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ABSTRACT

Digital image watermarking is a method by which a message can be hidden in an image
for the purpose of information protection. In this thesis, the host data into which the
message are embedded is chosen as the highest-magnitude coefficients from a subset of the
full-frame image transform, and the watermark is inserted through multiplicative embedding.
To complete the watermarking system, a detector that is capable of accurately determining
the presence or absence of a watermark in a given image must be developed.

This thesis focuses on the formulation of statistically optimal watermark detectors
that incorporate the use of side information in the form of an image hash, creating a joint
hashing/watermarking system. The classical Weibull and power exponential distributions
are considered as probabilistic models of the host data. The notched power exponential
distribution is also proposed to better represent the data selected for watermarking. For each
distribution, detectors are derived using the techniques of likelihood ratio testing, maximum
likelihood estimation, and locally optimal detection. Chernoff bounds on performance are
found for the likelihood ratio test detectors, and Chernoff distance is used to quantify the
difficulty of the detection problem, including that of an eavesdropper’s problem.

Through analysis and experimentation using synthesized data and real-world test
images, the use of the notched power exponential distribution and likelihood ratio testing is
observed to produce a vastly superior detector, as measured by the probabilities of false alarm
and detection. Although the detector derivations do not include models of attacks, the effects
of additive white Gaussian noise and JPEG compression are explored, and the notched power
exponential likelihood ratio test detector again yields the highest-quality performance. The
exemplary results obtained clearly demonstrate that the combination of statistical modeling
and detection theory permit the development of promising detectors, thereby facilitating the

use of joint digital image hashing/watermarking in practical applications.
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CHAPTER 1
INTRODUCTION

1.1 Purpose

The purpose of this thesis is to develop statistically optimal watermark detectors that com-
bine the use of hashes into the watermarking process, creating a joint hashing/watermarking
technique. Theoretical bounds are also found on the behavior of these detectors. The de-
gree of difficulty experienced by an eavesdropper attempting to detect the watermark is
also considered. Monte Carlo simulations are then performed using both synthetic and real-
world data. Finally, various attacks on the watermarked object are introduced to study the

robustness of the derived detectors.

1.2 Problem

The desire and ability to hide information in a commonly used medium have been present in
society for thousands of years. Throughout the generations, the techniques used to accom-
plish these covert goals have varied, and, with the current prevalence of digital multimedia
data, these methods continue to evolve. Data hiding has a vast array of applications, in-
cluding the newly developing subfield of digital watermarking. Watermarking is a type of
information hiding where the purpose is data protection. Typically, a watermark is employed
to protect the rights of a creator of a multimedia object. For example, a watermark can be
introduced as a means of identifying the owner of a digital image, or it could contain a
unique serial number for each individual who has been given access rights to a digital movie.

Regardless of the specific instance of watermarking, the unifying feature is the utilization of



data hiding techniques to benefit the owner of a multimedia object. In general, the insertion
of a watermark should be imperceptible in the host object (invisible watermarking); how-
ever, the less common visible watermarking is preferred in certain situations. Also, since the
reliability of a watermark rests on security, a property of a watermarking method is that it
should be robust against attacks. A trade-off exists between the two properties of invisibility
and robustness, thereby providing a challenge in developing an ideal watermarking scheme.

The process of watermarking can be divided into three distinctly different portions,
namely, data modeling, watermark embedding, and watermark detection. Since much previ-
ous watermarking research has focused on the embedding process, this thesis mainly considers
the development of detection techniques, specifically for multiplicative embedding. However,
the derivations found herein are easily applied to other embedding processes. To produce
more robust detectors, side information is provided to the detector in the form of a hash
of the original object, creating a joint hashing/watermarking system. A hash function is
a function that takes in a set of data (in this case the original multimedia object) and a
cryptographic key, and produces a simplified representation of that data. This resulting
hash is quite small and, thus, is easily provided to the watermark detector. The particular
hash function selected for use in this thesis leads to an expansion of the methods currently
employed in data modeling. Although joint hashing/watermarking systems have been ex-
amined in other works [1], they have not been considered from a statistical standpoint. By
formulating the watermarking process in the context of a communications system, the theo-
ries of signal detection and estimation can be employed. Furthermore, performance bounds
can be calculated to determine the worst-case behavior of the detectors. Similarly, measures
can be developed to illustrate the relative difficulty of different detection problems, includ-
ing the problem seen by an eavesdropper attempting to detect a watermark. Using these
insights from the field of communications, this thesis develops and analyzes statistically op-
timal means of detecting a watermark that has been multiplicatively embedded into a digital

image.



1.3 Thesis Organization

This thesis is divided into eight chapters. Chapter 1 presents the problem addressed by
the thesis and describes the need for further solutions. Chapter 2 formulates the joint
hashing/watermarking system in a mathematical framework so that optimal detectors can be
developed in Chapter 3. Chapter 4 then derives theoretical bounds on the performance of the
studied detectors. In Chapter 5, experiments are discussed and performed using synthetically
generated data to determine the abilities of the detection techniques. In Chapters 6 and 7, the
developed detectors are applied to real-world test images in both the absence and presence
of an attack, respectively. Finally, Chapter 8 provides conclusions based on the development
and analysis presented in the thesis, and offers recommendations for the future directions of

the watermarking problem.



CHAPTER 2
PROBLEM FORMULATION

In this chapter the watermarking problem is presented mathematically. First, the watermark-
ing system, including the embedding technique, is discussed. This scheme is then specialized
for use with digital images using a joint hashing/watermarking setup. Then, three different
methods that may be used to model the host data are developed. Finally, for the purpose

of implementation, techniques allowing synthetic host data to be generated are presented.

2.1 Basic Watermarking Problem

The basic watermarking problem can be described pictorially by the diagram in Figure 2.1.
First, there is a vector of host data, x, where the {z;} are assumed to be independent,
into which a specific, known watermark vector, m, is to be embedded. The result of this
embedding operation, y, may then be passed through an attack channel, creating y, before
being presented to the detector. Receiving this signal, the detector must determine whether
or not the specific message is present. To examine this system in more detail, first consider
the watermark embedding process. A variety of methods is available to insert a watermark
into a set of host data; this thesis, however, is concerned with multiplicative watermark
embedding [2]. In this setup, each element of the watermarked data is generated according
to the formula
y; = x;(1 + smy)

where s is the strength of the watermark embedding. The sole restriction placed on s is
that is should be a real number within the interval [0, 1). This limitation is applied because

the watermark is to be visually undetectable in the host data. For simplicity, each element
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Figure 2.1 Basic watermarking process.
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of the watermark message to be embedded is generated uniformly and independently from
a binary distribution with values {—1, 1}; however, the use of other modulation techniques
and of error correcting codes is also possible. By examining this embedding formula, it is
easily seen that the amount of error introduced into an element is proportional to the size
of the element itself.

With the watermark now embedded into the host data, the watermarked object is
released into the public domain. Thus, the detector has no knowledge of the manipulations
performed on the object, which could include simple image processing operations or even
attempts to remove the watermark itself. Hence, an attack block is introduced into the
diagram, producing the vector y.

Finally, the corrupted version of the watermarked data is presented to a detector,
which is responsible for determining whether or not the specific watermark is present in
the sequence. Such a detector may yield a number of possible types of output. First, the
detector may simply give a yes or no answer regarding the presence of the specific watermark.
Alternately, the detector could present a statistic indicating how certain it is that the given
watermark is present, which may then be compared against a threshold to determine a yes
or no answer. Finally, the detector can give an estimate of the actual embedding strength

parameter s, which again can be compared against a threshold to determine a binary answer.

2.2 Image Watermarking Problem

With the basic watermarking process formalized, the system is now specialized for use in a
particular application. First, the source of the host data must be considered. Depending
on the goals of the watermark embedder, a multitude of sources of host data is possible.

This thesis deals with the problem of watermarking a digital grayscale image using a joint



hashing/watermarking technique. The specialized setup is described pictorially in Figure 2.2.
In this context, a common source of host data is image transform coefficients, as opposed to
the actual pixel intensities themselves. This choice often results in watermarks that are more
robust to attacks. Transforms such as the discrete Fourier transform (DFT), the discrete
cosine transform (DCT), and the discrete wavelet transform (DWT) are all viable candidates
for use in watermarking. The DCT is selected for use in this thesis for simplicity, and the
full-frame transform is employed to increase robustness because attacks in this domain will
be reflected throughout the entire spatial image. An additional advantage of full-frame DCT
watermarking is that it is inherently robust against image resizing attacks.

To further increase the security of the watermarking system, a subset of the transform
coefficients is defined, and forms a set of candidate points for embedding. This candidate set
is of size L and is described by its indices into the full-frame coefficients, C = {¢i, ¢, ..., cr},
where the ¢; are coeflicient indices. Note that C will often be used to refer to the transform

coefficients themselves, as well as their index set. The parameter v denotes the fraction of

L
M

coefficients included in the candidate set, v = where M is the total number of transform
coefficients. This set acts as a secret key, which is image independent, and must be known
by both the embedder and the detector.

The watermark will then be embedded in the transform coefficients of C having the
highest magnitudes. More specifically, the host data set, x, contains only those coefficients
with magnitudes greater than a fixed parameter, 6. These coefficients are dominant in the
image and, thus, are expected to be quite well preserved in the presence of a moderate
attack. Moreover, these high-magnitude coefficients are most robust against attacks (small-
magnitude coefficients may simply be discarded by an attacker) and, thus, are most effective
in terms of detection performance. It should be noted that since the same candidate set and
coefficient threshold are used for various images, the length of the host vector, denoted by
N < L, will be image dependent.

The method by which the watermark is constructed depends partially on the specific
image watermarking application. One technique is for the encoder to be given a binary

sequence, r with r; € {—1, 1}, of the same size (L) as the candidate set. Each element of this

longer sequence corresponds to a coefficient in C. Those elements of r coinciding with the



Embedding

Detection

Figure 2.2 Image watermarking process.

Original Image

[peT]

A

Message

A

Coefficient
Selection

Candidate Set

h m | X

A AN 4

Watermark
Embedding

y
Sl v
Coefficient
Reinsertion

IDCT
b

Hash

Watermarked Image

AttaE

|

Parameter
Estimation

h _|Coefficient

Ca

Candidate Set

"| Extraction |, r

Message

m |y

Watermark

Detection

L(y)
A 4

Thresholding

v
Yes / No




coefficients of x are denoted by m. Thus, m is of length N and forms the actual watermark
message that will be embedded in the image.

Using the above method, the precise value of m is dependent on the original image. If
more control is desired over the sequence actually embedded, the encoder could be altered to
accept a shorter sequence (of length less than V) that, with padding, will be embedded into
the host vector, thereby ensuring the presence of the specified sequence. The encoder would
then generate and output the full message, r, which includes the vector m at appropriate
locations, and random -1 and 1 padding for the remainder of the sequence. Although this
method guarantees that a particular sequence will be embedded, the full message, r, will be
dependent on the original image.

With the development of the image watermarking encoder complete, the amount of
distortion introduced by the multiplicative embedding is now considered. To quantify this

amount, the mean squared error (MSE) distortion measure is defined as

M
1
D(u,v) = i Z |y, — v (2.1)
k=1

Although this measure is known to be not particularly well suited to quantifying the change in
an image as perceived by the human visual system, it is widely used because it is conceptually
and computationally simple. When the measure is applied to this specific multiplicative

setup, the MSE is given by

M
1
Dy = Dy(a,b) = Mka—ka
k=1
M
1
- MZMZ—BZF
=1
N
1 2
= MZ|xl_yl|
=1
1



where
a = the pixels of the original image,
b = the pixels of the watermarked image,
A = the transform coefficients of the original image, and
B = the transform coefficients of the watermarked image.
Note that Parseval’s theorem is used to express the distortion in the transform domain.
The focus of the problem specification is now turned to the watermark detector. For
each image, the detector will be presented with a vector of side information that is similar
to a hash of the image. This vector, h, contains elements that correspond to each coefficient
in the candidate set. Each h; will be either 0 or 1, with 1 indicating a coefficient magnitude
greater than ¢, and 0 indicating a magnitude less than or equal to §. Equivalently, each h;
can be viewed as a 1-bit quantized version of the corresponding original image coefficient.
With the specification of the candidate set, the hash vector, the full message, and the
possibly watermarked image, the detector is able to determine which coefficients belong to the
possibly watermarked vector, y, and the corresponding watermark, m, for which to search.
Note that since additional information is provided to the detector (as opposed to simply the
message), this scheme is not considered to be a blind watermarking system. However, since
the original image is not required at the detector, it is also not a non-blind system. Rather,

this image watermarking setup is best described as a joint hashing/watermarking system.

2.3 Host Data Modeling

Since this thesis deals with the optimal detection of watermarks, it relies heavily on the
statistical properties of the data involved. Thus, a realistic probabilistic representation of
the host data must be determined. In the case of image transform coefficients, the Wesbull
distribution (WB) or the power exponential distribution (PE) are often utilized to model
the resulting distributions. However, this thesis advocates the use of the notched power
exponential distribution (NPE) to reflect the fact that only large coefficients are selected for
watermarking, as specified by the hash. These three distributions are now defined, and their

properties are discussed.



2.3.1 Weibull distribution
The Weibull distribution [3] is given by

22 e {- ()"} ifa>0

else

p(z) =

e

forz € R, @ > 0, and > 0. A plot of this distribution is given in Figure 2.3. The mean of
the Weibull distribution is given by

E[X] = ol <1 + %)

and the variance is given by

Var[X] = o’ <1 + %) — (E[X])?

()3

where ['(z) = [ e~"#*~'dtwithz > 0, is the Gamma function. By varying the two parame-

ters of the distribution, o and [, the mean, variance, and general shape of the curve can be
refined.

The Weibull distribution has been used to model the magnitude of the discrete Fourier
transform and discrete cosine transform coefficients of an actual image [3], [4]. However, the
parameters of the distribution may not be known. From the above expressions for mean and
variance, it is possible to estimate « and 8 from sample data by computing the sample mean

and variance, where
1 n
Sample E[z] = - lerz
1=

and

- )
| =— i —x)°.

Sample Var[z] P (x; — )

From these values, a system of two equations can be solved to yield estimates of distribution

parameters.
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Weibull Distribution (o = 0.7, 3 =1.1)
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Figure 2.3 Weibull distribution with parameters o = 0.7 and § = 1.1.

2.3.2 Power exponential distribution

The power exponential distribution (also called the generalized error distribution or the
generalized Gaussian distribution) is commonly used to model the distribution of an image’s
discrete cosine transform coefficients [5]. The power exponential distribution contains two
parameters, o and 3, with « relating to the variance and f relating to the heaviness of the

distribution tails. The distribution itself is given by
B
p(z) = Cexp {— ‘E‘ }
o

B

forx € R, @« > 0, and # > 0. Figure 2.4 contains a plot of the distribution. The second

where

C =

moment (variance) and fourth moment of the power exponential distribution [6] are given

by

and



Note that when 8 = 1, which is a common value when the distribution is utilized to model
image transform coefficients, the power exponential distribution reduces to the Laplacian

distribution [5].

Power Exponential Distribution (0 = 0.7, 3 = 1.1)
0.8 . T T T T T T

0.7r

0.6
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Figure 2.4 Power exponential distribution with parameters a = 0.7 and f = 1.1.

When using the power exponential distribution to model the coefficients used in
watermarking, values of o and f must be determined on the basis of the actual image
coefficients. By computing the second and fourth moments of the data, the two parameters

can be estimated by solving a system of two equations.

2.3.3 Notched power exponential distribution

In the multiplicative watermarking scheme, the image transform coefficients can be modeled
using the power exponential distribution. However, the high-magnitude coefficients selected
for watermarking reside in the tail portions of the power exponential distribution and occur
with lower probabilities. Therefore, the actual distribution of the host data is a notched
power exponential distribution. In addition to the original power exponential distribution
parameters, o and [, a new positive parameter, J, is introduced. Here, {z : |z| > 0} is
the range of values of the coefficients that are watermarked, where 6 > 0. For convenience,
the derived parameter k € (0,1) is also introduced to represent the cumulative probability

under the power exponential distribution of the coefficients that are not selected. These

12



two parameters are shown pictorially with respect to the power exponential distribution in
Figure 2.5. The shaded areas represent the portions contained within the notched power

exponential distribution.

Power Exponential Distribution with oo = 0.7000, = 1.10

P (x)

-5 0 5
X

Figure 2.5 Power exponential distribution with notched distribution parameters ¢ and x.

Due to the symmetry of the distribution, the parameters ¢ and x are related according

1 _ oo
5 A /5 p(x)dx
o B
= / C’exp{— <£> }dx
5 (6%
& B
= L/ exp{— <£> }daj.
2al’ (l) 4 @
B
Performing the substitution w = (%)ﬁ, this equation becomes

L—x = b Lex —w gw_(l_%) w
/( s p{ }ﬁ d

to the equation
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where I'(a, z) = [ exp{—t}t* 'dt with a > 0, is the incomplete Gamma function.

Thus, the notched power exponential can be expressed as

£ _expq— 2| if |z] > ¢
p(x) — 1—-k { ‘a‘ }
0 else

where

p
2al’ (%)

forr eR a>0,>0,0>0,and 0 < k < 1.

C = (2.3)

In order to use the notched power exponential distribution to model selected image
transform coefficients, the distribution parameters must be computed from the data. The
« and [ parameters are given by the same expressions as in the power exponential case,
using all of the transform coefficients. The value of the notch threshold, d, is identical to
the fixed system parameter used to determine the host vector in the image watermarking

scheme. Finally, x can be computed from the other three parameters by using (2.2).

2.4 Host Data Generation

Watermark detection and host data modeling are two separate problems and should be
treated as such. Thus, to accurately evaluate a watermark detector under a specified statis-
tical model for the host data, synthetic data are generated. For each of the three distributions
considered, the cumulative density function, P(z), is found. Then, random numbers {v;}
between [0, 1] can be generated according to a uniform distribution. Finally, for each v;
generated, the cumulative density function is inverted to find the data point, z; = P~!(v;).

Using this process, it is possible to generate data according to the required distributions.

14



2.4.1 Weibull distribution

The cumulative density function for the Weibull distribution is given by

ro = L) {2 o
[ () e

B B orx\b-1 a\ A1 «
=1 —/ Bexp{—w}dw
2\ B

= 1—exp{— <E> }

This function is now inverted to solve for the data point, z:
Z\B
exp{— <E) } = 1—-P(»)
2\ B
. (_) = In(1— P(2))

(2) = —ma-Pe)
— (w1 - P))

n Ll
™|

= a(—In(l - P(2)))7.

2.4.2 Power exponential distribution

For the power exponential distribution, the cumulative density function is given by

P(z) = /z C’exp{—‘g‘ﬂ}daj
= 1—/wCexp{—‘§‘ﬁ}daj.

Considering the case when z > 0 yields

15



Plz) = 1-C [ Bexp{—w}%w(lé)dw
= 1—@ h exp{—w}w(%fl)dw

Similarly, for the case when z < 0,

P(z) = /_;Cexp{— <_§>ﬁ}dx

Finally, combining the two cases for z yields

Py T (5.(2)7) itz>0
@F (%’ (_?Z)ﬂ) if z < 0.

Due to the difficulty in inverting the incomplete Gamma function, this expression is not

solved explicitly for the data point, z. To determine the required value, numerical techniques

are employed.

2.4.3 Notched power exponential distribution

For the purpose of data generation, the notched power exponential distribution is quite

similar to the power exponential distribution. The cumulative density function is

P(z) = /_z p(z)dz.

o0

Consider the case when z > §. Then
*© C z\8
P(z) = 1—/Z l—meXp{_<E> }daj
B
ot 6))
2(1 — k)T (%) B
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where the expression for the integral is identical to that present for the case of the power

exponential distribution. Now, consider when —¢ < z < §. Here,

because the notched power exponential is symmetric, and has value 0 between —¢ and 9.

