
essarily vary over the full range of 0 to 1.

It is observed that, in the �gures, when the threshold is raised above the a
tual embedding

strength, the dete
tion probability falls o� signi�
antly be
ause the threshold is greater than

the value being estimated. When the two �gures are 
ompared, an in
rease in performan
e

is observed for the higher embedding strength. However, the dete
tor performan
e is quite

la
king. To a
hieve a dete
tion probability of approximately 62% when s = 0:05, approxi-

mately a 50% 
han
e of produ
ing a false alarm is in
urred, whi
h is slightly worse than the
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Figure B.8 P

D

and P

F


urves for the WB

MLE for Lena data (s

�

= 0:05).
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orresponding likelihood ratio test dete
tor. These statisti
s indi
ate that the use of maxi-

mum likelihood estimation and the Weibull distribution to model the Lena image 
oeÆ
ients

likely will not provide a pra
ti
al watermark dete
tor. This 
on
lusion is expe
ted given the

poor performan
e of this dete
tor on syntheti
 data.

B.1.2.2 Power exponential distribution results

The maximum likelihood estimator used to dete
t a watermark's presen
e is now evaluated

for the Lena image data when the 
oeÆ
ients are modeled using the power exponential

distribution. To begin, Figure B.10 illustrates the Monte Carlo simulation results for the

distribution of the estimate under ea
h of the two hypotheses. As in the 
ase of the Weibull

distribution, the distributions are quite overlapping and display values in the areas around

the true embedding strengths. It is also observed that the distributions be
ome slightly more

separated as the embedding strength is in
reased.
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Figure B.10 Distribution of the test statisti
 for the Lena image using the PE distribution

and MLE with an embedding strength of (a) 0.05 and (b) 0.10.

Figures B.11 and B.12 
ontain the performan
e indi
ator plots for embedding strengths

of 0.05 and 0.10, respe
tively. These plots are quite similar to those found for the Weibull

distribution. The dete
tion probability drops o� signi�
antly as the threshold is in
reased

above the a
tual embedding strength, as expe
ted. Also observable is an in
rease in perfor-

man
e with the higher embedding strength. However, the dete
tor performs rather poorly
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Figure B.11 P

D

and P

F


urves for the PE

MLE for Lena data (s

�

= 0:05).
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overall. For the 
ase when s = 0:05, a dete
tion probability of approximately 62% 
an only

be a
hieved with a false alarm probability of approximately 50%. These statisti
s are slightly

worse than the 
orresponding likelihood ratio test results. Thus, it is doubtful that using

maximum likelihood estimation with the power exponential distribution will yield a dete
tor

that is suitable for real-world appli
ations.

B.1.3 Lo
ally optimal dete
tion

The analysis of the lo
ally optimal dete
tor on the Lena image data is now studied for the


ases when the Weibull and power exponential distributions are employed to model the image

transform 
oeÆ
ients. Again, three �gures are utilized for ea
h distribution to examine the

dete
tor performan
e.

B.1.3.1 Weibull distribution results

The �rst additional distribution evaluated for use with lo
ally optimal dete
tion is the

Weibull distribution. Figure B.13 provides the distribution of the test statisti
 under ea
h

of the two hypotheses as found through Monte Carlo simulations. Considering the plot for

the low embedding strength, the two distributions are still fairly overlapping; however, for

the larger embedding strength, a moderate degree of separation is indeed present.
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Figure B.13 Distribution of the test statisti
 for the Lena image using the WB distribution

and LOD with an embedding strength of (a) 0.05 and (b) 0.10.
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The P

D

and P

F


urves for the two embedding strengths, found through Monte Carlo

simulations, are given in Figures B.14 and B.15. By 
omparing ROC 
urves in the two

�gures, a 
lear improvement in performan
e is seen for the higher embedding strength, as

expe
ted. However, the dete
tor performs only moderately well in general. For the 
ase

when s

�

= 0:05, a dete
tion probability of approximately 80% is a
hieved with a false

alarm probability of approximately 50%. These results o�er an improvement over both the


orresponding likelihood ratio test and maximum likelihood estimator dete
tors; however,

it is doubtful that the dete
tor will yield strong enough performan
e for use in real-world

appli
ations.

