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ABSTRACT

Digital image watermarking is a method by whih a message an be hidden in an image

for the purpose of information protetion. In this thesis, the host data into whih the

message are embedded is hosen as the highest-magnitude oeÆients from a subset of the

full-frame image transform, and the watermark is inserted through multipliative embedding.

To omplete the watermarking system, a detetor that is apable of aurately determining

the presene or absene of a watermark in a given image must be developed.

This thesis fouses on the formulation of statistially optimal watermark detetors

that inorporate the use of side information in the form of an image hash, reating a joint

hashing/watermarking system. The lassial Weibull and power exponential distributions

are onsidered as probabilisti models of the host data. The nothed power exponential

distribution is also proposed to better represent the data seleted for watermarking. For eah

distribution, detetors are derived using the tehniques of likelihood ratio testing, maximum

likelihood estimation, and loally optimal detetion. Cherno� bounds on performane are

found for the likelihood ratio test detetors, and Cherno� distane is used to quantify the

diÆulty of the detetion problem, inluding that of an eavesdropper's problem.

Through analysis and experimentation using synthesized data and real-world test

images, the use of the nothed power exponential distribution and likelihood ratio testing is

observed to produe a vastly superior detetor, as measured by the probabilities of false alarm

and detetion. Although the detetor derivations do not inlude models of attaks, the e�ets

of additive white Gaussian noise and JPEG ompression are explored, and the nothed power

exponential likelihood ratio test detetor again yields the highest-quality performane. The

exemplary results obtained learly demonstrate that the ombination of statistial modeling

and detetion theory permit the development of promising detetors, thereby failitating the

use of joint digital image hashing/watermarking in pratial appliations.
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CHAPTER 1

INTRODUCTION

1.1 Purpose

The purpose of this thesis is to develop statistially optimal watermark detetors that om-

bine the use of hashes into the watermarking proess, reating a joint hashing/watermarking

tehnique. Theoretial bounds are also found on the behavior of these detetors. The de-

gree of diÆulty experiened by an eavesdropper attempting to detet the watermark is

also onsidered. Monte Carlo simulations are then performed using both syntheti and real-

world data. Finally, various attaks on the watermarked objet are introdued to study the

robustness of the derived detetors.

1.2 Problem

The desire and ability to hide information in a ommonly used medium have been present in

soiety for thousands of years. Throughout the generations, the tehniques used to aom-

plish these overt goals have varied, and, with the urrent prevalene of digital multimedia

data, these methods ontinue to evolve. Data hiding has a vast array of appliations, in-

luding the newly developing sub�eld of digital watermarking. Watermarking is a type of

information hiding where the purpose is data protetion. Typially, a watermark is employed

to protet the rights of a reator of a multimedia objet. For example, a watermark an be

introdued as a means of identifying the owner of a digital image, or it ould ontain a

unique serial number for eah individual who has been given aess rights to a digital movie.

Regardless of the spei� instane of watermarking, the unifying feature is the utilization of
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data hiding tehniques to bene�t the owner of a multimedia objet. In general, the insertion

of a watermark should be impereptible in the host objet (invisible watermarking); how-

ever, the less ommon visible watermarking is preferred in ertain situations. Also, sine the

reliability of a watermark rests on seurity, a property of a watermarking method is that it

should be robust against attaks. A trade-o� exists between the two properties of invisibility

and robustness, thereby providing a hallenge in developing an ideal watermarking sheme.

The proess of watermarking an be divided into three distintly di�erent portions,

namely, data modeling, watermark embedding, and watermark detetion. Sine muh previ-

ous watermarking researh has foused on the embedding proess, this thesis mainly onsiders

the development of detetion tehniques, spei�ally for multipliative embedding. However,

the derivations found herein are easily applied to other embedding proesses. To produe

more robust detetors, side information is provided to the detetor in the form of a hash

of the original objet, reating a joint hashing/watermarking system. A hash funtion is

a funtion that takes in a set of data (in this ase the original multimedia objet) and a

ryptographi key, and produes a simpli�ed representation of that data. This resulting

hash is quite small and, thus, is easily provided to the watermark detetor. The partiular

hash funtion seleted for use in this thesis leads to an expansion of the methods urrently

employed in data modeling. Although joint hashing/watermarking systems have been ex-

amined in other works [1℄, they have not been onsidered from a statistial standpoint. By

formulating the watermarking proess in the ontext of a ommuniations system, the theo-

ries of signal detetion and estimation an be employed. Furthermore, performane bounds

an be alulated to determine the worst-ase behavior of the detetors. Similarly, measures

an be developed to illustrate the relative diÆulty of di�erent detetion problems, inlud-

ing the problem seen by an eavesdropper attempting to detet a watermark. Using these

insights from the �eld of ommuniations, this thesis develops and analyzes statistially op-

timal means of deteting a watermark that has been multipliatively embedded into a digital

image.
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1.3 Thesis Organization