P@)::(/;lflfxp{—<2§>ﬁ}dr
Y
B 2(1—/11)1“ (%)F (é <?> )

where again the integral was determined in the power exponential case. Therefore, combining

Finally, when z < —9,

these results yields

1 1 (2\P .
L= it (3 (2)7) =0
if —0<2<9
1 1 —2\B .
%:E@f(@(?)) if z < —6.
Once again, an explicit formula for z is not found because of the complexity involved in in-

verting the incomplete Gamma function. However, the expression can be solved numerically

to yield the value for the generated data point.
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CHAPTER 3
WATERMARK DETECTION

This chapter develops three main techniques for detecting a watermark within a set of data.
These detectors are based on likelihood ratio testing (LRT), mazimum likelihood estimation
(MLE), and locally optimal detection (LOD). All three are derived from statistical detection
theory, and each one is formulated for the three distributions, namely, Weibull, power expo-
nential, and notched power exponential. A fourth detector is also constructed for use with

notched distributions as a simplification of the likelihood ratio test detector.

3.1 Simple Likelihood Ratio Test

The first detection technique covered is based upon binary hypothesis testing (BHT) using
a likelihood ratio test [7]. In this setup, it is assumed that the embedding strength, s, is
a known, non-random parameter, say s*. Then, the detection problem is formulated as a
choice between two hypotheses, hypothesis 0 (Hp) and hypothesis 1 (H;). Hj states that
the data do not contain any watermark, while H; states that the data contain a specific
watermark. Each hypothesis has associated with it a distribution for the data, py(y) and
p1(y). To determine which hypothesis to select, a decision rule is developed that maps each
possible data vector to one hypothesis or the other. From statistical decision theory, it is
known that the optimal decision rule is given by a likelihood ratio test, with the ratio being

the distribution under H; to the distribution under Hy,

18



For the sake of simplicity, the log of this ratio, the log-likelihood ratio, In L(y), is often
considered.

To perform the actual likelihood ratio test, this log-likelihood ratio is compared
against a threshold value, . If the ratio is greater than the threshold, then H, is selected;
while if it is less than the threshold H, is chosen.

The remaining question in the development of a likelihood ratio test-based detector is
how to best choose the threshold value. The selected approach is based on Neyman-Pearson
hypothesis testing [7]. The probability of false alarm, Pp, is defined to be the probability
with which the detector falsely detects the watermark in a set of data. If a specific value
of this probability, p, is selected as the maximum permissible Pp, then the corresponding
threshold, v, can be determined such that Pr = p. In the case of the log-likelihood statistic,
the false alarm probability is given by

Pr = P|choosing H; | Hy is true]
— RnL(y) >
= / pO,L(E)dE
v

where pg 1, (¢) is the distribution of In L(y) under Hy. Thus, if this distribution is computed,
the desired threshold value can be found by setting the resulting Pr to p and solving for 7.

In summary, the likelihood ratio test detector is formed by calculating a log-likelihood
ratio based on two hypotheses to yield a decision statistic. This statistic is then compared
against a threshold to determine a yes or no answer as to the presence of the specific water-

mark in the data vector.

3.1.1 Weibull distribution

The first distribution considered for modeling the coefficients is the Weibull distribution [3].

Here the two hypotheses used in the binary hypothesis test are
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where N is the number of (high-magnitude) coefficients that are watermarked. The distri-

bution under Hj is given by

po(yi) = pe(vi)

where p,, (z;) is the Weibull distribution of the host data. The product forming the dis-
tribution of the vector follows from the assumption that all of the y; are independent and

identically distributed (iid). Similarly, the distribution under H; can be written as

py) = ——p i
e 1+ s*m; "\ 1+ s*m;

- o +ﬁs*mi) <a(1 fl*m»)ﬁ_l op {_ (ﬁ)ﬁ}

N

41 (}’) = H 41 (?Jz)

N

B 11 a(l —|—ﬁs*mz’) <Oz(1 f;*mi)>ﬂ_l o {_ (W)ﬁ} |

1=

With the distributions of the data under each hypothesis found, it is now possible to

evaluate the log-likelihood ratio:

InL(y) = lnpl(}’)




f—
—

N

(Hﬁp{—<ﬁ> (L) )
— Z—ﬁln(l—l—s*mi)—i— VN

~(atem) + ()]

_ Z [—mn(l +stmg) — <m>ﬂ + (%)ﬁ] . (3.1)

=1

(]

To perform the actual likelihood ratio test, the log-likelihood ratio must be compared
against a threshold value, 7. It should be noted that for a fixed watermark, m, the first
term in the summation in the ratio is a constant and can thus be incorporated into the
threshold to form a new threshold, if desired. At this point, a Neyman-Pearson approach
can be applied to find an appropriate value for the threshold, from which a binary decision

can be made regarding the presence of the watermark in the data.

3.1.2 Power exponential distribution

The likelihood ratio test detector is now developed for the case when the power exponential
distribution is used to model the host coefficients [8]. In this case, the two hypotheses are

given by

Hy : s=0

where N is the number of (high-magnitude) coefficients that are watermarked. The distri-

bution under Hj is

polyi) = CeXp{— % ﬂ}
po(y) = ﬂCexp{— % ﬂ}
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while the distribution under Hj is

p(y) = . pm( = )

1+ s*m; 1+ s*m;

¢ o Yi o
—_= — X P I
T+ smy P a (14 s*m;)
N B
¢ Yi
ni) —Hmp{— et ) }
Thus, the log-likelihood ratio is given by
pi(y)
InL(y) = In
2 po(y)
ﬂ ¢ pl— Yi o
oy L+ stm, o (1 + s*m;)
= In ~
Yi|?
H C'exp {— = }
=1
N B
1 Yi Yi B
— I L Yi
n(gles*mep{ a (1 4+ s*my) « })
N
_ Zl Yi o (L
= n expy — | ——— z-
— 1+ s*m a (1 + s*m;) a
N B
1 i i |#
= Y (m - Y i (3.2)
— L+s'm;  |a(l+ s*m;) o

As in the case of the Weibull distribution, a threshold value can be compared against
the decision statistic to find a yes or no detector output.

It is interesting to note that this statistic is nearly identical to the simple likelihood
ratio test statistic (3.1) for the Weibull distribution. The differences are the presence of the
absolute values and a scaling factor of 5 on the constant term. This similarity is expected
because the two distributions have similar forms, with the power exponential possessing

absolute value terms.

3.1.3 Notched power exponential distribution

Using likelihood ratio testing, a watermark detector can be found for the case when the

marked coefficients are modeled by the notched power exponential distribution. The two
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hypotheses are stated as

H : s=5s"

yi=a (1+sm;), 1<i<N

where N is the number of (high-magnitude) coefficients that are watermarked. The distri-

bution under Hj is

L exp{— ui|? if y;| > 6
polys) =4 " { ° }
0 else
N
C i |P .
H exp{— L } if |y;| > 0 Vi
po(y) =19 1= "
0 else.

The distribution under H; is

_ 1 Yi
c Yi g ;
(1—k)(14+s*m;) eXp {_ a(l-l—s*mi)‘ } if |yl| > 0;

0 else

Yi
a (14 s*my)

N o ;
_ if 1y Vi
p(y) = 11 (1 — k)(1 + s*my) eXp if |yi| > 6; Vi

0 else
where C'is defined in (2.3), and 6; = §(1 + s*m;).
The likelihood ratio is given by

Due to the conditions in the definition of the two distributions, the likelihood ratio is also

defined conditionally as follows,
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[ 1 Yi o) : .
HTS*mZ P{— a(l+sm) o } if (Jyi| > 0; Vi) and (|y;| > 0 Vi)
00 if (Jy;| > ¢; Vi) and
(Fi: |y;| <0 and m; = —1)
{ 0 if (3 : |y;| < 0; and m; = 1) and
(lys| > 6 Vi)
ﬁ%exp{— L*ﬂ %ﬂ} else.
| o Lty a (14 s*m;) «
Thus the log-likelihood ratio is
InL(y) =
(N
; (m 1 +18m -l —iz—/is*mi) i % 6) if (|ys| > 6 Vi) and (Jg| > 6 Vi)
00 if (|y;| > 0; Vi) and
) (Fi: |y;| <0 and m; = —1)
—00 if (3i: |y;| < 0; and m; = 1) and
(lyi| > 6 i)
i (111 1 1* - Ui " ’ Yi ﬁ) else. (3.3)
| = +s'm; o (l+ s'my) a

These results are quite intuitive. In the first case, when the y; are in the appropriate ranges,

the statistic is the same as in the case of the power exponential. When one of the distribution

conditions is met but the other is not, one of the hypotheses is impossible, which is clearly

indicated by the presence of infinities in the statistic. Finally, when the range conditions fail

in both hypotheses (a zero-probability event), the regular statistic is again calculated.

Figure 3.1 illustrates the four regions present in the decision statistic. Note that

Regions 1 and 4 can occur for either m; = —1 or m; = 1, while Region 2 only occurs when

m; = —1, and Region 3 only occurs when m; = 1.
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Region 1 Region 1
(m,=1) (m=-1)
0 0
Yi Yi
(a) (b)
Region 2 Region 3
(m, = -1) Y EYi; (m=1) - p: (V)
— Po LY
0 0
Y i
(c) (d)
Region 4 Region 4
(mi =1) = P4 (y|) (mi =-1) P4 (y|)
— Po (V)

Figure 3.1 Four regions utilized in the likelihood ratio test statistic for the notched power

exponential distribution.
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3.2 Simple Detector for Notched Distributions

The likelihood ratio test detector developed for the notched power exponential distribution
reveals a key benefit resulting from the use of a notched distribution: it is sometimes possible
to decisively eliminate one of the two hypotheses simply by comparing the received data
samples to the notch thresholds. Using this idea, a simplified version of the likelihood ratio
test detector can be developed for any notched distribution. Consider the two hypotheses

presented to the LRT detector,

where N is the number of (high-magnitude) coefficients that are watermarked. As seen in
the previous development, a decision as to the presence of the watermark can be made with
certainty if a single data sample, y;, is found to lie either in Region 2 or 3, as shown in Figure
3.1 (c) and (d). Now, define & and &; to be the events that either of these cases occurs.
More formally,

Ey={y:0; < |yi|l <0 and m; = —1 for some i}

and

E ={y:0 <y < 0; and m; =1 for some i}.

Now, the probability that £; occurs under Hy is found,

= 1 ][] Pollwsl > 6(1 + s7)]
=1

N
2

= 1—(2P(-46(1+s")))

where Py(z) = [7_ po(x)dz is the cumulative density function of py(x). Note that in the

product, only % terms are included because &3 only deals with m; = 1. Now, since for a
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notched distribution, Py(—d) = 3, and since —4(1 + s*) < —4, it is clear that 0 < Py(6(1 +
s*)) < 5. Thus, 0 < 2Py(—0(1+ %)) < 1, implying that (2Py(—0(1 +5%))) 2 approaches 0 as
N approaches infinity. Consequently, Py[E3] approaches 1 as N approaches infinity. In other
words, if no watermark is present, the probability of a data point falling in Region 3 goes to

1 as N goes to infinity.
Similarly, the probability that £ occurs under H; is found as

Pi&] = Pi[Fi:0; <lyi| < 9]
%
= 1—]] Bllyil > 9]
=1
N
= 1- @R (o)}
where P (z f p1(2)dz is the cumulative density function of p; (). Once again, only %
terms have been included in the product because & can only occur when m; = —1. By an

argument similar to that given above, (2P1(—(5))% approaches 0 as N approaches infinity.
Hence, P;[&;] approaches 1 as N approaches infinity. In other words, if a watermark is
present, the probability of a data point lying in Region 2 goes to 1 as [NV goes to infinity.

With this knowledge of the asymptotic behavior of y, a simple detector (SD) can be
designed. Using the same four regions defined for the LRT detector, the simple detector is
given by

D(y) =
[ choose H, with probability A, if (|y;| > 0; Vi) and (|y;| > 0 Vi)
H, with probability 1 — A
choose H; if (Jy;| > 6; Vi) and
(Fi : |y;| <6 and m; = —1)
choose H, if (3 : |y;| < 0; and m; = 1)
and (|y;| > ¢ Vi)
choose Hy with probability A, else

(3.4)
H, with probability 1 — A

\

where )\ is a parameter that permits preference to be given to a specific hypothesis in the case

of Regions 1 and 4. From the above derivation, it is known that, asymptotically, the middle
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two cases in the decision statistic will occur with certainty. Hence, this simple detector
is equivalent to the optimal LRT detector for notched distributions, as N goes to infinity.
Finally, it should be noted that a definite yes or no decision is produced by the detector in

each of the possible cases.

3.3 Maximum Likelihood Estimation

The previous detector employed binary hypothesis testing using a likelihood ratio to deter-
mine, for a known embedding strength, s, the likelihood that a specific watermark is present
in a signal. Another method of watermark detection is to estimate the embedding strength
given the signal data [4]. This estimate will indicate the strength of presence of a specific
watermark in a set of data. Then, the estimate is used as the decision statistic in a binary
hypothesis test to determine the presence of the watermark. However, it should be noted
that this use of hypothesis testing is suboptimal because a likelihood ratio test is the optimal
binary hypothesis test.

The assumption of an unknown embedding strength that is made in the derivation of
this detector is often motivated as a simple means of combating an attack on the watermarked
data. Although the actual embedding strength is known, an attack can be modeled, in a
simplistic sense, as a change in this parameter. Then, the strength is no longer known
at the detector and, thus, must be estimated. This approach is not an optimal means of
incorporating an attack and, hence, results in a suboptimal detector. However, this detector
has been fairly widely studied and facilitates interesting comparisons with the likelihood
ratio test detector.

To develop the estimation detector, the technique utilized to perform the estimation
given the signal data is first defined. As the name suggests, maximum likelihood estimation
is a means of estimating the most likely value for a parameter on the basis of knowledge
of the distribution of the data given this parameter. Thus, the detector should estimate a
value for s knowing the distribution of y given s, ps(y). The maximum likelihood estimate
is given by

§ = argmax p,(y).
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To proceed, the function ps(y) is maximized over s to find the MLE. The resultant maxi-
mizing value for s will be the maximum likelihood estimate, 5.

Now, a binary hypothesis test is employed to provide an answer stating whether or
not the watermark is present. The decision statistic, §, is compared against a threshold, 7,
and the watermark is declared to be present if § > 7. Otherwise, the detector states that
no watermark is present. To select 7, the distribution of the output statistic (MLE) can be
determined and then, for example, a Neyman-Pearson constraint on the probability of false
alarm could be used to solve for 7. In any case, 7 should be between 0 and 1 because it
represents a cutoff in the embedding strength, which is known to be between 0 and 1.

In summary, the maximum likelihood estimation-based detector computes the MLE
for s on the basis of the data vector, yielding a measure of the strength of presence of the
specific watermark. This output is then compared against a threshold to determine a yes or

no answer for the presence of the watermark.

3.3.1 Weibull distribution

The first distribution considered for the maximum likelihood estimation detector is the
Weibull distribution [4]. From the likelihood ratio test section, the required distribution

of y given s is found to be

N

ps(y) = E a(l fsmi) (a(1 _?iismi)yl exp {_ <W>ﬁ}

N _
_ B 1 v\l i ’
afN & (1+ smy) \ 1+ smy P a(l + sm;) '

Now, the natural logarithm of this distribution is found to simplify calculations,

N T B-1 , B
i) = w3 o (205 ) - (Gt |

i=1 L

N : A
= NlnB—BNlna+; (ﬁ—l)lnyi—ﬂln(lJrsmi)—(m) ]

To maximize this expression, its derivative is set to 0 and then solved for §, the maximizing

value of s; hence,

O0lnps(y)
J0s

29



ﬁmz y;B ﬁmz
1+ smZ B \ (14 5m)f+ ) |-

Since s is small, the approximation of a first-order Taylor series is used, yielding

al A 5"%3/? a
0 = Z fm;(1 — §my;) + B (1—(B+1)smy)

-
Il
_

N " 522
— Z —ﬂmi+ﬁ§m?+ﬂzgyl —(B+1) <”BSZ;%>]

(00 (559)1
ﬂmiy;g
;[ﬁmi_ b ]
pmiy;
;[ﬂmf—(ﬁﬂ)( )
N
i=1

N
B+1)Y v — No’
=1

-
Il
_

] =
=
K
ey
o3
w2
S
| I
|
hE

-
Il
—

VAN
Il

N

where it was noted that m; € {—1,1} so m? = 1, and that Zml = 0 because m; is a
i=1
zero-mean sequence. Thus, the MLE for s is given by

N
Z yiﬁmi
i=1

L .
(B+1)) y/ — No
=1

(3.5)

VAN
I

Hence, an expression for the estimated embedding strength of the given watermark
has been found. The detector can now compare this value against an appropriate threshold,
for example, one based on a Neyman-Pearson constraint, to decide whether or not the specific

watermark is present in the data.

3.3.2 Power exponential distribution

As expected, the derivation of the maximum likelihood estimation-based detector for the

case of power exponentially distributed data is quite similar to that for Weibull distributed

30



data. Again, the maximum likelihood estimate of s is given by

§ = argmax ps(y)
S

where p;(y) is the distribution of the data, y, given the strength parameter, s. From the like-

lihood ratio test section for the power exponential distribution, this conditional distribution

N C B
ps(y) :H]_—|-3mz exp — .
i=1

This function is now maximized over s to find the MLE, noting again that it is

is

Yi
a (14 sm;)

equivalent to maximize In p,(y) because In(z) is an increasing function:

N N B
Yi

i=1 i=1 !

N N Ui 3 1

i=1 i=1 !

The derivative of this expression is now set to 0 and solved for §, the maximizing value of s:

o - nn(y)
s s=8§
N N
= St Y
—~1+45m; = lal (14 8m)Ptt

Since s is small, the approximation of a first-order Taylor series is again used, yielding

N -

[ vi |P yi|®

= Z —my + §m? + Bm; - — Bm; - (ﬁ—i—l)émi]
i=1 L
[ yi |P yi |

= D [5+Bmi| S| -8 ([3+1)§]
i=1 L
T yi |P Yi |P .

= > Bmi |~ +<1_ﬁ5 (ﬁ—i—l))s]
i=1 L

%6(ﬂ+1)—1>§
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N
B
> Bm; |2
. i=1
S =
Y
> (o]%] ¢+v-1)
i=1
N
Z |yi|ﬂmz
_ i=1
N
Na
B+l - X
i=1
N
where it is noted that m; € {—1,1} so m? = 1, and that Zmi = 0 because m; is a
i=1

zero-mean sequence. Thus, the MLE for s is given by

N
Z |yi|’8mz’
i=1

(3.6)

As in the case of the Weibull distribution, Neyman-Pearson constraints can be utilized
to provide a binary detection response based on the estimate.

Similar to the likelihood ratio test, the MLE statistic for the power exponential dis-
tribution bears resemblance to that for the Weibull distribution, Equation (3.5). The major
difference is the presence of absolute values in the power exponential case, reflecting its

inclusion of both positive and negative valued data.

3.3.3 Notched power exponential distribution

The maximum likelihood estimate is now determined for the case of the notched power
exponential distribution. From the likelihood ratio testing section, the distribution of the

output data y given s for this distribution is

a C T
ps(y) = g(l—m)(1+smi) i [ Py — if |y;| > 0; Vi
0 else .