B.1.3.2 Power exponential distribution results

The lo
ally optimal dete
tor formulated based on the power exponential distribution is now

evaluated using the Lena DCT 
oeÆ
ients. First, the distributions of the test statisti
s

under H

0

and H

1

are given in Figure B.16. These graphs are quite similar to those for the

Weibull distribution lo
ally optimal dete
tor. The separation between the two distributions

in
reases to a moderate amount as the embedding strength is in
reased.

Figures B.17 and B.18 demonstrate the performan
e of the dete
tor in terms of

dete
tion and false alarm probabilities. Considering the ROC 
urves, a 
lear in
rease in

performan
e is observed as the embedding strength is raised. Unfortunately, the general

performan
e is somewhat la
king. With the low embedding strength, approximately a 50%

false alarm probability must be tolerated to a
hieve a dete
tion probability just over 80%.

These statisti
s represent an improvement over the 
orresponding binary hypothesis testing

and maximum likelihood estimation dete
tors. However the results indi
ate that modeling

the sele
ted DCT 
oeÆ
ients using the power exponential distribution for lo
ally optimal

dete
tion likely does not provide a dete
tor that is suitable for pra
ti
al situations.

B.2 Watermarking Peppers DCT CoeÆ
ients

This se
tion uses the Peppers test image, shown in Figure 6.13 to further evaluate dete
tor

performan
e for the Weibull and power exponential distributions.
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Figure B.14 P

D

and P

F


urves for the

WB LOD for Lena data (s

�

= 0:05).
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Figure B.15 P

D

and P
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urves for the

WB LOD for Lena data (s

�

= 0:10).
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Figure B.16 Distribution of the test statisti
 for the Lena image using the PE distribution

and LOD with an embedding strength of (a) 0.05 and (b) 0.10.

B.2.1 Simple likelihood ratio test

The �rst experiments for the Weibull and power exponential distributions for the Peppers

image are those using the binary hypothesis testing dete
tors. On
e again, the experimental

results are presented in the three standard �gures.

B.2.1.1 Weibull distribution results

To begin, the 
oeÆ
ients from the Peppers image used for watermarking are to be modeled

using the Weibull distribution. The resulting distributions of the test statisti
s are depi
ted

in Figure B.19. The separation between the two distributions is quite small for the low-

embedding 
ase and only slightly better for the stronger embedding strength.

Figures B.20 and B.21 
ontain graphs that demonstrate the dete
tor's performan
e

in terms of dete
tion and false alarm probabilities. A 
omparison of the two �gures reveals

that an in
rease in performan
e o

urs when the embedding strength is made larger, as

to be expe
ted. However, for the lower embedding strength, a dete
tion probability of

approximately 68% is only realized with a false alarm probability of approximately 50%.

Thus, it is quite unlikely that this dete
tor will be e�e
tive in a pra
ti
al situation.
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Figure B.17 P

D

and P

F


urves for the PE

LOD for Lena data (s

�

= 0:05).
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Figure B.18 P
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and P
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urves for the PE

LOD for Lena data (s

�

= 0:10).
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Figure B.19 Distribution of the test statisti
 for the Peppers image using the WB distribution

and LRT with an embedding strength of (a) 0.05 and (b) 0.10.

B.2.1.2 Power exponential distribution results

The binary hypothesis dete
tor developed for the power exponential distribution is now

examined for the DCT 
oeÆ
ients gathered from the Peppers image. The distributions of

the test statisti
 under H

0

and H

1

are given in Figure B.22. As before, the statisti
s are not

well separated, with only a slight in
rease when the embedding is strengthened.