This thesis is divided into eight hapters. Chapter 1 presents the problem addressed by

the thesis and desribes the need for further solutions. Chapter 2 formulates the joint

hashing/watermarking system in a mathematial framework so that optimal detetors an be

developed in Chapter 3. Chapter 4 then derives theoretial bounds on the performane of the

studied detetors. In Chapter 5, experiments are disussed and performed using synthetially

generated data to determine the abilities of the detetion tehniques. In Chapters 6 and 7, the

developed detetors are applied to real-world test images in both the absene and presene

of an attak, respetively. Finally, Chapter 8 provides onlusions based on the development

and analysis presented in the thesis, and o�ers reommendations for the future diretions of

the watermarking problem.
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CHAPTER 2

PROBLEM FORMULATION

In this hapter the watermarking problem is presented mathematially. First, the watermark-

ing system, inluding the embedding tehnique, is disussed. This sheme is then speialized

for use with digital images using a joint hashing/watermarking setup. Then, three di�erent

methods that may be used to model the host data are developed. Finally, for the purpose

of implementation, tehniques allowing syntheti host data to be generated are presented.

2.1 Basi Watermarking Problem

The basi watermarking problem an be desribed pitorially by the diagram in Figure 2.1.

First, there is a vetor of host data, x, where the fx

i

g are assumed to be independent,

into whih a spei�, known watermark vetor, m, is to be embedded. The result of this

embedding operation, y, may then be passed through an attak hannel, reating ~y, before

being presented to the detetor. Reeiving this signal, the detetor must determine whether

or not the spei� message is present. To examine this system in more detail, �rst onsider

the watermark embedding proess. A variety of methods is available to insert a watermark

into a set of host data; this thesis, however, is onerned with multipliative watermark

embedding [2℄. In this setup, eah element of the watermarked data is generated aording

to the formula

y

i

= x

i

(1 + sm

i

)

where s is the strength of the watermark embedding. The sole restrition plaed on s is

that is should be a real number within the interval [0, 1). This limitation is applied beause

the watermark is to be visually undetetable in the host data. For simpliity, eah element
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Figure 2.1 Basi watermarking proess.

of the watermark message to be embedded is generated uniformly and independently from

a binary distribution with values f�1; 1g; however, the use of other modulation tehniques

and of error orreting odes is also possible. By examining this embedding formula, it is

easily seen that the amount of error introdued into an element is proportional to the size

of the element itself.

With the watermark now embedded into the host data, the watermarked objet is

released into the publi domain. Thus, the detetor has no knowledge of the manipulations

performed on the objet, whih ould inlude simple image proessing operations or even

attempts to remove the watermark itself. Hene, an attak blok is introdued into the

diagram, produing the vetor
~
y.

Finally, the orrupted version of the watermarked data is presented to a detetor,

whih is responsible for determining whether or not the spei� watermark is present in

the sequene. Suh a detetor may yield a number of possible types of output. First, the

detetor may simply give a yes or no answer regarding the presene of the spei� watermark.

Alternately, the detetor ould present a statisti indiating how ertain it is that the given

watermark is present, whih may then be ompared against a threshold to determine a yes

or no answer. Finally, the detetor an give an estimate of the atual embedding strength

parameter s, whih again an be ompared against a threshold to determine a binary answer.

2.2 Image Watermarking Problem

With the basi watermarking proess formalized, the system is now speialized for use in a

partiular appliation. First, the soure of the host data must be onsidered. Depending

on the goals of the watermark embedder, a multitude of soures of host data is possible.

This thesis deals with the problem of watermarking a digital graysale image using a joint
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hashing/watermarking tehnique. The speialized setup is desribed pitorially in Figure 2.2.

In this ontext, a ommon soure of host data is image transform oeÆients, as opposed to

the atual pixel intensities themselves. This hoie often results in watermarks that are more

robust to attaks. Transforms suh as the disrete Fourier transform (DFT), the disrete

osine transform (DCT), and the disrete wavelet transform (DWT) are all viable andidates

for use in watermarking. The DCT is seleted for use in this thesis for simpliity, and the

full-frame transform is employed to inrease robustness beause attaks in this domain will

be reeted throughout the entire spatial image. An additional advantage of full-frame DCT

watermarking is that it is inherently robust against image resizing attaks.

To further inrease the seurity of the watermarking system, a subset of the transform

oeÆients is de�ned, and forms a set of andidate points for embedding. This andidate set

is of size L and is desribed by its indies into the full-frame oeÆients, C = f

1

; 

2

; : : : ; 

L

g,

where the 

i

are oeÆient indies. Note that C will often be used to refer to the transform

oeÆients themselves, as well as their index set. The parameter � denotes the fration of

oeÆients inluded in the andidate set, � =

L

M

, where M is the total number of transform

oeÆients. This set ats as a seret key, whih is image independent, and must be known

by both the embedder and the detetor.