To find the MLE, this distribution should be maximized over the parameter s. However, since
the distribution is defined over two ranges where the boundary is a function of s (because

d; = d(1 + sm;)), the maximization problem becomes more complicated.
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To maximize ps(y), the maximizing value of s, §, must ensure that |y;| > ¢; Vi. This
requirement will present a restriction on the range of possible values for 5. The data y is
split into two groups depending on the value of m;. Let ZT denote the set of indices for

which m; = 1 and let Z~= denote the set of indices for which m; = —1. Then,

lyi| > 6, =6(1+38) VieZ"

§ < % -1 VieI"
min|yi|
N i€t
< ~1
y 5

which provides an upper bound on s. Similarly,

lyil > 6, =0(1—38) Viel

5 > 1-— % Viel
min [y;|
i€T-

J

~

s > 1-—

which provides a lower bound on 5. Combining these restrictions with the known range of

embedding strengths yields an overall bound of

min |y;| min |y;| min |y;|
11— < §<min|1,%=E —1) if1—-%__ >0

F
mig |yil
0<§<min|1,%L — 1] else.

)

Let this range of acceptable § values be denoted by &. Therefore, the MLE is given by

B
} . (3.7)

This expression can be solved numerically to yield the estimate of the embedding strength.

Yi
a (1 + sm;)

a C
s = argmaxg (1 — H)(l n smi) exp {_

seES

As before, the resulting estimate may now be compared against a threshold in the range [0,

1) to yield a binary output from the detector.

3.4 Locally Optimal Detector

The final detector considered makes use of the knowledge that s takes on small values. Thus,

a locally most powerful test is considered, as described by Poor [7]. This test finds a decision
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rule for the case when the data distributions under the two hypotheses are known to be quite
close together. To apply this type of test to the watermark detection problem, a composite
binary hypothesis test is formulated. A composite binary hypothesis test is one in which at
least one of the hypotheses includes a range of values for the variable in question. In this
case, hypothesis 0 states the embedding strength of the watermark in the data is sy, which
here will be taken to be 0, meaning no watermark is present. Hypothesis 1 states that the
watermark is present with some non-zero strength.

Then, the locally most powerful test is given by

argmax P},(D, so = 0)
D

subject to the constraint that Pp(D, sq) < p, where Pp is the probability of detection (the
probability of correctly detecting the watermark when it is present), Pp is the probability
of false alarm, and D is a decision rule. The locally optimal test can be formulated as a
modified likelihood ratio test in which p;(y) in the standard ratio is replaced by psly)

Os o
$=80

This modified likelihood ratio will yield a decision statistic. As seen previously, a
comparison threshold can be found by considering the distribution of the statistic, and
then applying a p-level Neyman-Pearson test, for example, to determine an appropriate
threshold, 7. Using this threshold, the detector can form a binary answer for the presence
of the watermark.

In summary, the detector based upon a locally optimal test is applied by computing
a decision statistic, based on a modified likelihood ratio, which indicates the strength of
presence of the specific watermark in the data. The statistic can then be compared against

a threshold to yield a binary output.

3.4.1 Weibull distribution

The locally optimal detector is first developed for the situation when the host data is modeled
by the Weibull distribution. Here, the two hypotheses are given by
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H1 1 s>0
yi=x; (1+sm;), 1<i<N.

The locally most powerful test can now be formulated as a modified likelihood ratio test.

Ops (Y)
0s

is required:
$=80

BN Fr oy Yi ’
ps(y) = 5N (1+sz) exp —<m>
Ips(y) BV & —By;mi o _( Yi )6
ds alN =\ | (1 + sm;)? P a(l+ smy)
L_im eXp{_( v )ﬂ} v ]
aB(1 + sm;)B+t a(l+ smy) (14 sm;)?
N yo! ”: 8
Y .
le_}# 1+8m] exp{ (a(1+smj)> })
ps(y) _py ~ 3 Yi\ P ylm; vi\?| p-1
2] - s ([ (- ) e - ()
N Yoy B
AL {-(49)))

j=1,5#i

Thus, the partial derivative

Now, recall that

w0 = S I1(2) e - ()}

Hence, the modified likelihood ratio is given by

Lly) = —=
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where, as in the development of the MLE, the fact that m is a zero-mean sequence has again
been used. A reasonable threshold against which to compare the output statistic may now
be determined in order to yield a binary detector response.

It is interesting to note the relation between this statistic and the commonly used
N

correlation detector [2], whose output is given by Z y;m;. Since the statistic given in Equa-

tion (3.8) has locally optimal properties, it is exple:clted that the detector based upon it will
have a lower probability of error than the standard correlation detector. This improvement
occurs because, for the locally optimal case, the separation of the distribution of the statistic
for when the watermark is present and when it is not present, is greater than in the basic

correlator case.

3.4.2 Power exponential distribution

In the case of the locally optimal detector for power exponentially distributed data [8], the

composite hypothesis test is formulated as follows:

H1 :s5>0

yi=a; (1 +sm;), 1<i<N.

Now, the partial derivative required in the modified likelihood ratio is given by

) = T[-C el
’ ST 1+sm P (1 + sm;)P
Ops(y) _ Olnp;(y)
Os = n) Os
N
) S S B/
o LA smy a(l + sm;)

& pm;
(1 + smy)Pt1 |-



Recalling

the modified likelihood ratio is given by

6PS(Y>
Lly) = — =
Y) = — 7~
po(y)
N N
B B
HC’eXp{— Yi }Z Yi Bm;
_ =l i=1
N
B
HC’exp{— % }
=1
3 N
= LS pm. (3.9)
i=1

Once again, a threshold can now be utilized so that the detector provides a yes or no response.

Again, a strong parallel is seen between this statistic and that for the Weibull distri-
bution under locally optimal detection, which is given in Equation (3.8). The only differences
between the two are the presence of the absolute value around the y; for the case of the power

exponential distribution and a scaling factor.

3.4.3 Notched power exponential distribution

The final distribution considered for the locally optimal detector is the notched power expo-

nential distribution. To begin, the composite hypothesis test is formulated as follows,

yi=x; (1+sm;), 1<i<N.

Here, the distribution of the output conditioned on the embedding strength is given by

al C T

B P — if |y;| > 0; Vi

ps(y) = 1} I—rm) (1 +sm) P |a(+sm) if |y;| > 6; Vi
0 else.
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To be able to perform the required derivative with respect to s, the condition |y;| > ¢; should
be written explicitly in terms of s. As in the case of maximum likelihood estimation, the
vector y is divided into two groups. Let Z" denote the set of indices for which m; = 1, and

let Z~ denote the set of indices for which m; = —1. Then,

lyi| > o(1+s) VieI"

% > 145 VieZIt
s < %—1 VieTIt
min|yi|
i€t
< — 1.

y 5

Similarly,

lyil > 0(1—s) VieZI™

% > 1—-s Viel
s > 1-'%” Viel
min [y;|
> 1-2
y 5

Combining these bounds and the known bound on s, [0, 1), provides the overall condition

min |y;| min |y;| min |y;|
1- % <s<min|1,5—-1) if1-E—>0
min |y;|
0 < s < min 1,%—1 else.

For simplicity, let this range on s be denoted by S. Note that if [|Z~|| > 1, then the first
case occurs with high probability. The conditional distribution can now be rewritten with

the ranges shown in terms of s:

N c , P

H exp § — S ifsesS
pS(Y) = i=1 (]‘ - Ii)(l + Smi) (6 (]_ + Smi)

0 else.

When the derivative of this function is used in the modified likelihood ratio test, it is eval-

uated at the point s = sy = 0. If 0 is not included in S, then the numerator of the ratio is

38



equal to 0. However, if 0 is included in &, the derivative is non-zero. Thus, the conditions

must be found for which the lower bound on S includes 0:
min |yz|
1 _ i€

)

min |y;| > 0.
€1~

IN
o

Only when this condition is met is the slope of p;(y) not equal to 0 at s = 0. More precisely,

the derivative is given by

Ips (y) ( )alnps(y)
0s |4y, ’ Os |y,
N N
¢ yi|? (L .
_ | Yi ' N>
= (Eu—n)e"p{ a }>(Za 5%) i min (i) = 9
0 else

where the fact that m is a zero-mean sequence is employed. Now, recall that

N
)

C { Y
[ e { -
izll—m Q

B
po(Y) =

0 else.

Thus, the modified likelihood ratio is given by

Ops (Y)
0s

)=

[ B~y 5 .
— i|"my if ;) > 6 and (ly;| >0V
aﬂ;hﬂ m; i g}{lﬂy ) and (|y;| > d Vi)

_ i min (Jyl) > 6 and (3 ¢ |yl < )
0 if Z121:}1_1(|yl|) < 0 and (|y;| > 9 Vi)
| o© if Z121:}1_1(|yl|) < 0 and (i : |y;| <9)
[ 8

=

N
> lyilPmy it min (Jyi]) > 6 and (|y;| > & Vi)
= % « =1 €L

00 if m%n(|yl|) < 0 and (i : |y;| <9)
1eL™

(3.10)

\

where the final reduction can be performed because the inner two cases can never occur. Once
again, the result of the likelihood ratio can be compared against a threshold to produce a

binary answer as to the presence of the watermark in the given data.
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Although this modified likelihood ratio test does not take on the same form as the
ratio for the LRT of the same distribution, conditions still exist for which the statistic will
attain infinite values. In these instances, the presence of the watermark is clear and is
reflected as such in the statistic. Thus, it is expected that the performance of the detector

will be enhanced by the presence of the possible infinities.
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CHAPTER 4
CHERNOFF BOUNDS

Simple binary hypothesis testing using a likelihood ratio test forms a conceptually simple
statistical detector. However, the computation of such decision statistics can often be quite
complex. Thus, bounds on the performance indicators Pp and Py are desired. The approach
taken here is to consider Chernoff bounds [7], which are large-deviation bounds. The bound
provided for Pr is an upper bound, while the bound provided for Pp is a lower bound. Hence,
the bound on a receiver operating characteristic (ROC) curve (Pp vs. Pr) is also a lower
bound. Therefore, Chernoff bounds provide an indication of the worst-case performance
of a detector using binary hypothesis testing with a likelihood ratio test. In this chapter,
Chernoff bounds are formulated for the general case of multiplicative watermarking, and then
specialized to the likelihood ratio test detectors based on the Weibull, power exponential,

and notched power exponential distributions.

4.1 Chernoff Bounds for Multiplicative Watermarking

As noted in the development of the various likelihood ratio test detectors, when multiplicative
watermarking is employed to insert a watermark into a set of host data, the distribution of
each element of the output under H; is a scaled version of the corresponding distribution

under Hy:

P(y) = o [ 2
LA 1-|—s*mi0 14+ s*m; /)’
This property allows Chernoff bounds to be constructed in a general sense, and later spe-

cialized to individual distributions.
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To begin, the cumulant generating function of In L(y) under Hy, po(to), for ¢ty > 0, is
defined as [7]

po(to) =In [ 9 (y)pl ().
Using the above scaling property, the cumulant generating function can be rewritten entirely

in terms of py:
N
po(to) = 1n/Hp3t°(yi) <ﬁ>to Py (ﬁ) dy
i=1 ’ ’
N 1 to .
= 1H21;[1/p[1)t0(yi) <m> Py (#%) dy;
al 1
= ;lng <t0,p0,m>

where the function G(¢, f,z) = [ f*7'(y)z'f'(yz)dy is introduced to simplify notation. The

cumulant generating function under H; is similarly given for ¢; < 0 by
pa(ty) = polt+1)
al 1
= | t1+1 — .
I (.

With the cumulant generating functions defined, a bound on the probability of false

alarm can be written as [7]
PF S eXp{—to’)/ + Mo(to)}

where v is the decision threshold. Then, the Chernoff bound is defined as the bound resulting

from choosing a value, t§, which maximizes tyy — po(to):
Pr < exp{—tyy + po(tg) }-
Similarly, a bound on Py, and hence Pp, is given by

Py < exp{—tiv+m(t)}
1—Pp < exp{—tiy+ (1)}

PD Z 1—exp{—t17+u1(t1)}.

Finally, the Chernoff bound on Pj, is found by maximizing ¢,y — u1(¢;) over ¢y, yielding

Pp > 1 —exp{—t]y +u(t])}.
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These Chernoff bounds developed for multiplicative watermarking may now be spe-
cialized for the three modeling distributions simply by substituting the desired p, into the
function G defining the cumulant generating functions.

In addition to examining detector performance using Chernoff bounds on the Pp
and Pp curves, another related measure is often utilized. The Chernoff distance is defined as
D(t5) = —po(t)), and measures the degree of separation between the distributions of the log-
likelihood statistic under the two hypotheses. Thus, a higher Chernoff distance corresponds

to a stronger detector.

4.2 Weibull Distribution

The first Chernoff bound specialized for the Weibull distribution is one on the probability
of false alarm, Pp. Consider the cumulant generating function of In L(y) under Hy, po(to),

olto) = 1HHQ<to,po,%*ml>
W] ()7 0w )
eIl () () )
ool -0 (-0 ) o
Il () () )
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Note that for the integral to converge in (4.1), it is required that

to
—14+t)——— <0
T T emy?

1 (145*m;)P

But when m; = —1, W

< 0, so the bound ¢y > 0 suffices. However, the upper bound
holds for all 7 for which m; = 1. But, since only a single value of ¢, is selected, if m; =1 for

any ¢, then the upper bound must be included. Thus, the overall range restriction is given
by

0 <t <% ifdi:m; =1

0 <ty else.

Using the equation for u(ty) and the above bound, a bound on Pp is given by
Pr < exp {—toy + po(to)} -
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By maximizing tyy — po(to) numerically over the allowable range of ¢y, the tightest
bound on P can be achieved. The maximizing value of ¢, will be denoted by ¢j. Then, the

Chernoff bound on Py is given by

Pre < exp{=ty7 + po(ty) }

Similarly, a lower bound on the probability of miss (not detecting a watermark when
it is present), Py, and, hence, an upper bound on the probability of detect, Pp = 1 — Py,
can be found. Consider the cumulant generating function of In L(y) under Hy, p(t), for

t1 < 0:

pa(ty) = po(ty +1)
- Z {(B(t1 +1) = B)In(1 + s*m;)

+In[(1+s"m)’ — (G + D)1+ s m)’ + (4 +1)]}
= - Z {BtiIn(1+ s*m;) + In [(1 + s"m;)’ — (4 +1)(1 + s™my)° + (41 +1)] }.

Here the restriction on ¢; for convergence is given by

N
r >

—1.
miz—1 (L4 s*m;)f —1

But when m; =1, ((1+57m): — 1> 0, so the bound ¢; < 0 suffices. The lower bound holds

1+s*m;)P
for all ¢ for which m; = —1. But, since only one value of ¢; is chosen, the lower bound is
included if m; = —1 for any ¢. Thus the overall bounds on ¢, are given by

A 1< <0 i 3iim =1

t1 <0 else.

Then, a bound is given for the above restrictions by

Pp > 1—exp{-tiy+m(t)}-

In order to achieve the tightest bound, t;y — uy(¢;) is numerically maximized over t;

to find the maximizing value ¢]. Hence, the Chernoff bound is given by

Pp>1—exp{—tiv+ m(t])}.
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4.3 Power Exponential Distribution

Chernoff bounds are now developed for the case when the coefficients are modeled using the
power exponential distribution. First, an upper bound on the probability of false alarm, Pp,
is found. To begin, consider the cumulant generating function of In L(y) under Hy, po(to),

for ty > 0:
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Note that for the integral in the above expression to converge, the same restriction on ¢, as
present in the case of the Weibull distribution holds, namely,
to
—1+t)— ——= <0.
(1 + smy)P

This expression leads to the overall restrictions of

0<ty< Sy ifJiimi=1

0 <ty else.

Using the equation for 1(ty) and the above bound, a bound on Pp is given by

Pr < exp {—toy + po(to)} -

To achieve the tightest bound, tyy — po(tp) is maximized with respect to ¢,. By
performing this maximization numerically to find the maximizing value, ¢, the Chernoff

bound on Py can be written as
Pp <exp {—tgy + o (t5)} -

Now, using a similar construction, a lower bound on the probability of miss, P/,
and, hence, an upper bound on the probability of detect, Pp =1 — Py, is found. To begin,

consider the cumulant generating function of In L(y) under Hy, uy(t,), for t; < 0:

pi(t) = po(ty +1)

= - {% In ((1 + 5 my)’ — (h+ 1) (1+ s'my)? + (t + 1)) 1 In (14 s%m;)

Here the restriction on t; for convergence is also identical to that in the Weibull distribution

case, namely,

" (s’
r >

—1.
miz—1 (L4 s*m;)f —1

Hence, the overall bounds on ¢; are given by

Al 1<t <0 i 3iim =1

t1 <0 else.
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Thus, a bound is given for the above restrictions by

Py < exp{—tiy+m(t)}
1-Pp < exp{—tiy+m(t)}

PD Z 1—6Xp{-t1’)’+/fq(t1)}.

Again, wishing to obtain the tightest bound, ¢y — p(¢;) is numerically maximized with

respect to ¢; to find the maximizing value, ¢J. Then, the Chernoff bound on P is

Pp>1—exp{—tiv+ m(t])}.

4.4 Notched Power Exponential Distribution

Finally, the Chernoff bounds on the probability of false alarm and the probability of detect
are now found for the case of the notched power exponential distribution. To begin, an upper
bound on the probability of false alarm, P, is found. Consider the cumulant generating

function of In L(y) under Hy, pio(to), for to > 0, where §; = max(é;, 0):
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where T'(a,2z) = [ exp{—t}t*"'dt with a > 0, is the incomplete Gamma function. As
seen in the case of the power exponential distribution, ¢, must be bounded such that the
integral converges. The resulting bound is the same as that found in the case of the power
exponential, namely,

0<ty<gHSis ifJiimi=1

0 <ty else.

Using this equation for pg(to), a bound on Py is given by

Pr < exp {—toy + po(to)} -

To achieve the tightest bound, tyy — po(tp) is maximized with respect to ty. This
maximization is performed numerically to find the maximizing value, ¢;. Then, the Chernoff

bound on Py can be written as

Pre < exp{=to7 + po (t9)} -

Now, using a similar construction, a lower bound on the probability of miss, Py,

and hence an upper bound on the probability of detect, Pp = 1 — P, is found. To begin,
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consider the cumulant generating function of In L(y) under Hy, py(t;) for ¢; < 0:

pa(ty) = polty +1)

1 1
L (1 t1+1 t+1 <5
+inl (6’(&5 ab +a5(1+8*mi)5>5i>

1 t+1
_Eln (—tl + 7(1 T s*mi)ﬁ>] .

Again, restrictions on t; for convergence are present and are the same as in the case of the

power exponential,
e 1<t <0 i Jiim =1
t1 <0 else.

Thus, a bound is given by

Py < exp{—tiy+m(t)}
1-Pp < exp{—tiy+m(t)}

PD Z 1—exp{—t17+u1(t1)}.

Again, wishing to obtain the tightest bound, ¢;y — p; (1) is maximized with respect
to t;. By solving this equation numerically for the maximizing value, ¢}, the Chernoff bound

on Pp can be written as

Pp>1—exp{—tiv+ m(t])}.
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CHAPTER 5
THEORETICAL ANALYSIS

This chapter describes the analyzes and experiments performed in order to test the water-
mark detectors using synthetic data, and presents their results. First, the Chernoff bounds
on the likelihood ratio test detectors are presented to study the behavior of the detectors
over a range of watermark lengths. The performance of the simplified detector is then
derived and examined. Next, comments are made on the degree of difficulty experienced
by an eavesdropper attempting to detect the watermark. Finally, for a specific watermark
length, the performance of the detectors is evaluated through Monte Carlo simulation using
data synthesized according to the corresponding distributions. By comparing the Monte
Carlo simulation results for the likelihood ratio test detector with the Chernoff bounds, the

tightness of the bounds can be assessed.