Figures B.23 and B.24 
ontain 
urves of the probabilities P

D

and P

F

. Although a

slight gain is observed as the embedding strength is in
reased, the dete
tor does not o�er

high performan
e. In order to obtain just over a 60% dete
tion probability, a 50% false alarm

probability is in
urred. These statisti
s likely render the dete
tor-distribution pair unusable

in a pra
ti
al situation.

B.2.2 Maximum likelihood estimation

Further testing is now performed using the Weibull and power exponential distributions

to model the Peppers image 
oeÆ
ients for use with the maximum likelihood estimation

dete
tor. As before, the results are illustrated in the typi
al thee �gure formats.
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Figure B.20 P

D

and P

F


urves for the

WB LRT for Peppers data (s

�

= 0:05).
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Figure B.21 P
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and P
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urves for the

WB LRT for Peppers data (s

�

= 0:10).
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Figure B.22 Distribution of the test statisti
 for the Peppers image using the PE distribution

and LRT with an embedding strength of (a) 0.05 and (b) 0.10.

B.2.2.1 Weibull distribution results

The �rst additional distribution investigated for use with MLE is the Weibull distribution.

Figure B.25 presents a plot of the distributions of the test statisti
s for two embedding

strengths. The distributions under H

0

and H

1

overlap quite severely, with only a slight

in
rease in separation for the higher embedding strength. However, the estimates for the

embedding strength are indeed gathered around the a
tual value of the strength.

The performan
e indi
ators of P

D

and P

F

are shown in Figures B.26 and B.27. Sin
e

the de
ision statisti
 takes the form of an estimate, the range of thresholds is limited to [0,

1). Thus, the maximum a
hievable dete
tion probability is not ne
essarily equal to 1. The

graphs illustrate that, if the threshold is in
reased mu
h above the a
tual strength value,

the dete
tion probability drops o� signi�
antly, as expe
ted. Also, the dete
tor displays

better performan
e for the higher embedding strength. However, the dete
tor is overall

quite poor. To a
hieve a P

D

of approximately 62% for the low embedding strength, a P

F

of

approximately 50% results. Thus, this dete
tor-distribution pair is not a desirable dete
tion

solution.
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Figure B.23 P

D

and P

F


urves for the PE

LRT for Peppers data (s

�

= 0:05).
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Figure B.24 P

D

and P

F


urves for the PE

LRT for Peppers data (s

�

= 0:10).
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Figure B.25 Distribution of the test statisti
 for the Peppers image using the WB distribution

and MLE with an embedding strength of (a) 0.05 and (b) 0.10.

B.2.2.2 Power exponential distribution results

Maximum likelihood estimation is now examined for the 
ase when the watermarked Peppers

DCT 
oeÆ
ients are modeled using the power exponential distribution. The distributions

of the test statisti
 under the two hypotheses are shown in Figure B.28. These results are

quite similar to those for the Weibull distribution MLE: the statisti
 
urves overlap severely

with only a small in
rease in separation as the embedding strength is in
reased. Although,

the estimates do somewhat a

urately re
e
t the true embedding strength.

The next two �gures, B.29 and B.30, demonstrate the performan
e of the dete
tor in

terms of dete
tion and false alarm probabilities. These 
urves exhibit the behavior seen pre-

viously for maximum likelihood estimation. The dete
tion probability a
hieves a maximum

of only approximately 60% (at the expense of just under a 50% probability of false alarm)

and drops o� as the threshold is in
reased above the a
tual embedding strength. A slight

improvement is present as the embedding strength is in
reased, but overall the dete
tor does

not o�er adequate performan
e to be employed in a realisti
 setting.
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Figure B.26 P

D

and P

F


urves for the

WB MLE for Peppers data (s

�

= 0:05).
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Figure B.27 P

D

and P

F


urves for the

WB MLE for Peppers data (s

�

= 0:10).
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Figure B.28 Distribution of the test statisti
 for the Peppers image using the PE distribution

and MLE with an embedding strength of (a) 0.05 and (b) 0.10.