The watermark will then be embedded in the transform oeÆients of C having the

highest magnitudes. More spei�ally, the host data set, x, ontains only those oeÆients

with magnitudes greater than a �xed parameter, Æ. These oeÆients are dominant in the

image and, thus, are expeted to be quite well preserved in the presene of a moderate

attak. Moreover, these high-magnitude oeÆients are most robust against attaks (small-

magnitude oeÆients may simply be disarded by an attaker) and, thus, are most e�etive

in terms of detetion performane. It should be noted that sine the same andidate set and

oeÆient threshold are used for various images, the length of the host vetor, denoted by

N � L, will be image dependent.

The method by whih the watermark is onstruted depends partially on the spei�

image watermarking appliation. One tehnique is for the enoder to be given a binary

sequene, r with r

i

2 f�1; 1g, of the same size (L) as the andidate set. Eah element of this

longer sequene orresponds to a oeÆient in C. Those elements of r oiniding with the
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oeÆients of x are denoted by m. Thus, m is of length N and forms the atual watermark

message that will be embedded in the image.

Using the above method, the preise value ofm is dependent on the original image. If

more ontrol is desired over the sequene atually embedded, the enoder ould be altered to

aept a shorter sequene (of length less than N) that, with padding, will be embedded into

the host vetor, thereby ensuring the presene of the spei�ed sequene. The enoder would

then generate and output the full message, r, whih inludes the vetor m at appropriate

loations, and random -1 and 1 padding for the remainder of the sequene. Although this

method guarantees that a partiular sequene will be embedded, the full message, r, will be

dependent on the original image.

With the development of the image watermarking enoder omplete, the amount of

distortion introdued by the multipliative embedding is now onsidered. To quantify this

amount, the mean squared error (MSE) distortion measure is de�ned as

D(u;v) =

1

M

M

X

k=1

ju

k

� v

k

j

2

: (2.1)

Although this measure is known to be not partiularly well suited to quantifying the hange in

an image as pereived by the human visual system, it is widely used beause it is oneptually

and omputationally simple. When the measure is applied to this spei� multipliative

setup, the MSE is given by

D

1

= D

1

(a;b) =

1

M

M

X

k=1

ja

k

� b

k

j

2

=

1

M

M

X

i=1

jA

i

� B

i

j

2

=

1

M

N

X

i=1

jx

i

� y

i

j

2

=

1

M

N

X

i=1

jx

i

� x

i

(1 + s

�

m

i

)j

2

=

1

M

N

X

i=1

(x

i

s

�

)

2
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where

a = the pixels of the original image,

b = the pixels of the watermarked image,

A = the transform oeÆients of the original image, and

B = the transform oeÆients of the watermarked image.

Note that Parseval's theorem is used to express the distortion in the transform domain.

The fous of the problem spei�ation is now turned to the watermark detetor. For

eah image, the detetor will be presented with a vetor of side information that is similar

to a hash of the image. This vetor, h, ontains elements that orrespond to eah oeÆient

in the andidate set. Eah h

i

will be either 0 or 1, with 1 indiating a oeÆient magnitude

greater than Æ, and 0 indiating a magnitude less than or equal to Æ. Equivalently, eah h

i

an be viewed as a 1-bit quantized version of the orresponding original image oeÆient.

With the spei�ation of the andidate set, the hash vetor, the full message, and the

possibly watermarked image, the detetor is able to determine whih oeÆients belong to the

possibly watermarked vetor,
~
y, and the orresponding watermark, m, for whih to searh.

Note that sine additional information is provided to the detetor (as opposed to simply the

message), this sheme is not onsidered to be a blind watermarking system. However, sine

the original image is not required at the detetor, it is also not a non-blind system. Rather,

this image watermarking setup is best desribed as a joint hashing/watermarking system.

2.3 Host Data Modeling

Sine this thesis deals with the optimal detetion of watermarks, it relies heavily on the

statistial properties of the data involved. Thus, a realisti probabilisti representation of

the host data must be determined. In the ase of image transform oeÆients, the Weibull

distribution (WB) or the power exponential distribution (PE) are often utilized to model

the resulting distributions. However, this thesis advoates the use of the nothed power

exponential distribution (NPE) to reet the fat that only large oeÆients are seleted for

watermarking, as spei�ed by the hash. These three distributions are now de�ned, and their

properties are disussed.
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2.3.1 Weibull distribution

The Weibull distribution [3℄ is given by

p(x) =

8

<

:

�

�

�

x

�

�

��1

exp

n

�

�

x

�

�

�

o

if x > 0

0 else

for x 2 R, � > 0, and � > 0. A plot of this distribution is given in Figure 2.3. The mean of

the Weibull distribution is given by

E[X℄ = ��

�

1 +

1

�

�

and the variane is given by

Var[X℄ = �

2

�

�

1 +

2

�

�

� (E[X℄)

2

= �

2

 

�

�

1 +

2

�

�

�

�

�

�

1 +

1

�

��

2

!

where �(z) =

R

1

0

e

�t

t

z�1

dtwithz > 0, is the Gamma funtion. By varying the two parame-

ters of the distribution, � and �, the mean, variane, and general shape of the urve an be

re�ned.