5.1 Evaluation of Chernoff Bounds

In order to demonstrate the behavior of the derived Chernoff bounds, the bounds are calcu-
lated for each of the three distributions, averaging over 100 messages, for a range of message
sizes. The averaging is performed because of the dependence of the bound on the message,
m. This dependence diminishes as the length of the message increases because then the
number of instances of m; = 1 and of m; = —1 will each become closer to % However,
small message sizes are also included in the experiments, so multiple simulations are utilized
and averaged. The computed bounds may be used to evaluate detector performance without

the need for the large Monte Carlo simulations that are required for very high detection

probabilities and low false alarm probabilities.
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Figures 5.1 and 5.2 contain the Chernoff bound results for the Weibull and power ex-
ponential distributions, respectively. Figure 5.3 contains the bounds for the notched power
exponential distribution on a logarithmic scale. Some general comments can be made re-
garding the plots for all of the distributions. In the case of Pp vs. Threshold and Pp vs.
Threshold, the graphs demonstrate that as the number of watermark bits is increased, the
transition from high probabilities to low probabilities is spread out across a larger range
of thresholds. For the Pp vs. Pp graph, the curves approach the top left-hand corner as
the number of bits increases. This result is expected because the number of bits used for
the watermark is increased; hence, more data are present, making the watermark easier to
detect. Thus, higher detection probabilities are achieved for the same false alarm probabili-
ties. The latter plot demonstrates the bound on the receiver operating characteristic curve.
For the Weibull and power exponential distributions, many of the sequence lengths result
in bounds lying below the line P, = Pr. These bounds are trivial bounds because better
performance could be achieved simply by flipping a coin (yielding (Pp, Pr) = (0.5,0.5)),
by always choosing Hy ((Pp, Pr) = (0,0)), or by always choosing H, ((Pp, Pr) = (1,1)).
The logarithmic plots for the notched power exponential ROC curve are utilized because,
unlike the Weibull and power exponential bounds, the detection and false alarm probabilities
become extremely close to 1 and 0, respectively, as the number of bits is increased. Thus,
the log scale allows these precise values to be examined more explicitly. However, to plot
Pp more clearly in a log fashion, the affine transform Pp — 1 = —P), is used. Finally, the
curves for 128, 256, and 512 watermark bits are not present on the Pp or ROC graphs for the
notched power exponential case because their detection probabilities were identically equal
to 1 for the number of simulations performed.

The Chernoft distances are computed for each of the three coefficient modeling dis-
tributions, for the specific threshold of zero, and for watermark length of 32. The results are
given in Table 5.1 for embedding strengths of 0.05 and 0.10. Similar to the ROC curves, the
Chernoff distances demonstrate clearly higher performance by the notched power exponential

distribution over both the Weibull and power exponential distributions.
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Figure 5.1 Chernoff bounds on the WB
LRT detector (s* = 0.10).
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Table 5.1 Chernoff distances for the three modeling distributions using a threshold of zero.

Chernoff distance

Distribution
s*=10.05 | s* =0.10
Weibull 0.0120 0.0497
Power exponential 0.0111 0.0452
Notched power exponential | 5.0135 31.6715

5.2 Performance of the Simple Detector for Notched
Distributions

In the previous section, bounds were presented on the likelihood ratio test detector based on
the notched power exponential distribution. The performance of the related simple detector
(3.4) is now analyzed. First, exact expressions for the detection and false alarm probabilities
are derived. Then, error exponents are computed, indicating the rate of convergence of these
probabilities as message length increases.

To begin, Pp and Pg are considered for the SD for any notched distribution, and will
be later specialized to the notched power exponential. Using this detector, false alarms will

occur with probability 1 — A when the data fail to lie in Region 3 under H,. Mathematically,
= (1-\) (1 — 1+ (2P)(=5(1 + 57)))
= (1= ) 2Ry(=6(1+59)*

w2

)

(5.1)

Similarly, misses will occur with probability A when the data fail to lie in Region 2 under

H,. Thus,

Py = A1-P&)

vl

~ A (1 14 (2P1(=))
= A@2P(-6)*

)

PD - 1—PM

ol

= 1-AQ2P(=0))7. (5.2)
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For the case of the notched power exponential distribution,

[ —0(1+s%) o y |8 £l
Pr = (1-2X) 2/—00 = exp{—‘& }dy
- - . ¥
= (1-N)]2 A
s e (e
Performing the substitution w = (%)5 yields
[ 2C * a 14 H
Pr = (1- —wl—
/2 (1—-X) 1_,4;/(5(1+5*))B6Xp{ w}ﬂwﬂ dw]
20 1 5(1+s*)>5 N
— (1N | o ()
S [Ty (ﬂ( a
[ NONE
= (1-A) ! r<1,<5(1+8)>>
(1—#)D (%) B o
Similarly,
= y B >
P, = 1—-X|2 _
? A /_oo I-m ) eXp{ a(l =) }dy]
i C o y g 2
= 1—-X|2 — | — d
(1_@(1_3*)/5 e"p{ (a(l—s*>> } y]
B
Performing the substitution w = (ﬁ) yields
[ 2C /°° a(l —s*) 1, H
P, = 1-A expl—w}————=w? dw
b T—mi—s) S 5
i o B\1>
_ 1y 2Ca(1 — s*) r l)( J >
T—ni=sp 7 \ai=s) )|
1 1 5 N7
() )
_ (1—&)F(%) B \a(l - s*)

These expressions facilitate the computation of detection and false alarm probabil-

ities for the simplified detector. However, the resulting equations are rather complex and
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produce values for Pp and Pp that are extremely close to 1 and 0, respectively, which makes
comparisons difficult. Thus, error exponents for these probabilities are now found.
To give meaning to the use of error exponents, it is first noted that the expressions

for Pp and Pp (Equations (5.1) and (5.2)) can be rewritten as

Pr = (1—=MX)exp {g In (2P (—6(1 + s*)))}

and

Pp = 1—exp {gln (2P1(—6))} .

From these equations, it is clear that the error probabilities Pr and Py; = 1 — Pp behave
as decaying exponentials. Error exponents provide an indication of the rate of convergence
as N approaches co, with a higher value corresponding to a faster convergence. The error
exponent indicating the rate of convergence of Pr to 0 is given by

1
Ep = — lim NlnPF

F
N—00

= — lim %m [(1 — A) exp {g In (2Py(—0(1 + S*)))H

N—00

=t [0+ bR+ )

N—00

— _% In (2Py(—6(1 + 5*)))

while the error exponent corresponding to the rate of convergence of Pp to 1 is given by

1
EPD = —]\}IE)%ONIH(]_—PD)
.1 N
= —]\}gr;oﬁln {)\exp {Eln (2P1(—(5))H

— _ lim [% A+ =l (2P1(—5))]

N—0 2

- —%m (2P (-5)).

It is interesting to note that the error exponents do not depend on the randomization prob-

ability, A.
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To specialize these expressions to the notched power exponential distribution, the

appropriate cumulative density functions are inserted, yielding

_ 1 1 1 (6(1+5\’
Ere = 2l (l—m)F(%) F(W( a ))

and

1 1 1 5 g
Bro = =5 a—nr(2) F(E(m))

For a given set of parameters, the expressions for the error exponents can be evaluated
numerically. Using the parameter values a = 0.1700, § = 1.1, 6 = 0.7760, and s* = 0.10,
the resulting error exponents are

Ep, =0.2978

and

Ep, = 0.3310.

Note that the error exponents for Pr and Pp are of similar values, indicating that Pg
approaches 0 at approximately the same rate that P, approaches 1. The simplified detector
can be compared against the LRT notched power exponential detector, whose error exponent
(for Pg) is related to the Chernoff distance. Under the assumption of a message with an
equal number of elements having —1 and +1 values, the Chernoff distance (derived in Section
4.4) can be written in terms of two constants, K and K, which are equal to the summand
in (4.2) with m; = 1 and m; = —1 substituted, respectively,

D(t3) = g (KT +K7).

Then, since the Chernoff bound using ¢} is tight in the exponent, the error exponent for Pp

is given by

i 1
Ep. = — lim NlnPF

F
N—00

= — A}Lnéo I lnexp {—t5y — D(t;)}

= — lim — (~ty— D(t}))

N—00
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g P

N—o00
N
= 2(K +K7).

Thus, the error exponent is found by calculating the Chernoff distance and dividing by the
length of the message used in its computation. This distance is given for the NPE using
N = 32 in Table 5.1, yielding an error exponent of Ep, = 0.9897. The NPE value is higher
than that for the SD, thereby quantifying the performance decrease resulting from the use of
the simplified detector. However, the corresponding error exponents for the LRT detectors
for the Weibull and power exponential distributions (0.0016 and 0.0014, respectively) are
lower than that for the SD, demonstrating a strong performance by the simple detector,

despite its simplicity.

5.3 An Eavesdropper’s Detection Problem

Previously, Chernoff distances were employed to evaluate the difficulty of the detection prob-
lem for various modeling distributions. Another problem worthy of study is the relative
difficulty of the image watermarking detection problem as seen by the detector compared to
that seen by an eavesdropper. The goal of the eavesdropper is to detect whether a message
is present in an image without knowledge of the candidate region, C.

When an eavesdropper obtains an image, two hypothesis are possible: Hy, which
states the message is not present; and H;, which states that the message is present. Under
Hy, the distribution of the output, py, is simply given by a power exponential. However,
since the eavesdropper does not know the candidate set, the distribution under Hy, py, is
unknown. Thus, the eavesdropper would assume a mixture distribution, p;. To formulate

this distribution, a number of addition probability distributions are first defined:

po : unmarked power exponential
y |8
poly) = CeXp{—‘—‘ }
Q
p2 : unmarked bandpass power exponential
o {- (4"} iflyl <o
pa(y) =
0 else
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ps : unmarked notched power exponential

&exp{— ‘%‘6} if ly| > ¢

psly) =
0 else
ps @ positively marked notched power exponential
1 y
+ _
i = e (1)
p, : negatively marked notched power exponential
~(y) = 1 y
Pl = 7P 1 s
P4 : mixture watermarked notched power exponential
. 1 _
Paly) = 5 [pi +pi]

2
Note that in defining the mixture distributions, the assumption that the message is dis-
tributed as an iid binary sequence is employed. If a different distribution were to be present
(for example if error correcting codes were utilized), then the mixtures need be adjusted
accordingly. Using these distributions, the distribution of the output data as seen by the

eavesdropper under H; is given by
P =v(l — K)py +vEp: + (1 — v)py.
Assuming that the data are iid, the Chernoff distance between the distributions under H,
and H,; as seen by the eavesdropper is given by
D(t5,po,p1) = MD(tg, po, (1 — K)pa + vips + (1 — v)po). (5.3)

The situation is different for the actual detector, who has knowledge of the candidate
set. Thus, for each coefficient, the detector knows which pair of distributions to consider for

the two hypotheses. Hence, the Chernoff distance as seen by the detector is given by
. 1 . 1 . _
Dltsmap) = Mot =) (3 ) Do) + Ml =) (3) Dlpmrs)
+MvED(t5, po, p2) + M (1 — v)D(t§, po, Po)
1 . 1 . _
= Mv(l — k) <§> D(t§,po,py) + Mv(1 — k) <§> D(tg, po, Py )
—i—MVK;D(tS,pO,pQ). (54)

A comparison may now be made between the Chernoff distances, (5.3) and (5.4), seen

by the eavesdropper and the detector, to provide insight into the relative difficulty of the
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detection problems. With the above formulations and by the concavity of Chernoff distance,
it is clear that
D(tg, po, p1) > D(tg, po, 1)

Thus, as is to be expected, the Chernoff distance seen by the detector is larger than that
seen by an eavesdropper. Hence, the detection problem is more difficult for the eavesdropper
than for the detector.

To quantify this effect, the Chernoff distances are evaluated over the range of possible
v values using the parameters o = 0.17, § = 1.1, § = 0.7760, and s* = 0.10. Note that when
v = 0, the candidate set has size zero; while when v = 1, the candidate set consists of the
entire M coefficients. The resulting Chernoff distance curves are given in Figure 5.4. These
curves illustrate that the detector observes a significantly larger Chernoff distance than the

eavesdropper and, hence, will be better able to detect the message.

Chernoff Distance for an Eavesdropper vs. Candidate Region Size Chernoff Distance for the Detector vs. Candidate Region Size
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Figure 5.4 Chernoff distances as seen by (a) an eavesdropper and (b) the detector as a
function of v.

5.4 Monte Carlo Simulations Using Synthetic Data

To begin testing the Weibull, power exponential, and notched power exponential detectors,
data are generated as previously discussed according to each of the three distributions. More

specifically, 5122 = 262 144 coefficients are generated for each distribution to model image
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transform coefficients. The Weibull data utilize parameters of o = 0.4437 and $ = 1.1, while
the power and notched power exponential use the parameter values of o = 0.1700, 8 = 1.1,
d = 0.7760, and £ = 0.9961 (approximately 0.4% of the coefficients are watermarked), as
shown in Figure 5.5. The values selected for the distribution parameters reflect the estimated
parameters for the Lena image, as will be presented in the next chapter.

As discussed previously, multiplicative watermarking is used to insert the watermark.
Experiments are performed using the two embedding strengths of 0.05 and 0.10. These values
are selected to be quite small, so that the distortion introduced into the original coefficients is
minimal. Using these watermarked coefficients, the performance of the watermark detectors
for a given distribution can be determined. A Monte Carlo simulation for each distribution
is performed to analyze each of the three main detectors. The simulations are done over a
range of thresholds, with either 10 000 or 500 000 runs for each threshold (depending on the
required precision), where each run contains a new message. In each run, 32 coefficients are
watermarked, and different sets of coefficients are used for the different runs. A large number
of runs is utilized so that data can be gathered for an average message and coefficient set,
and so as to achieve a higher degree of precision in the probability values. From these data,
Pp and Pp curves can be plotted. For the simplified detector, a simulation utilizing 500
000 runs is performed for the case where the detector is specialized to the notched power
exponential distribution.

The choice of 32 watermark coefficients is motivated by considering the problem
of embedding a watermark within a small portion of an image. A typical image size is
512 x 512, hence, 32 is only a small fraction of the available coefficients. However, many
image coding techniques allow an image to be manipulated in smaller blocks. For example,
image transforms can be taken block-wise, and different levels of details may be stored for
each block. Thus, it is possible, and often desirable, to embed a watermark in only a reduced
region of the image. Furthermore, the small message length results in extremely minimal
distortion introduced by the watermarking process. Hence, the choice of 32 coefficients is

reasonable.
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Figure 5.5 Generated coefficients for the (a) Weibull distribution with o = 0.4437 and
f = 1.1, (b) power exponential distribution with e = 0.1700 and 5 = 1.1, and (c) notched
power exponential distribution with o = 0.1700, g = 1.1, § = 0.7760, and x = 0.9961.
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5.4.1 Simple likelihood ratio test

The first detector examined is that based on likelihood ratio testing. For each distribution,
three figures will be presented. The first will show the distribution of the test statistic
under each hypothesis for two embedding strengths, s* = 0.05 and s* = 0.10. Due to the
difficulty in computing these distributions analytically, the curves are found using Monte
Carlo simulations. The separation between the distributions under Hy and H; determines
detector performance.

The second and third figures will present estimates of Pp and Pr based on Monte
Carlo simulations, with the corresponding Chernoff bounds overlaid. One figure will contain
these results for an embedding strength of s* = 0.05, while the other is for the case when
s* = 0.10. In each of these figures, the Pp vs. Pg curves are the best performance indicators.
Ideally, these curves will be present in the top left of the graphs, demonstrating that high
detection probabilities result for low false alarm probabilities. Finally, since the Monte Carlo
results are plotted with the Chernoff bounds, it is observed that for the Pp vs. Threshold
and Pp vs. Pr plots, the Monte Carlo curves are necessarily above the Chernoff bounds,

while for the Pr vs. Threshold, the experimental curve is below the Chernoff bound.

5.4.1.1 Weibull distribution results

To evaluate the likelihood ratio test based-detector, the host coefficients are first modeled
using a Weibull distribution. Figure 5.6 shows the distribution of the test statistic, defined
by Equation (3.1), under the two hypotheses. From this figure, it is clear that the H, and
H, distributions are more separated when a higher embedding strength is employed.

Now, the performance of the detector is considered in terms of Pp and Pp curves.
Figures 5.7 and 5.8 each contain three plots showing the output of the Monte Carlo simulation
compared to the Chernoff bounds for embedding strengths of 0.05 and 0.10, respectively.
First, it is noted that the bounds are much tighter (closer to the simulation curve) for
extremely high and low probabilities of detection and false alarm. For example, when s* =
0.10 for the simulation point Pp = 0.8, the Chernoff bound is only approximately Pp =
0.2, while for P, = 0.99, the bound is closer to 0.97. It is in these regions of extreme

probabilities where Chernoff bounds most closely bound the performance. However, as
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Figure 5.6 Distribution of the test statistic for synthetic data using the WB distribution
and LRT with an embedding strength of (a) 0.05 and (b) 0.10.

seen in the previous chapter, the Chernoff bounds on the ROC curves do not convey any
information because they are below the trivial bound of Pp = Pp. Also, the curves depict a
small improvement gained by increasing the embedding strength. For an embedding strength
of 0.05, to obtain a detection probability of approximately 65%, the false alarm probability
is approximately 50%. Conversely, for an embedding strength of 0.10, this same detection
probability is achieved with a lower false alarm probability, just under 40%. Finally, these
figures demonstrate that the likelihood ratio test detector using the Weibull distribution

does not perform overly well, and is likely not suitable for practical applications.

5.4.1.2 Power exponential distribution results

The likelihood ratio test-based detector is now evaluated when the power exponential dis-
tribution is used to model the host coefficients. Figure 5.9 shows the distribution of the
test statistic, defined by Equation (3.2), under the two hypotheses. These results are similar
to those in the case of the Weibull distribution; the increased embedding strength causes
the two distributions to become further apart. Thus, an increase in performance is seen for

higher embedding strengths.
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Figure 5.7 Pp and Py curves for the WB
LRT for synthetic data (s* = 0.05).
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Figure 5.8 Pp and Py curves for the WB
LRT for synthetic data (s* = 0.10).
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Figure 5.9 Distribution of the test statistic for synthetic data using the PE distribution and
LRT with an embedding strength of (a) 0.05 and (b) 0.10.

Now, the Pp and Pp curves for the Monte Carlo simulations and their Chernoff
bounds are considered. Figures 5.10 and 5.11 each contain the three probability plots, the
first figure for an embedding strength of 0.05, and the second for 0.10. It can immediately be
seen that the power exponential results are almost identical to the Weibull results. In actual
fact, the Weibull results are just slightly better. Here, a detection probability of just under
65% is achieved at the cost of approximately a 50% false alarm probability for s* = 0.05. It
is again noted that the curves do indeed obey the Chernoff bounds (which are uninformative
in the ROC case), and that the bounds become tighter for probabilities near 0 and 1. Also,
an increase in performance is observed as the embedding strength is raised. However, it is
concluded that the high false alarm probabilities render this detector likely infeasible in a

practical sense.