B.2.3 Lo
ally optimal dete
tion

The �nal dete
tor 
onsidered for use with the Pepper image and the Weibull and power

exponential distributions is the lo
ally optimal dete
tor. On
e again, three �gures are utilized

to illustrate the results.

B.2.3.1 Weibull distribution results

To begin, the lo
ally optimal dete
tor derived though modeling the sele
ted 
oeÆ
ients using

the Weibull distribution is 
onsidered. Figure B.31 provides the test statisti
 distributions

under H

0

and H

1

. For the lower embedding strengths, the two distributions are fairly

overlapped: however, when the strength is raised to 0.10, a relatively moderate degree of

separation is a
hieved.

Figures B.32 and B.33 demonstrate the performan
e of the dete
tor with respe
t to

dete
tion and false alarm probabilities. A noti
eable in
rease in performan
e is present as

the embedding strength is in
reased from 0.05 to 0.10. However, for the lower strength, a

dete
tion probability of approximately 80% 
an only be attained at the 
ost of a false alarm

probability of approximately 50%. As a result, the dete
tor will not likely be a

eptable in

pra
ti
al appli
ations.
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Figure B.29 P

D

and P
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urves for the PE

MLE for Peppers data (s

�

= 0:05).
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Figure B.30 P

D

and P
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urves for the PE

MLE for Peppers data (s

�

= 0:10).
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Figure B.31 Distribution of the test statisti
 for the Peppers image using the WB distribution

and LOD with an embedding strength of (a) 0.05 and (b) 0.10.

B.2.3.2 Power exponential distribution results

The lo
ally optimal dete
tor is now examined for the 
ase when the sele
ted DCT 
oeÆ
ients

from the Peppers image are modeled using the power exponential distribution. First, the

distributions of the test statisti
s under the two hypotheses are illustrated in Figure B.34.

Similar to the lo
ally optimal dete
tor for the Weibull distribution, the separation between

the two distributions of the test statisti
 in
reases to a relatively moderate amount as the

embedding strength is in
reased.

The dete
tor's behavior is now 
onsidered in the 
ontext of the dete
tion and false

alarm probabilities. These 
urves are presented in Figure B.35 and B.36 for the two em-

bedding strengths. When the �gures are 
ompared, it is 
lear that the stronger presen
e

of the watermark aids in its dete
tion. However, the overall performan
e is still fairly low.

For the low embedding, a false alarm probability of approximately 50% is required to yield

a dete
tion probability of approximately 80%. Thus, the power exponential lo
ally optimal

dete
tor is likely not suitable for most appli
ations.
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Figure B.32 P

D

and P

F


urves for the

WB LOD for Peppers data (s

�

= 0:05).
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Figure B.33 P

D

and P
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urves for the

WB LOD for Peppers data (s

�

= 0:10).

156



−80 −60 −40 −20 0 20 40 60 80
0

50

100

150

200

250

300

350

400

Distribution of Test Statistic 

 (32 WM Bits, α = 0.2, β = 1.1, s
*
 = 0.05)

Test Statistic Value

C
o

u
n

t

Under H
0

Under H
1

(a)

−80 −60 −40 −20 0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

400

450

Distribution of Test Statistic 

 (32 WM Bits, α = 0.2, β = 1.1, s
*
 = 0.10)

Test Statistic Value

C
o

u
n

t

Under H
0

Under H
1

(b)

Figure B.34 Distribution of the test statisti
 for the Peppers image using the PE distribution

and LOD with an embedding strength of (a) 0.05 and (b) 0.10.
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Figure B.35 P
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and P
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urves for the PE

LOD for Peppers data (s

�

= 0:05).
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D

and P

F


urves for the PE
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