The Weibull distribution has been used to model the magnitude of the disrete Fourier

transform and disrete osine transform oeÆients of an atual image [3℄, [4℄. However, the

parameters of the distribution may not be known. From the above expressions for mean and

variane, it is possible to estimate � and � from sample data by omputing the sample mean

and variane, where

Sample E[x℄ =

1

n

n

X

i=1

x

i

and

Sample Var[x℄ =

1

n� 1

n

X

i=1

(x

i

� �x)

2

:

From these values, a system of two equations an be solved to yield estimates of distribution

parameters.
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Figure 2.3 Weibull distribution with parameters � = 0:7 and � = 1:1.

2.3.2 Power exponential distribution

The power exponential distribution (also alled the generalized error distribution or the

generalized Gaussian distribution) is ommonly used to model the distribution of an image's

disrete osine transform oeÆients [5℄. The power exponential distribution ontains two

parameters, � and �, with � relating to the variane and � relating to the heaviness of the

distribution tails. The distribution itself is given by

p(x) = C exp

�

�

�

�

�

x

�

�

�

�

�

�

where

C =

�

2��

�

1

�

�

for x 2 R, � > 0, and � > 0. Figure 2.4 ontains a plot of the distribution. The seond

moment (variane) and fourth moment of the power exponential distribution [6℄ are given

by

Var[x℄ = M

2

=

�

2

�

�

3

�

�

�

�

1

�

�

and

M

4

=

�

4

�

�

5

�

�

�

�

1

�

�

:
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Note that when � = 1, whih is a ommon value when the distribution is utilized to model

image transform oeÆients, the power exponential distribution redues to the Laplaian

distribution [5℄.
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0.7

0.8

Power Exponential Distribution (α = 0.7, β = 1.1)

x

p
(x

)

Figure 2.4 Power exponential distribution with parameters � = 0:7 and � = 1:1.

When using the power exponential distribution to model the oeÆients used in

watermarking, values of � and � must be determined on the basis of the atual image

oeÆients. By omputing the seond and fourth moments of the data, the two parameters

an be estimated by solving a system of two equations.

2.3.3 Nothed power exponential distribution

In the multipliative watermarking sheme, the image transform oeÆients an be modeled

using the power exponential distribution. However, the high-magnitude oeÆients seleted

for watermarking reside in the tail portions of the power exponential distribution and our

with lower probabilities. Therefore, the atual distribution of the host data is a nothed

power exponential distribution. In addition to the original power exponential distribution

parameters, � and �, a new positive parameter, Æ, is introdued. Here, fx : jxj > Æg is

the range of values of the oeÆients that are watermarked, where Æ > 0. For onveniene,

the derived parameter � 2 (0; 1) is also introdued to represent the umulative probability

under the power exponential distribution of the oeÆients that are not seleted. These

12



two parameters are shown pitorially with respet to the power exponential distribution in

Figure 2.5. The shaded areas represent the portions ontained within the nothed power

exponential distribution.

k

Power Exponential Distribution with a = 0.7000, b = 1.10

p
 (

x
)

x

0 d-d

Figure 2.5 Power exponential distribution with nothed distribution parameters Æ and �.

Due to the symmetry of the distribution, the parameters Æ and � are related aording

to the equation

1� �

2

=

Z

1

Æ

p(x)dx

=

Z

1

Æ

C exp

�

�

�

x

�

�

�

�

dx

=

�

2��

�

1

�

�

Z

1

Æ

exp

�

�

�

x

�

�

�

�

dx:

Performing the substitution w =

�

x

�

�

�

, this equation beomes

1� �

2

=

Z

1

(

Æ

�

)

�

�

2��

�

1

�

�

expf�wg

�

�

w

�

(

1�

1

�

)

dw

=

1

2�

�

1

�

�

Z

1

(

Æ

�

)

�

expf�wg

�

�

w

�

(

1�

1

�

)

dw

1� � =

1

�

�

1

�

�

�

 

1

�

;

�

Æ

�

�

�

!
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� = 1�

1

�

�

1

�

�

�

 

1

�

;

�

Æ

�

�

�

!

(2.2)

where �(a; z) =

R

1

z

expf�tgt

a�1

dt with a > 0, is the inomplete Gamma funtion.

Thus, the nothed power exponential an be expressed as

p(x) =

8

<

:

C

1��

exp

n

�

�

�

x

�

�

�

�

o

if jxj > Æ

0 else

where

C =

�

2��

�

1

�

�

(2.3)

for x 2 R, � > 0, � > 0, Æ > 0, and 0 < � < 1.

In order to use the nothed power exponential distribution to model seleted image

transform oeÆients, the distribution parameters must be omputed from the data. The

� and � parameters are given by the same expressions as in the power exponential ase,

using all of the transform oeÆients. The value of the noth threshold, Æ, is idential to

the �xed system parameter used to determine the host vetor in the image watermarking

sheme. Finally, � an be omputed from the other three parameters by using (2.2).