5.4.1.3 Notched power exponential results

The final likelihood ratio test-based detector studied is that developed for the case when the
host data are modeled using the newly defined notched power exponential distribution. To
begin, the distribution of the decision statistic, defined by Equation (3.3), under each of the
two hypotheses is considered. Figure 5.12 gives these distributions for embedding strengths of

67



PD versus Threshold (32 WM Bits,3 = 1.1, s = 0.05)

—— Monte Carlo
1 — - Chernoff Bound

06

02r

(a)

PF versus Threshold (32 WM Bits,3 = 1.1, s = 0.05)

T T
—— Monte Carlo
1 — - Chernoff Bound
0.8
0.6
w
0.4
0.2
of
. . . . . . .
-2 -1.5 -1 -0.5 0.5 1 1.5 2

Threghold
(b)

PD versus PF (32 WM Bits, B = 1.1, s = 0.05)

—— Monte Carlo
qH= Chernoff Bound i

Figure 5.10 Pp and Pp curves for the PE
LRT for synthetic data (s* = 0.05).
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Figure 5.12 Distribution of the test statistic using for synthetic data the NPE distribution
and LRT with an embedding strength of (a) 0.05 and (b) 0.10.

0.05 and 0.10. Since it is difficult to represent the infinities that can be present in the decision
statistic for this distribution, the implementation of the detector uses £1 - 10% instead. In
performing this simplification, it is assumed that the noninfinite statistics will be much less
than this value, which appears to be quite valid for the simulations in question. From the
graphs, it is observed that for both embedding strengths, most of each distribution’s mass
lies at +00 or —oo. The congregation of the mass at these infinity points indicates that the
majority of times the decision statistic is evaluated, a definitive response is provided for the
presence or absence of the watermark (because one hypothesis is not possible). Furthermore,
these infinities result when at least one data point lies below the notch threshold, J; or the
distribution threshold, 9, yielding —oo and oo, respectively. For both hypotheses, the curves
possess much smaller amounts of mass around the origin. These sections represent the
noninfinite statistics in the Monte Carlo simulations, and the plots demonstrate that they
are quite diminished as the embedding strength increases. The decrease in mass of the
noninfinite statistics with increased embedding strength is caused by the larger strength
perturbing the data points greater distances. Thus, it is possible for more points to be
moved below the thresholds, making the infinite statistics more probable. From these plots

it is clear that the separation between the distributions under H, and H; is profound.
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With the favorable results shown in the distribution of the test statistic, the Monte
Carlo simulations and Chernoff bounds for the notched power exponential detector are now
considered. Figures 5.13 and 5.14 each contain the three plots used to evaluate detector
performance. First, it should be noted that, in the graphs, Pp only ranges from 0.99 to 1
and Pr only ranges from 0 to 0.01 because values outside these ranges do not occur in the
bounds or simulation. In order to more accurately represent these precise probabilities, 500
000 runs are utilized in generating the Pp and Pp curves. As expected, the experimental
probabilities satisfy the Chernoff bounds. Also, contrary to the Weibull and power exponen-
tial distributions, the notched power exponential distribution displays a significant increase
in performance as the embedding strength is increased; the range of Pp shrinks to approx-
imately [0.9995, 1], while that of P decreases to approximately [0, 0.0005]. The impact of
the reduced and shrinking ranges is reflected in the ROC curves, which are now much closer
to the top left corner, especially when s* = 0.10. For example, even for the small embedding
strength, a detection probability just over 99.8% incurs a false alarm probability of approx-
imately 0.3%; while for an embedding strength of s* = 0.10, a 99.98% detection is achieved
with a 0% false alarm probability (to the degree of accuracy provided by the simulation
runs). This is an astonishing improvement in performance over the detectors where the host
coefficients are modeled using the Weibull or power exponential distributions. The major
contributing factor to this improvement is the presence of the ¢ and d; thresholds against
which the y; are compared. If even one y; value is below one threshold but not the other, one
hypothesis can be eliminated immediately. From the plots, it is seen that, even with as few
as 32 watermark bits, this situation occurs quite frequently. Thus, employing the notched
power exponential distribution to model the data yields a system that could quite easily be

used in practical situations.

5.4.2 Simple detector for notched distributions

The simple detector derived from the likelihood ratio test detector is now evaluated when
the notched power exponential distribution is employed. The behavior of the detector is
examined in terms of the number of times a hypothesis is selected with certainty versus the

number of times one is selected at random using the decision rule (3.4). Table 5.2 contains
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Figure 5.13 Pp and Pp curves for the

NPE LRT for synthetic data (s* = 0.05).
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Table 5.2 Simple detector output for synthetically generated data.

Situation Count

s*=10.05 | s* =0.10
Certain Hy under H 493 529 | 499 853
Certain H; under H, 0 0
Random selection under Hy 6471 147
Certain Hy under H; 0 0
Certain H; under H; 494 862 499 932
Random selection under H; 5138 68

these counts for the watermark embedding strengths of 0.05 and 0.10 using a value of A = %
For each embedding strength, 500 000 runs are performed first using data that have not
been watermarked (denoted “under Hy”), and then for watermarked data (denoted “under
H,”). From these data, it is clear that a decision is made with certainty for the majority of
the trials, with the percentage increasing with the embedding strength. Since the number of
times a decision is made randomly is small, the performance of the detector is expected to
be quite comparable to that of the likelihood ratio test detector for the NPE distribution.
The comparison between the simple detector and the likelihood ratio test detector is
made more explicit by considering the detection and false alarm probabilities over a range of
A values. The ROC curve produced by the simplified detector is overlaid with that resulting
from the LRT detector, as shown in Figure 5.15 for both embedding strengths. In both
subfigures, the axes have been reduced to reflect these precise probabilities. These plots
illustrate the lower performance attained by the simple detector by the presence of its ROC
curve to the lower right of the LRT ROC curve. However, the simple detector still performs

extremely well, demonstrating the benefit of the use of notched distributions.

5.4.3 Maximum likelihood estimation

The next detector considered is that based upon the technique of maximum likelihood esti-
mation. Because of the poor performance of the Weibull and power exponential distributions

for the likelihood ratio test detector, the MLE detectors based on these distributions are rel-
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Figure 5.15 ROC curves for the LRT and SD for the NPE distribution with synthetic data
using an embedding strength of (a) 0.05 and (b) 0.10.

egated to Appendix A. For the notched power exponential distribution, the three analytical
plot types used for the previous detector are again employed to examine detector perfor-
mance.

The distributions of the test statistics (estimates), defined by Equation (3.7), found
through Monte Carlo simulations are presented in Figure 5.16. Unlike the corresponding
figures found in the appendix for the Weibull and power exponential distributions, the sepa-
ration between the curves under Hy and H, is quite significant for the notched distribution.
Under hypothesis 1, a clear peak is visible at the true value of the embedding strength. The
degree of separation, which is due to this peak, becomes more pronounced as the embedding
strength is increased.

To facilitate further examination, curves of the P, and Pp statistics are given in
Figures 5.17 and 5.18. The first notable observation is the rapid decrease in detection prob-
ability as the threshold is raised above the actual embedding strength. This result is quite
intuitive because it is illogical to threshold a strength estimate using a value significantly
above the true strength. Next, by comparing the two figures, an increase in performance
is seen for higher embedding strengths, as is expected. For the low embedding strength, a

detection probability of approximately 98% can be obtained at the cost of a 5% false alarm
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Figure 5.16 Distribution of the test statistic using the NPE distribution and MLE with an
embedding strength of (a) 0.05 and (b) 0.10.

probability. While these statistics possibly still render this detector impractical in real-world
situations, they do represent a significant improvement over the Weibull and power exponen-
tial maximum likelihood estimators. However, the notched power exponential MLE detector
performs substantially worse than the likelihood ratio test detector for the same distribution,

whose ROC curves are presented in Figures 5.13 and 5.14.

5.4.4 Locally optimal detection

The final detector examined is the locally optimal detector. Once again, only the notched
power exponential distribution is considered in this section, while the Weibull and power
exponential detectors are analyzed in Appendix A. As before, three figures are presented
for the notched power exponential distribution detector in order to analyze the experimental
results.

The distributions of the test statistic, defined by Equation (3.10), as found through
Monte Carlo simulations, are given in Figure 5.19. These plots demonstrate once again the
large degree of separation that the notched power exponential detectors achieve. Nearly all
of the distribution mass under H; is located at the oo point (represented here by 1 - 10%),

while, under Hj, all the mass is clustered near the origin. An extremely small portion of the
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Figure 5.19 Distribution of the test statistic using the NPE distribution and LOD with an
embedding strength of (a) 0.05 and (b) 0.10.

H, curve is also located near the origin, indicating those trials for which noninfinite decision
statistics are found. When the two sub-figures are compared, the small portion of the H;
curve becomes imperceptible as the embedding strength is increased.

Figures 5.20 and 5.21 contain the Pp and Pp curves resulting from the Monte Carlo
simulations. Note that the axes have been limited so that Pp is shown in the range [0.99,
1]. The values taken on by the detection probability are all contained in this range for the
simulations. As before, 500 000 runs for each threshold are utilized to achieve a higher
degree of accuracy for these small probabilities. These plots clearly indicate that the use of
the notched power exponential to model the coefficients has again produced results superior
to the other two distributions, especially when the embedding strength is 0.10. For the low
embedding strength, this detector achieves approximately a 99.9% probability of detection for
approximately a 50% probability of false alarm. When the stronger embedding is considered,
the detector responds with approximately a 100% detection probability for a 50% false
alarm probability. These values reflect the separation seen in the distributions of the test
statistic. This separation is caused by the ease with which Hy can often be ruled out
simply by considering the data points. These results are just slight worse than those for the

corresponding likelihood ratio test detector, Figures 5.13 and 5.14. As a result, the use of
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Figure 5.20 Pp and Pp curves for the
NPE LOD for synthetic data (s* = 0.05).

Figure 5.21 Pp and Pp curves for the
NPE LOD for synthetic data (s* = 0.10).
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the notched power exponential with locally optimal detection would not likely be used in

real-world situations.

5.5 Summary of Simulation Results

This chapter has presented the results of simulations conducted on the various detector-
distribution pairs that are developed in this thesis. Each of the detectors was evaluated using
data generated synthetically according to the appropriate distribution. The data shown in
the previous figures and those in the appendix that examine the detectors in terms of their
probability of detection and false alarm are now summarized in Table 5.3. The probabilities
are shown in percentage form, rounded to the nearest whole number. Data points have been
selected from the curves in an attempt to facilitate comparison between the detectors and
distributions. More specifically, points have been chosen to demonstrate the value of Pg
that must be tolerated in order to achieve a Pp of approximately 98%. For the detectors
for which such a detection probability is not possible, the point corresponding to the highest

possible Pp value is included.

Table 5.3 Selected results for synthetically generated data.

Distribution Detector =0 © =040
Pp(%) | Pr(%) | Pp(%) | Pr(%)

Weibull LRT 98 96 98 93
Weibull MLE 58 50 67 49
Weibull LOD 98 95 98 92
Power exponential LRT 98 97 98 93
Power exponential MLE 58 50 66 49
Power exponential LOD 98 96 98 93
Notched power exponential LRT 99 0 100 0
Notched power exponential MLE 98 0 98 0
Notched power exponential LOD 99 0 100 0
Notched power exponential SD 99 0 100 0
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A number of general conclusions can be drawn from the data contained in the table.
The main observation to be made is the difference in performance between the detectors
using the newly developed notched power exponential distribution and those based on the
Weibull or power exponential distributions. The addition of the notch thresholds (¢ and ¢;)
in the NPE distribution provides additional information for detecting the watermark. By
comparing the data points to these thresholds, it is often possible to completely rule out
a hypothesis. Thus, the results agree with the intuitive conclusion that the notched power
exponential provides a superior means of modeling the coefficients selected for watermarking,
and thus yields superior results. To further illustrate the high quality of the notched power
exponential distribution, Figure 5.22 contains plots of the ROC curves resulting from the
LRT detector for each of the three modeling distributions. These plots are depicted on a
log scale using Pp — 1 to illustrate the small probabilities under the NPE distribution. As a
result, the notched power exponential distribution data appear rather jagged for the higher
embedding strength because of the finite number of simulations performed. Also, the Weibull
and power exponential curves lie so close together that it is difficult to discriminate between

them at this scale.

Py, - 1versus P, (32 WM Bits, = 1.1, s = 0.05) Py - 1versus P, (32 WM Bits, = 1.1,s = 0.10)
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Figure 5.22 ROC curves for the LRT using the WB, PE, and NPE for embedding strengths
of (a) 0.05 and (b) 0.10.
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It is also possible to compare solely the detectors developed in this thesis for a par-
ticular distribution. First, it is noted that the maximum likelihood estimation detectors
are often not capable of producing high detection probabilities, regardless of the false alarm
probability. This result is due to the fact that the detector is actually estimating the wa-
termark embedding strength. Thus, reasonable threshold values are restricted to the range
[0, 1). Therefore, the highest detection probability is that found using a threshold of 0,
which need not be close to 100%. The other generalization that can be made is that the
likelihood ratio test detector tends to perform better than the other three detectors. Also,
for the NPE distribution, the simple detector performs just slightly worse than its optimal
LRT counterpart. To highlight the performance difference between the detectors, Figure
5.23 contains plots of the resulting ROC curves for the notched power exponential distribu-
tion, for embedding strengths of 0.05 and 0.10. Note that a log scale has been utilized and,
hence, P, — 1 is plotted instead of Pp. The curves appear somewhat jagged in these plots,
in particular for the higher embedding strength because of the finite number of Monte Carlo
simulations performed. However, these graphs clearly demonstrate the superior performance

of the LRT detector and the poor performance of the MLE detector.
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Figure 5.23 ROC curves for the LRT, MLE, LOD, and SD using the NPE for embedding

strengths of (a) 0.05 and (b) 0.10.
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Combining these observations yields the overall conclusion that the likelihood ratio
test detector derived for coefficients modeled by the notched power exponential distribu-
tion is far better suited for watermark detection than the other detector-distribution pairs

considered in this thesis.

81



CHAPTER 6

IMAGE WATERMARKING
EXPERIMENTS

The previous chapter examined the detectors based on likelihood ratio testing, maximum
likelihood estimation, and locally optimal detection using data synthesized to follow the ap-
propriate distribution. Now, these detectors are applied to standard real-world test images to
ascertain how well they perform on coefficients that do not necessary follow the distributions

upon which they are based.

6.1 Implementation Details

The image watermarking experiments performed utilize the procedure described in Section
2.2. Asin the case of the synthetic data, 262 144 coefficients are used, but here the coefficients
are found by performing the discrete cosine transform of a 512 x 512 test image. For
simplicity, the fractional size of the candidate set, v, is taken to be 1, so that the entire set
of transform coefficients can be included in the watermarking process.

A fixed threshold of § = 0.7760 is employed, resulting in a value of N = 32 for the
test images considered. The other distribution parameters, o and [, must be estimated
because the true distribution of the coefficients is unknown. As described in Section 2.3,
these parameters can be found by considering the sample moments of the data. However,
during experimentation, it was found that the detectors yield better performance if the value
of the [ parameters is selected to be around 1, rather than calculated from the data. Thus,

for experimentation, a fixed value of § = 1.1 is utilized to improve performance without
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overly simplifying the decision statistics. Using this selected 3, a can then be estimated
from the sample moments.

With the details of the problem setup formalized, the performance of the detectors on
actual image data can now be analyzed. Because of the overwhelmingly superior performance
of the notched power exponential distribution with synthetic data, this chapter focuses only
on its use for modeling the image coefficients. However, the Weibull and power exponential
distributions are considered in Appendix B. For each detector type, a Monte Carlo simulation
is performed to analyze the performance in terms of detection and false alarm probabilities.
The simulations are performed over a range of thresholds, with either 10 000 or 40 000 runs
for each threshold (depending on the required precision), where a new message is generated

for each trial.

6.2 Watermarking Lena DCT Coefficients

To commence the study of the detectors using actual image data, coefficients are drawn from
the DCT of the Lena test image, which is shown in Figure 6.1. Histograms of the 262 144
DCT coefficients and those selected for watermarking are displayed in Figure 6.2. The graph
depicted for the 32 coeflicients is rather blocky due to the limited amount of data being
plotted.

The estimated values for the distribution parameters for the Lena coefficients are
calculated using a fixed value of § = 1.1, and are shown in Table 6.1 for all three of the

possible modeling distributions.

Table 6.1 Estimated distribution parameters for the Lena DCT coefficients (8 = 1.1).

Parameters
Distribution
Q 0 K
Weibull 0.4437 - -
Power exponential 0.1700 - -
Notched power exponential | 0.1700 | 0.7760 | 0.9961
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Figure 6.1 The Lena image.
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Figure 6.2 (a) DCT coefficients of the Lena image and (b) those coefficients selected for
watermarking.

84



6.2.1 Simple likelihood ratio test

The setup used to present the likelihood ratio test results for the Lena data is identical to
that for synthetic data: three figures are presented demonstrating the distribution of the test
statistic, and the detection and false alarm probabilities for embedding strengths of s* = 0.05
and s* = 0.10.

To begin, the distributions of the decision statistic for the notched power exponential,
as found through Monte Carlo simulations, are considered. Figure 6.3 gives these distribu-
tions for embedding strengths of 0.05 and 0.10. For the ease of viewing, the infinities present
in the decision statistic have again been represented by the values 41 - 10%. The graphs
demonstrate that most of the mass of the distribution lies at these infinite endpoints, with
a small amount near the origin. The small sections represent the non-infinite values of the
statistic and diminish as the embedding strength is increased. From these figures, it is clear

that there is an extreme degree of separation between the distributions under Hy and H;.
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(32 WM Bits, a = 0.2, B=1.1,5=0.8, k= 1.0, s = 0.05) (32 WM Bits, a = 0.2, B=1.1,5= 0.8, k= 1.0, s = 0.10)
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Figure 6.3 Distribution of the test statistic for the Lena image using the NPE distribution
and LRT with an embedding strength of (a) 0.05 and (b) 0.10.

At this point, the Pp and Pg curves are examined for the Monte Carlo simulations
on the Lena data. Figures 6.4 and 6.5 each contain the three plots of the detection and false
alarm probabilities. It should be noted that the curves are graphed on a reduced scale be-

cause of the small probability values. Pp is only plotted over the range of 0.9 to 1, while Pp is
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Figure 6.4 Pp and Pp curves for the NPE
LRT for Lena data (s* = 0.05).
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shown between 0 and 0.1. Values outside these ranges do not occur in the simulation results.
Since the resultant probabilities are quite small, the curves appear slightly jagged because
of the finite number of simulations performed. By comparing the plots in the two figures, it
is seen that, unlike with the Weibull and power exponential distributions considered in the
appendix (Figures B.2, B.3, B.5, and B.6), a significant increase in performance is achieved
by increasing the embedding strength. However, even at the low embedding strength, the
detector performs extremely well; a detection probability of approximately 98% is achievable
with a false alarm probability of only 2%. These favorable values are reflected in the ROC
curves, which are situated near the top left corner of a standard range plot. The plots clearly
indicate that using the notched power exponential distribution to model the coefficients of
the Lena image results in a powerful detector. The considerable performance gain with this
distribution over the Weibull and power exponential is attributed to the ability to eliminate
a hypothesis if a data point is found to lie below one of the notch thresholds, § or §;. It is
also expected, in an intuitive sense, that the notched distribution will achieve better results
than either the Weibull or power exponential distributions because only the largest magni-
tude coefficients are selected for watermarking. Thus, if the entire distribution of the DCT
coefficients is well modeled using a power exponential distribution, the notched distribution
should be the natural choice to model the few selected for watermarking. Consequently,
the results demonstrate that the likelihood ratio test detector based on the notched power
exponential distribution can quite conceivably be used in practical situations.