2.4 Host Data Generation

Watermark detetion and host data modeling are two separate problems and should be

treated as suh. Thus, to aurately evaluate a watermark detetor under a spei�ed statis-

tial model for the host data, syntheti data are generated. For eah of the three distributions

onsidered, the umulative density funtion, P (z), is found. Then, random numbers fv

i

g

between [0; 1℄ an be generated aording to a uniform distribution. Finally, for eah v

i

generated, the umulative density funtion is inverted to �nd the data point, z

i

= P

�1

(v

i

).

Using this proess, it is possible to generate data aording to the required distributions.
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2.4.1 Weibull distribution

The umulative density funtion for the Weibull distribution is given by

P (z) =

Z

z

0

�

�

�

x

�

�

��1

exp

�

�

�

x

�

�

�

�

dx

= 1�

Z

1

z

�

�

�

x

�

�

��1

exp

�

�

�

x

�

�

�

�

dx:

Performing a hange of variables, w =

�

x

�

�

�

, yields

P (z) = 1�

Z

1

(

z

�

)

�

�

�

�

x

�

�

��1

exp f�wg

�

�

x

�

��1

�

�

dw

= 1�

Z

1

(

z

�

)

�

exp f�wg dw

= 1� exp

�

�

�

z

�

�

�

�

:

This funtion is now inverted to solve for the data point, z:

exp

�

�

�

z

�

�

�

�

= 1� P (z)

�

�

z

�

�

�

= ln(1� P (z))

�

z

�

�

�

= � ln(1� P (z))

z

�

= (� ln(1� P (z)))

1

�

z = �(� ln(1� P (z)))

1

�

:

2.4.2 Power exponential distribution

For the power exponential distribution, the umulative density funtion is given by

P (z) =

Z

z

�1

C exp

�

�

�

�

�

x

�

�

�

�

�

�

dx

= 1�

Z

1

z

C exp

�

�

�

�

�

x

�

�

�

�

�

�

dx:

Considering the ase when z � 0 yields

P (z) = 1�

Z

1

z

C exp

�

�

�

x

�

�

�

�

dx:
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Using a hange of variables, w =

�

x

�

�

�

, gives

P (z) = 1� C

Z

1

(

z

�

)

�

expf�wg

�

�

w

�

(

1�

1

�

)

dw

= 1�

C�

�

Z

1

(

z

�

)

�

expf�wgw

(

1

�

�1

)

dw

= 1�

C�

�

�

 

1

�

;

�

z

�

�

�

!

= 1�

1

2�

�

1

�

�

�

 

1

�

;

�

z

�

�

�

!

:

Similarly, for the ase when z < 0,

P (z) =

Z

z

�1

C exp

(

�

�

�x

�

�

�

)

dx

=

1

2�

�

1

�

�

�

 

1

�

;

�

�z

�

�

�

!

:

Finally, ombining the two ases for z yields

P (z) =

8

>

<

>

:

1�

1

2�

(

1

�

)

�

�

1

�

;

�

z

�

�

�

�

if z � 0

1

2�

(

1

�

)

�

�

1

�

;

�

�z

�

�

�

�

if z < 0:

Due to the diÆulty in inverting the inomplete Gamma funtion, this expression is not

solved expliitly for the data point, z. To determine the required value, numerial tehniques

are employed.

2.4.3 Nothed power exponential distribution

For the purpose of data generation, the nothed power exponential distribution is quite

similar to the power exponential distribution. The umulative density funtion is

P (z) =

Z

z

�1

p(x)dx:

Consider the ase when z > Æ. Then

P (z) = 1�

Z

1

z

C

1� �

exp

�

�

�

x

�

�

�

�

dx

= 1�

1

2(1� �)�

�

1

�

�

�

 

1

�

;

�

z

�

�

�

!
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where the expression for the integral is idential to that present for the ase of the power

exponential distribution. Now, onsider when �Æ � z � Æ. Here,

P (z) =

1

2

beause the nothed power exponential is symmetri, and has value 0 between �Æ and Æ.

Finally, when z < �Æ,

P (z) =

Z

z

�1

C

1� �

exp

(

�

�

�x

�

�

�

)

dx

=

1

2(1� �)�

�

1

�

�

�

 

1

�

;

�

�z

�

�

�

!

where again the integral was determined in the power exponential ase. Therefore, ombining

these results yields

P (z) =

8

>

>

>

>

<

>

>

>

>

:

1�

1

2(1��)�

(

1

�

)

�

�

1

�

;

�

z

�

�

�

�

if z > Æ

1

2

if � Æ � z � Æ

1

2(1��)�

(

1

�

)

�

�

1

�

;

�

�z

�

�

�

�

if z < �Æ:

One again, an expliit formula for z is not found beause of the omplexity involved in in-

verting the inomplete Gamma funtion. However, the expression an be solved numerially

to yield the value for the generated data point.
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CHAPTER 3

WATERMARK DETECTION

This hapter develops three main tehniques for deteting a watermark within a set of data.

These detetors are based on likelihood ratio testing (LRT), maximum likelihood estimation

(MLE), and loally optimal detetion (LOD). All three are derived from statistial detetion

theory, and eah one is formulated for the three distributions, namely, Weibull, power expo-

nential, and nothed power exponential. A fourth detetor is also onstruted for use with

nothed distributions as a simpli�ation of the likelihood ratio test detetor.

3.1 Simple Likelihood Ratio Test

The �rst detetion tehnique overed is based upon binary hypothesis testing (BHT) using

a likelihood ratio test [7℄. In this setup, it is assumed that the embedding strength, s, is

a known, non-random parameter, say s

�

. Then, the detetion problem is formulated as a

hoie between two hypotheses, hypothesis 0 (H

0

) and hypothesis 1 (H

1

). H

0

states that

the data do not ontain any watermark, while H

1

states that the data ontain a spei�

watermark. Eah hypothesis has assoiated with it a distribution for the data, p

0

(y) and

p

1

(y). To determine whih hypothesis to selet, a deision rule is developed that maps eah

possible data vetor to one hypothesis or the other. From statistial deision theory, it is

known that the optimal deision rule is given by a likelihood ratio test, with the ratio being

the distribution under H

1

to the distribution under H

0

,

L(y) =

p

1

(y)

p

0

(y)

:
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For the sake of simpliity, the log of this ratio, the log-likelihood ratio, lnL(y), is often

onsidered.

To perform the atual likelihood ratio test, this log-likelihood ratio is ompared

against a threshold value, . If the ratio is greater than the threshold, then H

1

is seleted;

while if it is less than the threshold H

0

is hosen.

The remaining question in the development of a likelihood ratio test-based detetor is

how to best hoose the threshold value. The seleted approah is based on Neyman-Pearson

hypothesis testing [7℄. The probability of false alarm, P

F

, is de�ned to be the probability

with whih the detetor falsely detets the watermark in a set of data. If a spei� value

of this probability, �, is seleted as the maximum permissible P

F

, then the orresponding

threshold, , an be determined suh that P

F

= �. In the ase of the log-likelihood statisti,

the false alarm probability is given by

P

F

= P [hoosing H

1

j H

0

is true℄

= P

0

[lnL(y) > ℄

=

Z

1



p

0;L

(`)d`

where p

0;L

(`) is the distribution of lnL(y) under H

0

. Thus, if this distribution is omputed,

the desired threshold value an be found by setting the resulting P

F

to � and solving for .

In summary, the likelihood ratio test detetor is formed by alulating a log-likelihood

ratio based on two hypotheses to yield a deision statisti. This statisti is then ompared

against a threshold to determine a yes or no answer as to the presene of the spei� water-

mark in the data vetor.

3.1.1 Weibull distribution

The �rst distribution onsidered for modeling the oeÆients is the Weibull distribution [3℄.

Here the two hypotheses used in the binary hypothesis test are

H

0

: s = 0

y

i

= x

i

; 1 � i � N
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H

1

: s = s

�

y

i

= x

i

(1 + s

�

m

i

) ; 1 � i � N

where N is the number of (high-magnitude) oeÆients that are watermarked. The distri-

bution under H

0

is given by

p

0

(y

i

) = p

x

i

(y

i

)

=

�

�

�

y

i

�

�

��1

exp

�

�

�

y

i

�

�

�

�

p

0

(y) =

N

Y

i=1

p

0

(y

i

)

=

N

Y

i=1

�

�

�

y

i

�

�

��1

exp

�

�

�

y

i

�

�

�

�

where p

x

i

(x

i

) is the Weibull distribution of the host data. The produt forming the dis-

tribution of the vetor follows from the assumption that all of the y

i

are independent and

identially distributed (iid). Similarly, the distribution under H

1

an be written as

p

1

(y

i

) =

1

1 + s

�

m

i

p

x

i

�

y

i

1 + s

�

m

i

�

=

�

�(1 + s

�

m

i

)

�

y

i

�(1 + s

�

m

i

)

�

��1

exp

(

�

�

y

i

�(1 + s

�

m

i

)

�

�

)

p

1

(y) =

N

Y

i=1

p

1

(y

i

)

=

N

Y

i=1

�

�(1 + s

�

m

i

)

�

y

i

�(1 + s

�

m

i

)

�

��1

exp

(

�

�

y

i

�(1 + s

�

m

i

)

�

�

)

:

With the distributions of the data under eah hypothesis found, it is now possible to

evaluate the log-likelihood ratio:

lnL(y) = ln

p

1

(y)

p

0

(y)

= ln

N

Y

i=1

�

�(1 + s

�

m

i

)

�

y

i

�(1 + s

�

m

i

)

�

��1

exp

(

�

�

y

i

�(1 + s

�

m

i

)

�

�

)

N

Y

i=1

�

�

�

y

i

�

�

��1

exp

�

�

�

y

i

�

�

�

�
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= ln

 

N

Y

i=1

1

(1 + s

�

m

i

)

�

exp

(

�

�

y

i

�(1 + s

�

m

i

)

�

�

+

�

y

i

�

�

�

)!