It is also interesting to compare these ROC curves with those presented when the
LRT detector is used with the notched power exponential on synthetic data (Figures 5.13
and 5.14). In the case of the synthetic data with s* = 0.05, for Pp values lying in the
range [0.99, 1], P values only occur between 0 and 0.01. These data represent a decreased
performance when the detector is utilized with the Lena coefficients. A similar drop is noticed
when s* = 0.10. These drops in performance indicate that the Lena DCT coefficients do not
follow a notched power exponential distribution exactly. However, the use of this distribution

to model that of the coefficients does indeed produce a detector of high quality.
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6.2.2 Simple detector for notched distributions

The simplified detector specialized to the notched power exponential distribution is now
considered for use in detecting a watermark in the Lena image. As in the case for synthetic
data, a table is employed to demonstrate the behavior of the detector for A = % Table 6.2
contains counts of the decisions produced by the rule (3.4) under each of the two hypotheses.
Although not as frequently as for synthetic data, a decision is made with certainty for the
majority of the 40 000 simulation trials. Thus, strong performance is expected from the

detector.

Table 6.2 Simple detector output for data from the Lena DCT coefficients.

Situation Count

s*=10.05 | s* =0.10
Certain Hy under H, 37 518 39 370
Certain H; under H, 0 0
Random selection under Hy 2480 630
Certain Hy under H; 0 0
Certain H; under H; 37 496 39 653
Random selection under H; 2504 347

To further the comparison between the simplified detector and the likelihood ratio
test detector, plots of the ROC curves for the LRT detector are shown in Figure 6.6 with
those for the simple detector overlaid. Note that the axes have been truncated in both
subfigures to more clearly illustrate the precise probability values. In both subfigures, the
simple detector curve lies to the lower right of the LRT ROC curve, indicating the decrease
in performance. However, the simplified detector still provides strong results for detecting a

watermark embedded in a test image.

6.2.3 Maximum likelihood estimation

Maximum likelihood estimation of the embedding strength, s, with the notched power ex-

ponential distribution is now considered for detecting a watermark that has been embedded
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Figure 6.6 ROC curves for the LRT and SD for the NPE distribution with Lena data using
an embedding strength of (a) 0.05 and (b) 0.10.

in the DCT coefficients of the Lena image. As with the other detectors, three figures are
presented for performance analysis.

The distributions of the test statistics resulting from 10 000 Monte Carlo simulations
are provided in Figure 6.7. Similar to the synthetic data case, the competing distributions
are well separated. For the case of H;, a clear peak is observed in the estimate around the
true strength value. The location of this peak is more pronounced and further separated
from the H, distribution when a higher embedded strength is employed.

The performance of the detector is now examined in the context of P and P curves.
These plots are shown in Figures 6.8 and 6.9 for embedding strengths of 0.05 and 0.10,
respectively. Once again, a sharp decrease in the probability of detection is observed as
the threshold is moved above the true embedding strength, as expected. By comparing the
ROC curves in the two figures, it is apparent that the detector performs better when a
higher embedding strength is utilized. However, even when the true strength is 0.05, the
detector achieves a 98% detection probability for a false alarm probability of approximately
50%. Although these results are not as strong as the corresponding likelihood ratio test
detector (Figures 6.4 and 6.5), they do represent a significant improvement over the MLE
detectors for Weibull and power exponential distributions (Figures B.8, B.9, B.11, and B.12) .
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Figure 6.7 Distribution of the test statistic for the Lena image using the NPE distribution
and MLE with an embedding strength of (a) 0.05 and (b) 0.10.

However, because of the stronger performance of the LRT detector, the maximum likelihood
estimation detector using the notched power exponential distribution does not likely yield
adequate robustness for use in practical applications.

The ROC curves resulting from the application of the MLE detector on actual water-
marked image coefficients are now compared with those for the synthetic data case, Figures
5.17 and 5.18. As expected, the ROC curve is more favorable for the synthetic data than the
Lena coefficients. However, the use of the notched power exponential distribution to model

the image transform coefficients still produces a reasonably accurate detector.

6.2.4 Locally optimal detection

The final detector examined for use in watermark detection for the Lena image coefficients
is that based on locally optimal detection. As before, three figures are presented to analyze
the performance of the locally optimal detector resulting from the use of the notched power
exponential distribution.

The distributions of the test statistic under each of the two hypotheses are given for
embedding strengths of 0.05 and 0.10 in Figure 6.10. From this figure, it is clear that most

of the distribution mass under H; lies at the endpoint oo, which is represented by 1-10® for
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the purpose of viewing, while under Hy, all of the mass is clustered near 0. A small portion
of the H; mass is located near the origin, indicating that non-infinite decision statistics do
indeed occur under this hypothesis. The probability of their occurrence, however, decreases
as the embedding strength is increased. On the basis of the given plots, strong performance
is expected from the detector because a large degree of separation is present between the

distributions under the two hypotheses.
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Figure 6.10 Distribution of the test statistic for the Lena image using the NPE distribution
and LOD with an embedding strength of (a) 0.05 and (b) 0.10.

The detector is now examined in terms of the Pp and Pr curves generated from
Monte Carlo simulations on the Lena data. Figures 6.11 and 6.12 each contain three plots
of the detection and false alarm probabilities. Since the values taken on by the detection
probability in the simulation are in a limited range, the axes are restricted to [0.9, 1].
Because of this increase in scale, the curves appear more jagged, which is an artifact of
the finite number of simulations performed and the use of a different random message for
each trial. When the two groups of plots are compared, it is clear that an improvement in
performance results from increasing the embedding strength. For the case when s* = 0.05,
the detector performs moderately, with a detection probability of approximately 98% yielding
a false alarm probability just over 50%. These statistics are significantly worse than those

for the corresponding likelihood ratio test detector; however, they represent a large gain
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over the locally optimal detectors based on the Weibull and power exponential distributions
(Figures B.14, B.15, B.17, and B.18). This result supports the intuitive belief that the
notched distribution should offer better performance because it more closely models the
coefficients chosen for watermarking. In a mathematical sense, the improvement is caused
by the ability to eliminate a hypothesis when a data element is found below one of the notch
thresholds. However, given the strong performance of the LRT detector, the locally optimal
detector based on the notched power exponential distribution does not yield results that
would support its use in a real-world application.

It is interesting to compare the data resulting from using the NPE locally optimal
detector on coefficients from the Lena image with those gathered when synthetic data is
utilized (Figures 5.20 and 5.21). As observed for both the likelihood ratio test and maximum
likelihood estimation detectors, a decrease in performance is present for the Lena image data.
This result indicates that the DCT coefficients of the Lena image do not follow the notched

power exponential distribution exactly.

6.3 Watermarking Peppers DCT Coefficients

In order to further test the developed detectors on actual image data, the experiments per-
formed for the Lena image are repeated using the Peppers image given in Figure 6.13. The
notched power exponential distribution detectors are considered in this chapter, while the
Weibull and power exponential distribution analyzes are presented in Appendix B. His-
tograms of the DCT coefficients of this image and the 32 selected for watermarking are
shown in Figure 6.14.

The values of the distribution parameters for all three modeling distributions are
estimated by using the moments of the sample data and assuming, as before, a value of
g = 1.1. The results are shown in Table 6.3.

Monte Carlo simulations are now performed for each detector to evaluate the perfor-
mance in terms of Pp and Pr. Each simulation considers a range of threshold values, with

40 000 runs for each threshold, where a new message is created for each run.
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Figure 6.13 The Peppers image.
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Figure 6.14 (a) DCT coefficients of the Peppers image and (b) those coefficients selected for
watermarking.
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Table 6.3 Estimated distribution parameters for the Peppers DCT coefficients (5 = 1.1).

Parameters
Distribution
« ) K
Weibull 0.4593 - -
Power exponential 0.1734 - -
Notched power exponential | 0.1734 | 0.7758 | 0.9956

6.3.1 Simple likelihood ratio test

The first detector examined for the Peppers image is that based on likelihood ratio testing
with the notched power exponential distribution. The results are again presented in the forms
of the distributions of the test statistic, and the Pp and Pg curves from the simulations.
First, Figure 6.15 presents the distributions of the test statistics under each hypothe-
sis. Once again the two distributions do indeed contain most of their mass at infinite values
(represented here by +1 - 10%), with only small amounts of mass near the origin. These
small peaks are reduced to near invisibility on the depicted scale for the higher embedding

strength.
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. (32WMBits,a=0.2,=1.1,5=08,k=1.0,s =0.05) (32 WM Bits, a = 0.2, B=1.1,5= 0.8, k= 1.0, s = 0.10)
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Figure 6.15 Distribution of the test statistic for the Peppers image using the NPE distribu-
tion and LRT with an embedding strength of (a) 0.05 and (b) 0.10.

96



The detection and false alarm probability results for the Monte Carlo simulations
on the Peppers data are given in Figures 6.16 and 6.17. Note that the plots are shown
on reduced scales because a limited range of probabilities occurs during the simulations.
Thus, the curves still remain somewhat jagged because of the randomness introduced by the
different message in each run and the finite number of runs performed. When the graphs in
the two figures are compared, a significant increase in performance is noticed for the higher
embedding strength. However, even when s* = 0.05, a detection probability of approximately
99.25% is achieved for a false alarm probability of approximately 1%. These rates increase to
an astonishing 99.99% detection with a 6 - 107%% probability of false alarm when s* = 0.10.
Thus, it is clear that the use of the likelihood ratio test detector with the notched power
exponential distribution offers great promise for use in real-world applications.

As in the case of the Lena image, a drop in performance is observed when the detector
is applied to the Peppers image coefficients as opposed to synthetic data (Figures 5.13 and
5.14). However, the size of this decrease is very similar to that for the Lena image, suggesting
that the performance is not highly dependent on the particular real-world image that is

watermarked.

6.3.2 Simple detector for notched distributions

The next detector examined for the Peppers image is the simple detector using the notched
power exponential distribution. Table 6.4 contains statistics on the output of the detector
under each of the two hypotheses using the derived decision rule (3.4) with A = % The values
contained are similar to those for the Lena image, with slightly more certain decisions. Thus,
slightly stronger performance than that for the Lena image is expected.

The simple detector is now compared against the likelihood ratio test detector. Figure
6.18 shows the ROC curve for the LRT detector with that for the simple detector overlaid.
Once again the axes have been reduced for each subfigure to highlight the small range of
probabilities. For both embedding strengths, the ROC curves for the SD lie to the lower
right of those for the LRT detector, demonstrating that a slight drop in performance results
from simplifying the detector. However, the derived detector still performs well when applied

to the Peppers image.
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P, versus Threshold (32 WM Bits, = 1.1, s" = 0.05) P, versus Threshold (32 WM Bits, = 1.1,s = 0.10)
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Figure 6.16 Pp and Pp curves for the Figure 6.17 Pp and Pp curves for the
NPE LRT for Peppers data (s* = 0.05). NPE LRT for Peppers data (s* = 0.10).
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Table 6.4 Simple detector output for data from the Peppers DCT coefficients.

Situation Count

s*=0.05 | s* =0.10
Certain Hy under H, 38 762 39 846
Certain H; under H, 0 0
Random selection under H, 1238 154
Certain Hy under H; 0 0
Certain H; under H; 38 736 39 906
Random selection under H; 1264 94
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6.3.3 Maximum likelihood estimation

The detector based upon maximum likelihood estimation and the notched power exponen-
tial distribution is evaluated on its ability to detect a watermark embedded into the DCT
coefficients of the Peppers image. Once again, three figures are presented to demonstrate
the results.

Figure 6.19 contains plots of the distributions of the estimates for two different em-
bedding strengths, found through 10 000 Monte Carlo simulations. As seen for the Lena
image, there is a clear separation between the distributions under Hy and H,, with H; ex-
hibiting strong peaks around the true values of the embedding strength, particularly for the

higher embedding strength.
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Figure 6.19 Distribution of the test statistic for the Peppers image using the NPE distribu-
tion and MLE with an embedding strength of (a) 0.05 and (b) 0.10.

In order to further study the detector, curves for the performance indicators Pp and
Pr are given in Figures 6.20 and 6.21. The typical expected result for MLE is found, where
the detection probability falls off dramatically as the threshold is increased above the actual
embedding strength. Through a comparison of the two figures, it is evident that increasing
the embedding strength contributes to the detector’s performance, as expected. For the lower
embedding strength, a detection probability of approximately 98% is achieved for a false
alarm probability of 50%. Although the use of the notched power exponential distribution
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Figure 6.20 Pp and Pp curves for the
NPE MLE for Peppers data (s* = 0.05).

Figure 6.21 Pp and Pp curves for the
NPE MLE for Peppers data (s* = 0.10).
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improves the maximum likelihood estimation detector substantially, the resulting detector
does not perform as well as the corresponding likelihood ratio test detector. Hence, it is
doubtful that this detector would be employed in real-world situations.

By comparing these results to those for synthetic data, Figures 5.17 and 5.18, a drop
in performance is observed. However, the magnitude of this decrease is comparable to that
observed for the Lena image, again suggesting the watermarking detectors are not highly

sensitive to the particular selection of the real-world image.

6.3.4 Locally optimal detection

To complete the study of the notched power exponential detectors when a watermark is
inserted into the Peppers image, locally optimal detection is considered. As before, the
experimental results are presented in the form of three figures.

The distributions of the test statistics under each hypothesis are shown in Figure 6.22.
In these plots, the infinite value that is possible for the statistic is represented by 1-10%. The
graphs demonstrate that all of the mass of the distribution under Hj is clustered near 0. On
the other hand, under H;, most of the mass is located at infinity, particularly for the high
embedding strength, where the non-infinite lobe near 0 is all but invisible. Thus, a strong
performance is expected from the detector.

Pp and Pp curves are now presented to complete the examination of the detector
in question. Figures 6.23 and 6.24 contain the necessary graphs for embedding strengths
of 0.05 and 0.10, respectively. The axes in the figures have been truncated such that Pp is
shown between [0.95, 1]. Values outside this area do not occur in the Monte Carlo simula-
tions performed. As a consequence of the increased scale, the curves appear rather jagged
because a finite number of simulations is performed, each using a different random message.
By comparing the curves for the two embedding strengths, a significant improvement is
observed for the higher case. However, even for s* = 0.05, a detection probability of approx-
imately 98% can be achieved with a false alarm probability of 10%. These figures improve
to approximately 99.95% and 0.44% for s* = 0.10. Thus, the detector offers a commanding
improvement over those for the Weibull and power exponential distributions given in the

appendix, but is slightly worse than the corresponding likelihood ratio test detector. As a
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Figure 6.22 Distribution of the test statistic for the Peppers image using the NPE distribu-
tion and LOD with an embedding strength of (a) 0.05 and (b) 0.10.

result, its utilization in practical applications is unlikely.

It is also interesting to compare the results from the Pepper image data to those for
synthetic data. As expected, the detector does not perform as well on the image data as
it does on the synthetic coefficients. However, the degree of the drop is quite similar to
that observed for the Lena image, which again supports the belief that the detectors are not

significantly impacted by the real-world image selected for watermarking.

6.4 Summary of Results

This chapter examined the four types of watermarking detectors based on the notched power
exponential distribution discussed in this thesis for use on real-world test images. The detec-
tion and false alarm probability results from these experiments, and those in the appendix
for the Weibull and power exponential distributions, are condensed into Tables 6.5 and 6.6
for the Lena and Peppers images, respectively. The probabilities are shown in percentage
form and are rounded to the nearest whole number. As with the summary for synthetic data,
the data points are selected to demonstrate the false alarm probability that must be incurred
in order to achieve a detection probability of approximately 98%. When this probability can

not be achieved, the highest Pp value is chosen.
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Figure 6.23 Pp and Pp curves for the Figure 6.24 Pp and Pp curves for the
NPE LOD for Peppers data (s* = 0.05). NPE LOD for Peppers data (s* = 0.10).
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Table 6.5 Selected results for data from the Lena DCT coefficients.

s* =0.05 s* =0.10
Distribution Detector
Pp(%) | Pe(%) | Pp(%) | Pr(%)

Weibull LRT 98 95 98 88
Weibull MLE 62 51 72 50
Weibull LOD 98 88 98 64
Power exponential LRT 98 95 98 91
Power exponential MLE 62 ol 72 50
Power exponential LOD 97 84 98 63
Notched power exponential LRT 98 2 99 0
Notched power exponential MLE 96 4 98 1
Notched power exponential LOD 98 61 100 1
Notched power exponential SD 97 3 100 1

Table 6.6 Selected results for data from the Peppers DCT coefficients.

s* =0.05 s* =0.10
Distribution Detector
Pp(%) | Pr(%) | Pp(%) | Pr(%)

Weibull LRT 98 95 98 87
Weibull MLE 61 49 71 50
Weibull LOD 98 88 98 63
Power exponential LRT 98 95 98 91
Power exponential MLE 61 50 72 50
Power exponential LOD 98 88 98 62
Notched power exponential LRT 98 0 100 0
Notched power exponential MLE 98 1 98 0
Notched power exponential LOD 98 1 100 0
Notched power exponential SD 99 2 100 0
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The conclusions that can be drawn from these tables in terms of the best performing
detector and distribution are the same as those stated for the synthetic data in Section
5.5. Namely, the likelihood ratio test detector based on the notched power exponential
distribution is clearly superior to the other detector-distribution pairs considered.

Comparisons can also be made between the experimental results gathered from the
test images and those found for the synthetic data, Table 5.3. In general, a decrease in
performance is observed when the detectors are applied to actual image DCT coefficients.
This result is expected because, here, the distributions are simply being used to model the
distribution of the transform coefficients, which are not necessarily distributed according to
the studied distributions. However, the performance drop is observed for both the Lena and
Peppers test images, and is of approximately the same amount: generally a 1% - 2% increase
in Pr for the same Pp for the notched power exponential distribution. Thus, the detectors

appear to be fairly robust to the image selected for watermarking.

106



CHAPTER 7

IMAGE WATERMARKING
EXPERIMENTS WITH ATTACKS

The previous chapter examined the performance of the developed detectors for use in de-
tecting a watermark embedded into a real-world test image. The results demonstrated that
the likelihood ratio test detector coupled with the notched power exponential distribution
yields the most promising means of watermark detection. This chapter again considers the
detection of a watermark in a natural image; however, an attack is now included in the sys-
tem. Because of its strong performance, only the LRT detector is evaluated, and the notched
power exponential distribution is compared with the power exponential distribution. It is
important to note that the development of these detectors did not include a model of an
attack; hence, they are no longer optimal. However, the behavior of the detectors in the
presence of an attack remains worthy of study. This chapter discusses the types of attacks
introduced and then presents the results when they are applied to a watermarked version of

the Lena test image.

7.1 Attack Types

Two attack methods are considered for application on an image in an attempt to reduce a
detector’s ability to accurately determine the presence of a watermark. These techniques in-
clude additive white Gaussian noise (AWGN) and Joint Photographic Experts Group (JPEG)
compression. This section describes the implementation of each attack, as well as the re-

sulting amount of distortion introduced. In both cases, the attacker does not know which
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transform coefficients are watermarked; hence, the attacks are applied to the entire image.
In the formulation of the distortion, the mean squared error measure is used to determine

the difference between the watermarked image and the attacked watermark image.

7.1.1 Additive white (Gaussian noise

The first type of attack considered is the addition of white Gaussian noise to the watermarked
image. A matrix, having the same size as the image, of noise is generated randomly according
to a zero-mean Gaussian distribution, Z ~ N(0,0?), with variance o?. The matrix is
then added to the watermarked image, or, equivalently, the transform coefficients of the
watermarked image, to produce an attacked image (or attacked coefficients).
In order to derive the amount of distortion introduced by this attack, some additional

notation must first be defined:

Let b = the pixels of the attacked watermarked image.

Let B = the transform coefficients of the attacked watermarked image = B + Z.