=

N

X

i=1

�� ln(1 + s

�

m

i

) +

N

X

i=1

"

�

�

y

i

�(1 + s

�

m

i

)

�

�

+

�

y

i

�

�

�

#

=

N

X

i=1

"

�� ln(1 + s

�

m

i

)�

�

y

i

�(1 + s

�

m

i

)

�

�

+

�

y

i

�

�

�

#

: (3.1)

To perform the atual likelihood ratio test, the log-likelihood ratio must be ompared

against a threshold value, . It should be noted that for a �xed watermark, m, the �rst

term in the summation in the ratio is a onstant and an thus be inorporated into the

threshold to form a new threshold, if desired. At this point, a Neyman-Pearson approah

an be applied to �nd an appropriate value for the threshold, from whih a binary deision

an be made regarding the presene of the watermark in the data.

3.1.2 Power exponential distribution

The likelihood ratio test detetor is now developed for the ase when the power exponential

distribution is used to model the host oeÆients [8℄. In this ase, the two hypotheses are

given by

H

0

: s = 0

y

i

= x

i

; 1 � i � N

H

1

: s = s

�

y

i

= x

i

(1 + s

�

m

i

) ; 1 � i � N

where N is the number of (high-magnitude) oeÆients that are watermarked. The distri-

bution under H

0

is

p

0

(y

i

) = C exp

�

�

�

�

�

y

i

�

�

�

�

�

�

p

0

(y) =

N

Y

i=1

C exp

�

�

�

�

�

y

i

�

�

�

�

�

�
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while the distribution under H

1

is

p

1

(y

i

) =

1

1 + s

�

m

i

p

x

i

�

y

i

1 + s

�

m

i

�

=

C

1 + s

�

m

i

exp

(

�

�

�

�

�

y

i

� (1 + s

�

m

i

)

�

�

�

�

�

)

p

1

(y) =

N

Y

i=1

C

1 + s

�

m

i

exp

(

�

�

�

�

�

y

i

� (1 + s

�

m

i

)

�

�

�

�

�

)

:

Thus, the log-likelihood ratio is given by

lnL(y) = ln

p

1

(y)

p

0

(y)

= ln

N

Y

i=1

C

1 + s

�

m

i

exp

(

�

�

�

�

�

y

i

� (1 + s

�

m

i

)

�

�

�

�

�

)

N

Y

i=1

C exp
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: (3.2)

As in the ase of the Weibull distribution, a threshold value an be ompared against

the deision statisti to �nd a yes or no detetor output.

It is interesting to note that this statisti is nearly idential to the simple likelihood

ratio test statisti (3.1) for the Weibull distribution. The di�erenes are the presene of the

absolute values and a saling fator of � on the onstant term. This similarity is expeted

beause the two distributions have similar forms, with the power exponential possessing

absolute value terms.

3.1.3 Nothed power exponential distribution

Using likelihood ratio testing, a watermark detetor an be found for the ase when the

marked oeÆients are modeled by the nothed power exponential distribution. The two
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hypotheses are stated as

H

0

: s = 0

y

i

= x

i

; 1 � i � N

H

1

: s = s

�

y

i

= x

i

(1 + s

�

m

i

) ; 1 � i � N

where N is the number of (high-magnitude) oeÆients that are watermarked. The distri-

bution under H

0

is

p

0

(y

i

) =

8
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where C is de�ned in (2.3), and Æ

i

= Æ(1 + s

�

m

i

).

The likelihood ratio is given by

L(y) =

p

1

(y)

p

0

(y)

:

Due to the onditions in the de�nition of the two distributions, the likelihood ratio is also

de�ned onditionally as follows,
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Thus the log-likelihood ratio is

lnL(y) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

N

X

i=1

 

ln

1

1 + s

�

m

i

�

�

�

�

�

y

i

� (1 + s

�

m

i

)

�

�

�

�

�

+

�

�

�

y

i

�

�

�

�

�

!

if (jy

i

j > Æ

i

8i) and (jy

i

j > Æ 8i)

1 if (jy

i

j > Æ

i

8i) and

(9i : jy

i

j � Æ and m

i

= �1)

�1 if (9i : jy

i

j � Æ

i

and m

i

= 1) and

(jy

i

j > Æ 8i)

N

X

i=1

 

ln

1

1 + s

�

m

i

�

�

�

�

�

y

i

� (1 + s

�

m

i

)

�

�

�

�

�

+

�

�

�

y

i

�

�

�

�

�

!

else.