Then, the distortion (as defined in Equation (2.1)) introduced by the AWGN is given by
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Thus, the expected strength of the AWGN attack is controlled directly by altering the

variance of the noise introduced.

7.1.2 JPEG compression

The next type of attack considered is that of JPEG compression. JPEG compression is a
means of reducing the number of bytes required to represent an image by removing some
of the information contained in the image’s transform. More specifically, the pixels of an
image are considered in 8 x 8 blocks. The DCT of each block is taken, and the transform
coefficients are quantized to reduce the number of bits required to represent the data values.
The image is then further compressed without loss of information using entropy encoding.
The degree of quantization employed is determined through the use of a quality factor in the
range [0, 100], where a higher number produces a better-quality image.

The distortion introduced by the JPEG compression is given by
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where (); is the quantizer applied to coefficient ¢ (as defined by the JPEG standard using
the specified quality factor), and ¢; is the step size corresponding to the applied quantizer.
Because of the complexity of this expression, it is difficult to directly relate the quality
factor to the corresponding distortion. Hence, to create a suitable attack, a quality value
is selected and the resulting distortion is computed. Through experimentation, the quality

can be chosen such that the desired amount of distortion is introduced.
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7.2 Simulation Results

To evaluate the performance of the likelihood ratio test detectors based on the notched
power exponential and power exponential distributions, Monte Carlo simulations are run
for each of the noise types previously discussed. The number of simulations performed is
40 000 for the case of AWGN and 10 000 for JPEG compression. The latter reduction is
due to the large amount of computation required in implementing the attack. To illustrate
detector performance, plots of the test statistic distributions, Pp vs. Threshold, Pg vs.
Threshold, and Pp vs. Pp are included, with curves for the NPE and the PE displayed
concurrently. Thus, the higher performance expected from the notched distribution should

be clearly visible.

7.2.1 Lena image with additive white Gaussian noise

To examine the LRT detector in the presence of an AWGN attack, the Lena image is wa-
termarked multiplicatively, as before. The distortion introduced through watermarking has
a value of D; = 0.000 193. Two sets of Monte Carlo simulations are performed for each
distribution, the first where Dy = D; and the second where Dy = 10D,. The appropriate
vectors of white Gaussian noise are created and added to the image to produce the attacked
images shown in Figure 7.1. Because of the small amount of distortion introduced in the wa-
termarking process, the attacker is limited to a correspondingly little amount of noise when
Dy = D;. This restriction renders the distortion just barely visible in the more smooth
regions of the image. However, for the larger noise magnitude, the decreased quality is quite
visible throughout the entire image.

The distributions of the test statistic for the power exponential distribution, as found
using 40 000 Monte Carlo simulations, are given in Figure 7.2. Little change in the distribu-
tion is present as the attack strength is increased. However, these distributions are slightly
less separated than those for the Lena image when no attack is present, as seen in Figure B.4.
Thus, it appears that the performance of the LRT detector based on the power exponential
distribution is not significantly hindered by the AWGN attack.
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Figure 7.1 The Lena image with AWGN with (a) Dy
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Figure 7.2 Distribution of the test statistic using the PE distribution and LRT under an
AWGN attack with (a) Dy = Dy and (b) Dy = 10D;.
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Figure 7.3 Distribution of the test statistic using the NPE distribution and LRT under an
AWGN attack with (a) Dy = Dy and (b) Dy = 10D;.

Using another 40 000 Monte Carlo simulations, the distributions of the test statistic
for the notched power exponential are found for each distortion case and are depicted in
Figure 7.3. Although, in both cases, most of the distribution mass is located at the infinity
points, the center lobes are much larger than those seen when no attack is present, Figure
6.3. This increase in area is more pronounced for the higher-variance attack. The movement
of mass to the inner region is caused by the introduction of noise shifting more data points
to lie within Regions 1 and 4, thereby demonstrating the sensitivity of the detector to points
around the threshold. Also, the addition of noise causes a small number of false instances of
Regions 2 and 3, as shown by the mass located at co under Hy and at —oo under H;. Overall,
these curves demonstrate that the LRT detector based on the notched power exponential
distribution is moderately affected by the presence of noise, causing an expected decrease in
performance.

To more clearly illustrate the performance of the detectors, curves of the detection
and false alarm probabilities are considered. Figures 7.4 and 7.5 depict these probabilities for
the two attacker distortion strengths, with both the power exponential and notched power
exponential results shown. The curves for the power exponential are virtually identical to

those for the unattacked case, given in Figure B.6. On the other hand, a substantial decrease
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in performance is present for the NPE case when compared with the data resulting from no
attack, Figure 6.5. This decrease is amplified in the higher-noise case, and is consistent with
the change in the statistic distribution previously observed. However, the performance of
the likelihood ratio test detector using the notched power exponential distribution remains

notably superior to that resulting from the use of power exponential distribution.

7.2.2 Lena image with JPEG compression

The likelihood ratio test detector is now examined in the case where an attacker uses JPEG
compression to manipulate the watermarked image. Once again, Monte Carlo simulations
are performed for compression qualities resulting in mean squared errors of Dy = D; and
Dy = 10D;. The quality factors required to achieve these distortion levels are 81 and 6,
respectively, and the two compressed images are presented in Figure 7.6. The small value
of D; causes the visible compression artifacts present in the first image to be extremely
minimal. However, when the attacker is permitted to introduce 10 times the amount of
distortion as the embedding process, typical blocking artifacts caused by JPEG compression
are quite prevalent.

Because of the large amount of computation required for JPEG compression, only
10 000 Monte Carlo simulations are performed to evaluate each detector. The resulting
distributions of the test statistic under both compression strengths are given for the power
exponential in Figure 7.7. Similar to the attack using Gaussian noise, these curves are nearly
identical to those found when no attack is present, Figure B.4. Thus, little performance
degradation is expected for the LRT power exponential detector.

Considering the distribution of the statistic when the notched power exponential is
employed, Figure 7.8, somewhat different results from the AWGN attack are observed. For
the lower attack strength, the statistic distribution appears quite similar to the unattacked
case (Figure 6.3); most of the mass lies at the infinity points with only a small amount
near the 0 point. However, the slight decrease in mass at the endpoints observed when
Dy = D is significantly amplified when Dy = 10D;. Thus, the LRT NPE detector possesses
a robustness to lower rates of JPEG compression, but suffers considerably when severe

compression is applied.
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Figure 7.6 The Lena image with JPEG compression with (a) Dy = D; and (b) Dy = 10D;.
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Figure 7.7 Distribution of the test statistic using the PE distribution and LRT under a

JPEG compression attack with (a) Dy = D; and (b) Dy = 10D;.
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Figure 7.8 Distribution of the test statistic using the NPE distribution and LRT under a
JPEG compression attack with (a) Dy = Dy and (b) Dy = 10D;.

The performance of the likelihood ratio test detectors is now gauged using the indi-
cators of detection and false alarm probabilities. Figures 7.9 and 7.10 present the resulting
curves for both the PE and NPE for the two attack strengths. As expected, the curves for
the power exponential are nearly identical to those for the no-attack case. Conversely, those
for the notched power exponential display a decrease in performance. This drop is only slight
for the low-attack case, but is more pronounced for the larger attack. However, these figures
again demonstrate the clear superiority of the notched power exponential distribution over

the power exponential distribution for modeling the selected coefficients.

7.3 Summary of Results

This chapter has presented the results of experiments employed to evaluate the performance
of the likelihood ratio test detector for the Lena test image when an attack is present. Tables
7.1 and 7.2 contain selected data points from the Pp and Py curves generated through Monte
Carlo simulations for AWGN and JPEG attacks, respectively. Points have been selected to
illustrate the behavior of the detectors for a detection probability of approximately 98%. The

probabilities are shown in percentage form and are rounded to the nearest whole number.
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Table 7.1 Selected results for data from the Lena DCT coefficients with an AWGN attack.
No Attack _D2 = _D]_ _D2 = ]_OD]_
Distribution
Pp(%) | Pe(%) | Po(%) | Pe(%) | Po(%) | Pr(%)
Power exponential 98 91 98 91 98 91
Notched power exponential | 100 1 98 18 98 22

Table 7.2 Selected results for data from the Lena DCT coefficients with a JPEG compression
attack.

No Attack D2 = D1 D2 = ]_0D1
Distribution
Pp(%) | Pr(%) | Pp(%) | Pr(%) | Pp(%) | Pr(%)
Power exponential 98 91 98 91 98 92
Notched power exponential | 100 1 98 1 98 42

The values given in these tables reinforce the observations made previously regarding
the performance of the LRT detectors based on the two considered distributions. While the
use of the power exponential distribution results in very little performance loss when an
attack is applied, the outstanding behavior of the notched power exponential distribution
translates to a stronger detector, despite significant drops in performance with the inclusion
of an attack. However, it should again be noted that neither of these two detectors were
derived with attacks included in the models; hence, they are not optimal. Thus, it is expected
that the performance loss experienced by the notched power exponential detector will be

reduced if the attack were to be included in the formulation of the detector.
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CHAPTER 8
CONCLUSIONS

8.1 Summary

This thesis deals with the problem of detecting a watermark that has been multiplicatively
embedded into the highest-magnitude transform coefficients of a digital image. In the setup
considered, the detector has access to side information about the original image in the form of
an image hash (a 1-bit quantized version of a secret subset of the original image DCT coeffi-
cients), creating a joint hashing/watermarking system. The inclusion of the side information
permits the development of detectors that offer extremely high performance, even for small
messages. Various probability distributions, including the Weibull distribution, the power
exponential distribution, and the notched power exponential distribution, are examined for
use in modeling the statistical distribution of the coefficients selected for watermarking.
Through the use of signal detection and estimation techniques prevalent in the field of com-
munications, three detectors are developed and then further specialized to the considered
probability distributions. The detectors are based on likelihood ratio testing, maximum like-
lihood estimation, and locally optimal detection. A fourth detector is also constructed as a
simplified version of the likelihood ratio test detector for the case of notched distributions.
The precise image watermarking setup employed is semi-blind because some side information
is required at the detector; however, the original image need not be available.

Chernoff bounds are formulated for the likelihood ratio test detectors to provide
insight into their worst-case performance. Evaluation of the bounds reveals tremendous

increases in accuracy when the notched power exponential is utilized for modeling, as opposed
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to the two more traditional approaches. These insights are supported by the study of the
corresponding Chernoff distances, which provide an indication of the relative difficulty of the
detection tasks. The Chernoff distance as seen by an eavesdropper attempting to detect the
message is also considered, quantifying the increase in difficulty for this detection problem.

Monte Carlo simulations are employed to analyze the behavior of the detectors using
both data generated synthetically to follow the appropriate modeling distribution, and data
gathered from real-world test images. The performance is measured in terms of the probabil-
ity of falsely detecting a watermark, and the probability of correctly detecting a watermark.
In each of the two simulation settings, the notched power exponential distribution displays
vastly superior performance over the Weibull and power exponential distributions, offering
decreases in false alarm probabilities between 90% to 50%, depending on the detector type,
for the same detection probability. Furthermore, the likelihood ratio test detector provides a
much higher degree of performance than those based upon maximum likelihood estimation
and locally optimal detection. In the case of the notched power exponential distribution,
the simplified version of the likelihood ratio test detector still produces remarkably strong
results, with only a small departure from the optimal LRT. Combining these results, it is
clear that the use of a likelihood ratio test and the notched power exponential distribution
forms a detector that is unrivaled in the watermark detection simulations.

Although the development of the detectors assumes no attacks are made on the water-
marked images, further experiments are performed to observe the repercussions of additive
white Gaussian noise and JPEG compression on the output of the LRT detectors for the
power exponential and notched power exponential distributions. Trials are performed using
attack distortions up to 10 times that caused by the embedding process itself, in the mean
squared error sense. The false alarm and detection probabilities for the power exponential
are only slightly affected by the introduction of an attack, while the notched power exponen-
tial detector is moderately hindered. However, the use of the power exponential distribution
results in a detector that, in the presence of an attack, is still considerably inferior to that
based on the notched power exponential distribution. Moreover, the inclusion of an attack
model in the detector derivation will only strengthen these results, with larger improvements
expected for the notched power exponential case, where the degradation due to the attacks
is more severe.
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The analyses and experiments performed in this thesis demonstrate that the use of
statistical modeling, and signal detection and estimation theory provides a structured frame-
work in which optimal watermark detectors can be developed and assessed. The exemplary
results attained clearly reveal the promise of joint digital image hashing/watermarking as a

viable means of information protection for real-world applications.

8.2 Recommendations

The field of digital watermarking is still in its initial stages of development, providing a vast
array of topics worthy of study. Several possible recommendations for future directions of

research based upon the particular techniques developed in this thesis follow:

e The simulations performed only consider the use of the entire set of transform coeffi-
cients as candidates for embedding (v = 1). Further experiments could be conducted
to examine the effects on the detector performance of reducing the size of this set to

heighten robustness.

e Multiplicative embedding is currently used to insert the watermark into the highest-
magnitude coefficients because it is believed these locations will better withstand at-
tacks. Characteristics of the sensitivity of the human visual system to variations in
transform coefficients could be incorporated into the embedding process to better dis-

guise the watermark, while simultaneously increasing security.

e The detectors derived in this thesis do not incorporate models of any of the possible
attacks that could be performed on the watermarked image. By compensating for such
processes, the watermark detectors would become more suitable for use in practical

situations.

e Digital grayscale images represent only a single source of multimedia objects to which
watermarking techniques may be applied. Although the detection approaches described
in this thesis are independent of the host data, further considerations must be made
to frame the basic watermarking system for use with additional objects such as color

images, audio sequences, and video data.
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8.3 Contributions

The contributions made by the research and development of this thesis may be summarized

as follows:

e The construction of a joint image hashing/watermarking system based on multiplica-

tive embedding into high-magnitude image transform coefficients.

e The extension of the power exponential distribution to the notched power exponential

distribution to better model the coefficients selected for watermarking.

e The development of detectors based on likelihood ratio testing, maximum likelihood
estimation, and locally optimal detection using the notched power exponential distri-

bution.

e The derivation of Chernoff bounds on the performance of the likelihood ratio test

detector for the notched power exponential distribution.

e The formulation of Chernoff distances for the notched power exponential likelihood

ratio test detector, and for the detection problem as seen by an eavesdropper.

e The simulation of the considered detectors, highlighting the substantial performance

gains resulting from the use of notched distributions.
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APPENDIX A

ADDITIONAL THEORETICAL
ANALYSIS

This appendix presents analyzes of the maximum likelihood estimation detector and locally
optimal detector for the Weibull and power exponential distributions when synthetic data
are utilized. The setup of the experiments performed is identical to that described in Chapter

5.

A.1 Maximum Likelihood Estimation

The detectors based upon maximum likelihood estimation are now considered for the cases
when the Weibull and power exponential distributions are used to model the distribution of
image transform coefficients. As before, three plots are employed to examine the performance

of the detectors.

A.1.1 Weibull distribution results

The MLE detector based on the Weibull distribution is now investigated. The distributions
of the test statistic, defined by Equation (3.5), under the two hypotheses are shown in Figure
A.1. These plots demonstrate that the distributions of the estimates under each hypothesis
nearly completely overlap. However, the higher embedding strength does result in slightly
more separation, as expected. Under both hypotheses, a large number of the estimates are
of value 0, thus, a peak exists at this point. A sharp knee results around 0.05 because of
the large peak and the finite number of bins utilized when plotting the histograms of the

distributions.
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Figure A.1 Distribution of the test statistic using the WB distribution and MLE with an
embedding strength of (a) 0.05 and (b) 0.10.

The next two figures, A.2 and A.3, contain the results of the Monte Carlo simulations
using the MLE detector. First, it should be noted that the threshold against which the
estimate is compared is in the range [0, 1] because the strength must be in this range. As
a result, full ranges of probabilities are not necessarily present in the ROC curves. Since
the figures contain estimates for actual embedding strengths of 0.05 and 0.10, it is expected
that the detection probability will be low when the threshold is above these values. By
comparing Figure A.2 and Figure A.3, the expected increase in performance is observed as the
embedding strength is increased. However, neither strength presents a robust detector. With
approximately a 50% false alarm probably for approximately a 60% detection probability
for s* = 0.05, the MLE detector performs slightly worse than the corresponding binary
hypothesis testing detector, whose results are presented in Figure 5.7 (and Figure 5.8 for
the s* = 0.10 case). Hence, it is doubtful that the MLE detector based on the Weibull

distribution will suffice in practical applications.

A.1.2 Power exponential distribution results

Next, the maximum likelihood estimator that is based on modeling the host coefficients using

the power exponential distribution is evaluated. The distributions of the test statistic, defined
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by Equation (3.6), as found using Monte Carlo simulation are given in Figure A.4. Here the
results are quite similar to those for the MLE detector using the Weibull distribution: the
distributions are greatly overlapped and a slight improvement is gained by increasing the

embedding strength.

Distribution of Maximum Likelihood Estimate Distribution of Maximum Likelihood Estimate
(32 WM Bits,a = 0.2, B=1.1, s = 0.05) (32 WM Bits,a = 0.2, =1.1, s =0.10)
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Figure A.4 Distribution of the test statistic using the PE distribution and MLE with an
embedding strength of (a) 0.05 and (b) 0.10.

The performance indicators of Pp and Pr are shown in the next two figures, Figure
A.5 and Figure A.6. The curves depicted are nearly identical to those for the case of the
Weibull distribution. An increase in performance as the embedding strength is increased is
observed; however, the detector performs rather poorly overall. Once again, for a detection
probability of approximately 60%, a false alarm probability of approximately 50% must be
tolerated. These results are slightly worse than those for the likelihood ratio test detector
for the same distribution, whose ROC curves are given in Figures 5.10 and 5.11. Thus,
it appears that the MLE detector using the power exponential distribution is not a viable

solution.

A.2 Locally Optimal Detection

This section examines the watermark detectors based on locally optimal detection for the
Weibull and power exponential distributions. Once again, three figures are utilized to analyze

the experimental results.
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Figure A.5 Pp and Pp curves for the PE
MLE for synthetic data (s* = 0.05).

Figure A.6 Pp and Pp curves for the PE
MLE for synthetic data (s* = 0.10).

128



A.2.1 Weibull distribution results

To further evaluate the locally optimal detector, the detector created for the case when the
host coefficients are modeled using the Weibull distribution is considered. The distributions
of the test statistic, defined by Equation (3.8), under the two hypotheses are given in Figure
A.7. This figure shows the two distributions overlap quite significantly, with slightly more
separation present for the higher embedding strength.
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Figure A.7 Distribution of the test statistic using the WB distribution and LOD with an
embedding strength of (a) 0.05 and (b) 0.10.

The Weibull distribution locally optimal detector is now examined using the P, and
Pp statistics. Figures A.8 and A.9 contain the results of the Monte Carlo simulations using
this detector. The ROC plots illustrate a slight performance gain when the embedding
strength is increased to 0.10 from 0.05, which is to be expected. However, in general, the
results are not promising. In order to achieve approximately a 64% detection probability
for the lower embedding strength, close to a 50% false alarm probability results. These
statistics lie just below those for the corresponding binary hypothesis testing detector, and
just above the maximum likelihood detector. Therefore, it appears that the locally optimal
detector constructed using the Weibull distribution does not offer sufficient performance to

be employed in practice.
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A.2.2 Power exponential distribution results

The next distribution considered for the locally optimal detector is the power exponential
distribution. The distributions of the test statistics, defined by Equation (3.9), resulting
from Monte Carlo simulations on this detector are displayed in Figure A.10. The results
in this situation are quite similar to those of the LOD using the Weibull distribution: the
statistic distributions display much overlap with a slight improvement in separation for the

higher embedding strength.
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Figure A.10 Distribution of the test statistic using the PE distribution and LOD with an
embedding strength of (a) 0.05 and (b) 0.10.

Figures A.11 and A.12 demonstrate the performance of the locally optimal detector in
terms of Pp and Pp. These results are quite similar to those seen previously. The ROC curve
moves slightly more to the top left corner of the plot as the embedding strength is increased;
but overall the detector does not perform well. In order to achieve a detection probability
of approximately 65% with the lower embedding strength, a false alarm probability of ap-
proximately 50% results. These statistics are more favorable than those for the maximum
likelihood estimator of the same distribution, and comparable to those of the corresponding
likelihood ratio test detector. Consequently, it is unlikely that the locally optimal detector
using the power exponential distribution to model the coefficients will provide an adequate

watermark detector in practice.
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APPENDIX B

ADDITIONAL IMAGE
WATERMARKING EXPERIMENTS

The analyzes of the watermark detectors based on the Weibull and power exponential dis-
tributions for use with the Lena and Peppers images are presented in this appendix. The
setup of the experiments performed is nearly identical to that described for the notched
power exponential distribution in Chapter 6. The main difference is that only 10 000 trials
are performed for each Monte Carlo simulation because the resulting probabilities for these
distributions are do not require the same fine degree of precision as those for the notched
power exponential. Also, note that since the Weibull distribution requires non-negative data,

the absolute values of the DCT coefficients are utilized for watermarking.

B.1 Watermarking Lena DCT Coefficients

In this section, the Lena image, as shown in Figure 6.1, is utilized as the source of coefficients

into which the watermark is to be inserted.

B.1.1 Simple likelihood ratio test

First, the detectors based upon likelihood ratio testing are examined for the Lena image

through the use of the three typical figures.

B.1.1.1 Weibull distribution results

To continue the analysis of the likelihood ratio test detector on the Lena image, the Weibull

distribution is utilized to model the selected coefficients. The distribution of the test statistic
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under each hypothesis is given in Figure B.1. As expected, this figure demonstrates that the

separation between the two distributions increases as the embedding strength increases.

Distrjbution of Test Statistic Distribution of Test Statistic
(32 WM Bits,a = 0.4, 3=1.1,s =0.05) (82 WM Bits,a =0.4,8=1.1,s =0.10)
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Figure B.1 Distribution of the test statistic for the Lena image using the WB distribution
and LRT with an embedding strength of (a) 0.05 and (b) 0.10.

At this point the performance of the detector is considered using the detection and
false alarms probabilities. Figures B.2 and B.3 each contain three plots demonstrating the
outcome of the Monte Carlo simulations for embedding strengths of 0.05 and 0.10, respec-
tively. From these graphs, it is seen that the detector performs better as the embedding
strength is increased. However, for an embedding strength of 0.05, a false alarm probability
of approximately 50% must be tolerated to achieve a detection probability just under 70%.
Thus, using the Weibull distribution to model the chosen Lena coefficients appears to not

result in a practical watermark detector.

B.1.1.2 Power exponential distribution results

The next distribution evaluated for use in a likelihood ratio test detector is the power expo-
nential distribution. Figure B.4 shows the distribution of the test statistic under each of the
two hypotheses. These results are similar to those in the case of the Weibull distribution:
the increased embedding strength causes the two distributions to become further apart. It
should be noted that the jaggedness in the second plot is simply due to an increase in the
number of bins used to compute the histogram.
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Distribution of Test Statistic Distribution of Test Statistic
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Figure B.4 Distribution of the test statistic for the Lena image using the PE distribution
and LRT with an embedding strength of (a) 0.05 and (b) 0.10.

The Pp and Pp curves for the Monte Carlo simulations are now considered. Figures
B.5 and B.6 present the three performance plots: the first figure for an embedding strength
of 0.05, and the second for a strength of 0.10. Once again, it is noticed that the ROC
moves slightly closer to the top left corner when the embedding strength is increased, thus
indicating that the watermark is easier to detect. Unfortunately, to achieve a detection
probability of approximately 64%, a false alarm probability of approximately 50% is incurred.
This performance is slightly worse than that demonstrated for the binary hypothesis testing
detector using the Weibull distribution to model the Lena image coefficients. Thus, the

detector based on the power exponential distribution is likely also unfit for real-world use.

B.1.2 Maximum likelihood estimation

The detector based on maximum likelihood estimation is now considered for the Weibull and
power exponential distributions. Once again, figures of the distribution of the test statistic

and Pp and Pr curves are employed to analyze detector performance.
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Figure B.5 Pp and Py curves for the PE
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B.1.2.1 Weibull distribution results

To continue the evaluation of the maximum likelihood estimation detectors, the case when
the Weibull distribution is used to model the DCT coefficients is considered. The distribution
of the estimate under each of the two hypotheses is given in Figure B.7. For both s = 0.05
and s = 0.10, the two distributions are nearly completely overlapping, but do contain larger
values near the actual embedding strengths. The two distributions also become slightly more

separated as the watermark embedding strength is increased, which is to be expected.
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Figure B.7 Distribution of the test statistic for the Lena image using the WB distribution
and MLE with an embedding strength of (a) 0.05 and (b) 0.10.

Figures B.8 and B.9 display the result of the Monte Carlo simulation in terms of
detection and false alarm probabilities. As previously with maximum likelihood estimation,
the range of threshold is limited to [0, 1) because the embedding strength must be inside
this range. Consequently, Pp and Pp do not necessarily vary over the full range of 0 to 1.
It is observed that, in the figures, when the threshold is raised above the actual embedding
strength, the detection probability falls off significantly because the threshold is greater than
the value being estimated. When the two figures are compared, an increase in performance
is observed for the higher embedding strength. However, the detector performance is quite
lacking. To achieve a detection probability of approximately 62% when s = 0.05, approxi-

mately a 50% chance of producing a false alarm is incurred, which is slightly worse than the
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corresponding likelihood ratio test detector. These statistics indicate that the use of maxi-
mum likelihood estimation and the Weibull distribution to model the Lena image coefficients
likely will not provide a practical watermark detector. This conclusion is expected given the

poor performance of this detector on synthetic data.
B.1.2.2 Power exponential distribution results

The maximum likelihood estimator used to detect a watermark’s presence is now evaluated
for the Lena image data when the coefficients are modeled using the power exponential
distribution. To begin, Figure B.10 illustrates the Monte Carlo simulation results for the
distribution of the estimate under each of the two hypotheses. As in the case of the Weibull
distribution, the distributions are quite overlapping and display values in the areas around
the true embedding strengths. It is also observed that the distributions become slightly more

separated as the embedding strength is increased.
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Figure B.10 Distribution of the test statistic for the Lena image using the PE distribution
and MLE with an embedding strength of (a) 0.05 and (b) 0.10.

Figures B.11 and B.12 contain the performance indicator plots for embedding strengths
of 0.05 and 0.10, respectively. These plots are quite similar to those found for the Weibull
distribution. The detection probability drops off significantly as the threshold is increased
above the actual embedding strength, as expected. Also observable is an increase in perfor-

mance with the higher embedding strength. However, the detector performs rather poorly
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overall. For the case when s = 0.05, a detection probability of approximately 62% can only
be achieved with a false alarm probability of approximately 50%. These statistics are slightly
worse than the corresponding likelihood ratio test results. Thus, it is doubtful that using
maximum likelihood estimation with the power exponential distribution will yield a detector

that is suitable for real-world applications.

B.1.3 Locally optimal detection

The analysis of the locally optimal detector on the Lena image data is now studied for the
cases when the Weibull and power exponential distributions are employed to model the image
transform coefficients. Again, three figures are utilized for each distribution to examine the

detector performance.
B.1.3.1 Weibull distribution results

The first additional distribution evaluated for use with locally optimal detection is the
Weibull distribution. Figure B.13 provides the distribution of the test statistic under each
of the two hypotheses as found through Monte Carlo simulations. Considering the plot for
the low embedding strength, the two distributions are still fairly overlapping; however, for

the larger embedding strength, a moderate degree of separation is indeed present.
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Figure B.13 Distribution of the test statistic for the Lena image using the WB distribution
and LOD with an embedding strength of (a) 0.05 and (b) 0.10.
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The Pp and Pr curves for the two embedding strengths, found through Monte Carlo
simulations, are given in Figures B.14 and B.15. By comparing ROC curves in the two
figures, a clear improvement in performance is seen for the higher embedding strength, as
expected. However, the detector performs only moderately well in general. For the case
when s* = 0.05, a detection probability of approximately 80% is achieved with a false
alarm probability of approximately 50%. These results offer an improvement over both the
corresponding likelihood ratio test and maximum likelihood estimator detectors; however,
it is doubtful that the detector will yield strong enough performance for use in real-world

applications.

B.1.3.2 Power exponential distribution results

The locally optimal detector formulated based on the power exponential distribution is now
evaluated using the Lena DC'T coefficients. First, the distributions of the test statistics
under Hy and H; are given in Figure B.16. These graphs are quite similar to those for the
Weibull distribution locally optimal detector. The separation between the two distributions
increases to a moderate amount as the embedding strength is increased.

Figures B.17 and B.18 demonstrate the performance of the detector in terms of
detection and false alarm probabilities. Considering the ROC curves, a clear increase in
performance is observed as the embedding strength is raised. Unfortunately, the general
performance is somewhat lacking. With the low embedding strength, approximately a 50%
false alarm probability must be tolerated to achieve a detection probability just over 80%.
These statistics represent an improvement over the corresponding binary hypothesis testing
and maximum likelihood estimation detectors. However the results indicate that modeling
the selected DCT coefficients using the power exponential distribution for locally optimal

detection likely does not provide a detector that is suitable for practical situations.

B.2 Watermarking Peppers DCT Coefficients

This section uses the Peppers test image, shown in Figure 6.13 to further evaluate detector

performance for the Weibull and power exponential distributions.
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Figure B.16 Distribution of the test statistic for the Lena image using the PE distribution
and LOD with an embedding strength of (a) 0.05 and (b) 0.10.

B.2.1 Simple likelihood ratio test

The first experiments for the Weibull and power exponential distributions for the Peppers
image are those using the binary hypothesis testing detectors. Once again, the experimental

results are presented in the three standard figures.
B.2.1.1 Weibull distribution results

To begin, the coefficients from the Peppers image used for watermarking are to be modeled
using the Weibull distribution. The resulting distributions of the test statistics are depicted
in Figure B.19. The separation between the two distributions is quite small for the low-
embedding case and only slightly better for the stronger embedding strength.

Figures B.20 and B.21 contain graphs that demonstrate the detector’s performance
in terms of detection and false alarm probabilities. A comparison of the two figures reveals
that an increase in performance occurs when the embedding strength is made larger, as
to be expected. However, for the lower embedding strength, a detection probability of
approximately 68% is only realized with a false alarm probability of approximately 50%.

Thus, it is quite unlikely that this detector will be effective in a practical situation.
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Figure B.17 Pp and Pp curves for the PE Figure B.18 Pp and Pp curves for the PE
LOD for Lena data (s* = 0.05). LOD for Lena data (s* = 0.10).
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Distribution of Test Statistic Distribution of Test Statistic
(32 WM Bits,a = 0.5, B= 1.1, s =0.05) (32 WM Bits,a =0.5,=1.1,s =0.10)
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Figure B.19 Distribution of the test statistic for the Peppers image using the WB distribution
and LRT with an embedding strength of (a) 0.05 and (b) 0.10.

B.2.1.2 Power exponential distribution results

The binary hypothesis detector developed for the power exponential distribution is now
examined for the DCT coefficients gathered from the Peppers image. The distributions of
the test statistic under Hy and H; are given in Figure B.22. As before, the statistics are not
well separated, with only a slight increase when the embedding is strengthened.

Figures B.23 and B.24 contain curves of the probabilities Pp and Pp. Although a
slight gain is observed as the embedding strength is increased, the detector does not offer
high performance. In order to obtain just over a 60% detection probability, a 50% false alarm
probability is incurred. These statistics likely render the detector-distribution pair unusable

in a practical situation.

B.2.2 Maximum likelihood estimation

Further testing is now performed using the Weibull and power exponential distributions
to model the Peppers image coefficients for use with the maximum likelihood estimation

detector. As before, the results are illustrated in the typical thee figure formats.
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PD versus Threshold (32 WM Bits, 3 = 1.1, s = 0.05) PD versus Threshold (32 WM Bits, 3 = 1.1, s = 0.10)
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Figure B.20 Pp and Pp curves for the Figure B.21 Pp and Pp curves for the
WB LRT for Peppers data (s* = 0.05). WB LRT for Peppers data (s* = 0.10).
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Distribution of Test Statistic Distribution of Test Statistic
(32 WM Bits,a = 0.2, B=1.1,s =0.05) (32 WM Bits,a = 0.2, B=1.1,s =0.10)
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Figure B.22 Distribution of the test statistic for the Peppers image using the PE distribution
and LRT with an embedding strength of (a) 0.05 and (b) 0.10.

B.2.2.1 Weibull distribution results

The first additional distribution investigated for use with MLE is the Weibull distribution.
Figure B.25 presents a plot of the distributions of the test statistics for two embedding
strengths. The distributions under Hy and H; overlap quite severely, with only a slight
increase in separation for the higher embedding strength. However, the estimates for the
embedding strength are indeed gathered around the actual value of the strength.

The performance indicators of P, and Pp are shown in Figures B.26 and B.27. Since
the decision statistic takes the form of an estimate, the range of thresholds is limited to [0,
1). Thus, the maximum achievable detection probability is not necessarily equal to 1. The
graphs illustrate that, if the threshold is increased much above the actual strength value,
the detection probability drops off significantly, as expected. Also, the detector displays
better performance for the higher embedding strength. However, the detector is overall
quite poor. To achieve a Pp of approximately 62% for the low embedding strength, a Ppr of
approximately 50% results. Thus, this detector-distribution pair is not a desirable detection

solution.
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P, versus Threshold (32 WM Bits, = 1.1, s" = 0.05) P, versus Threshold (32 WM Bits, = 1.1,s = 0.10)
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Figure B.23 Pp and Pp curves for the PE Figure B.24 Pp and Pp curves for the PE
LRT for Peppers data (s* = 0.05). LRT for Peppers data (s* = 0.10).
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Distribution of Maximum Likelihood Estimate Distribution of Maximum Likelihood Estimate
(32 WM Bits,a = 0.5, = 1.1, s = 0.05) (32 WM Bits,a = 0.5, =1.1,s =0.10)
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Figure B.25 Distribution of the test statistic for the Peppers image using the WB distribution
and MLE with an embedding strength of (a) 0.05 and (b) 0.10.

B.2.2.2 Power exponential distribution results

Maximum likelihood estimation is now examined for the case when the watermarked Peppers
DCT coefficients are modeled using the power exponential distribution. The distributions
of the test statistic under the two hypotheses are shown in Figure B.28. These results are
quite similar to those for the Weibull distribution MLE: the statistic curves overlap severely
with only a small increase in separation as the embedding strength is increased. Although,
the estimates do somewhat accurately reflect the true embedding strength.

The next two figures, B.29 and B.30, demonstrate the performance of the detector in
terms of detection and false alarm probabilities. These curves exhibit the behavior seen pre-
viously for maximum likelihood estimation. The detection probability achieves a maximum
of only approximately 60% (at the expense of just under a 50% probability of false alarm)
and drops off as the threshold is increased above the actual embedding strength. A slight
improvement is present as the embedding strength is increased, but overall the detector does

not offer adequate performance to be employed in a realistic setting.
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PD versus Threshold (32 WM Bits, 3 = 1.1, s = 0.05) PD versus Threshold (32 WM Bits, 3 = 1.1, s = 0.10)
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Figure B.26 Pp and Pp curves for the Figure B.27 Pp and Pp curves for the
WB MLE for Peppers data (s* = 0.05). WB MLE for Peppers data (s* = 0.10).
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Distribution of Maximum Likelihood Estimate Distribution of Maximum Likelihood Estimate
(32 WM Bits,a = 0.2, = 1.1, s = 0.05) (32 WM Bits,a = 0.2, =1.1,5=0.10)
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Figure B.28 Distribution of the test statistic for the Peppers image using the PE distribution
and MLE with an embedding strength of (a) 0.05 and (b) 0.10.

B.2.3 Locally optimal detection

The final detector considered for use with the Pepper image and the Weibull and power
exponential distributions is the locally optimal detector. Once again, three figures are utilized

to illustrate the results.

B.2.3.1 Weibull distribution results

To begin, the locally optimal detector derived though modeling the selected coefficients using
the Weibull distribution is considered. Figure B.31 provides the test statistic distributions
under Hy and H;. For the lower embedding strengths, the two distributions are fairly
overlapped: however, when the strength is raised to 0.10, a relatively moderate degree of
separation is achieved.

Figures B.32 and B.33 demonstrate the performance of the detector with respect to
detection and false alarm probabilities. A noticeable increase in performance is present as
the embedding strength is increased from 0.05 to 0.10. However, for the lower strength, a
detection probability of approximately 80% can only be attained at the cost of a false alarm
probability of approximately 50%. As a result, the detector will not likely be acceptable in

practical applications.
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PD versus Threshold (32 WM Bits, 3 = 1.1, s = 0.05)
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Figure B.29 Pp and Pp curves for the PE
MLE for Peppers data (s* = 0.05).
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Figure B.30 Pp and Pp curves for the PE
MLE for Peppers data (s* = 0.10).
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Distribution of Test Statistic Distribution of Test Statistic

(32 WM Bits, a = 0.4, = 1.1, s = 0.05) (32 WM Bits, a = 0.4, B=1.1, s =0.10)
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Figure B.31 Distribution of the test statistic for the Peppers image using the WB distribution
and LOD with an embedding strength of (a) 0.05 and (b) 0.10.

B.2.3.2 Power exponential distribution results

The locally optimal detector is now examined for the case when the selected DCT coefficients
from the Peppers image are modeled using the power exponential distribution. First, the
distributions of the test statistics under the two hypotheses are illustrated in Figure B.34.
Similar to the locally optimal detector for the Weibull distribution, the separation between
the two distributions of the test statistic increases to a relatively moderate amount as the
embedding strength is increased.

The detector’s behavior is now considered in the context of the detection and false
alarm probabilities. These curves are presented in Figure B.35 and B.36 for the two em-
bedding strengths. When the figures are compared, it is clear that the stronger presence
of the watermark aids in its detection. However, the overall performance is still fairly low.
For the low embedding, a false alarm probability of approximately 50% is required to yield
a detection probability of approximately 80%. Thus, the power exponential locally optimal

detector is likely not suitable for most applications.
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P versus Threshold (32 WM Bits, f = 1.1, s = 0.05)
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Pp and Pp curves for the

WB LOD for Peppers data (s* = 0.05).
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Figure B.33 Pp and Pp curves for the

WB LOD for Peppers data (s* = 0.10).
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Distribution of Test Statistic Distribution of Test Statistic

(32 WM Bits, 0 = 0.2, 3= 1.1, s =0.05) (32 WM Bits,a = 0.2, B=1.1,s =0.10)
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Figure B.34 Distribution of the test statistic for the Peppers image using the PE distribution
and LOD with an embedding strength of (a) 0.05 and (b) 0.10.
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P versus Threshold (32 WM Bits, f = 1.1, s = 0.05)

Py versus Threshold (32 WM Bits, 8 = 1.1, s = 0.10)
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Figure B.35 Pp and Pp curves for the PE
LOD for Peppers data (s* = 0.05).

Figure B.36 Pp and Pp curves for the PE
LOD for Peppers data (s* = 0.10).
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