(3.3)

These results are quite intuitive. In the �rst ase, when the y

i

are in the appropriate ranges,

the statisti is the same as in the ase of the power exponential. When one of the distribution

onditions is met but the other is not, one of the hypotheses is impossible, whih is learly

indiated by the presene of in�nities in the statisti. Finally, when the range onditions fail

in both hypotheses (a zero-probability event), the regular statisti is again alulated.

Figure 3.1 illustrates the four regions present in the deision statisti. Note that

Regions 1 and 4 an our for either m

i

= �1 or m

i

= 1, while Region 2 only ours when

m

i

= �1, and Region 3 only ours when m

i

= 1.
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Region 1

yi

0 d-d di-di

p1 (yi)

p0 (yi)
(mi = 1)

(a)

Region 1

yi

0 d-d di-di

p1 (yi)

p0 (yi)
(mi = -1)

(b)

Region 2

yi

0 d-d di-di

p1 (yi)

p0 (yi)
(mi = -1)

()

Region 3

yi

0 d-d di-di

p1 (yi)

p0 (yi)
(mi = 1)

(d)

Region 4

yi

0 d-d di-di

p1 (yi)

p0 (yi)
(mi = 1)

(e)

Region 4

yi

0 d-d di-di

p1 (yi)

p0 (yi)
(mi = -1)

(f)

Figure 3.1 Four regions utilized in the likelihood ratio test statisti for the nothed power

exponential distribution.
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3.2 Simple Detetor for Nothed Distributions

The likelihood ratio test detetor developed for the nothed power exponential distribution

reveals a key bene�t resulting from the use of a nothed distribution: it is sometimes possible

to deisively eliminate one of the two hypotheses simply by omparing the reeived data

samples to the noth thresholds. Using this idea, a simpli�ed version of the likelihood ratio

test detetor an be developed for any nothed distribution. Consider the two hypotheses

presented to the LRT detetor,

H

0

: s = 0

y

i

= x

i

; 1 � i � N

H

1

: s = s

�

y

i

= x

i

(1 + s

�

m

i

) ; 1 � i � N

where N is the number of (high-magnitude) oeÆients that are watermarked. As seen in

the previous development, a deision as to the presene of the watermark an be made with

ertainty if a single data sample, y

i

, is found to lie either in Region 2 or 3, as shown in Figure

3.1 () and (d). Now, de�ne E

2

and E

3

to be the events that either of these ases ours.

More formally,

E

2

= fy : Æ

i

< jy

i

j < Æ and m

i

= �1 for some ig

and

E

3

= fy : Æ < jy

i

j < Æ

i

and m

i

= 1 for some ig:

Now, the probability that E

3

ours under H

0

is found,

P

0

[E

3

℄ = P

0

[9i : Æ < jy

i

j < Æ

i

℄

= 1�

N

2

Y

i=1

P

0

[jy

i

j > Æ(1 + s

�

)℄

= 1� (2P

0

(�Æ(1 + s

�

)))

N

2

where P

0

(z) =

R

z

�1

p

0

(x)dx is the umulative density funtion of p

0

(x). Note that in the

produt, only

N

2

terms are inluded beause E

3

only deals with m

i

= 1. Now, sine for a
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nothed distribution, P

0

(�Æ) =

1

2

, and sine �Æ(1 + s

�

) < �Æ, it is lear that 0 < P

0

(Æ(1 +

s

�

)) <

1

2

. Thus, 0 < 2P

0

(�Æ(1+ s

�

)) < 1, implying that (2P

0

(�Æ(1+ s

�

)))

N

2

approahes 0 as

N approahes in�nity. Consequently, P

0

[E

3

℄ approahes 1 as N approahes in�nity. In other

words, if no watermark is present, the probability of a data point falling in Region 3 goes to

1 as N goes to in�nity.

Similarly, the probability that E

2

ours under H

1

is found as

P

1

[E

2

℄ = P

1

[9i : Æ

i

< jy

i

j < Æ℄

= 1�

N

2

Y

i=1

P
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[jy

i

j > Æ℄

= 1� (2P

1

(�Æ))

N

2

where P

1

(z) =

R

z

�1

p

1

(x)dx is the umulative density funtion of p

1

(x). One again, only

N

2

terms have been inluded in the produt beause E

2

an only our when m

i

= �1. By an

argument similar to that given above, (2P

1

(�Æ))

N

2

approahes 0 as N approahes in�nity.

Hene, P

1

[E

2

℄ approahes 1 as N approahes in�nity. In other words, if a watermark is

present, the probability of a data point lying in Region 2 goes to 1 as N goes to in�nity.

With this knowledge of the asymptoti behavior of y, a simple detetor (SD) an be

designed. Using the same four regions de�ned for the LRT detetor, the simple detetor is

given by

D(y) =

8
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8i) and (jy

i

j > Æ 8i)

H

1

with probability 1� �

hoose H

1

if (jy

i

j > Æ

i

8i) and

(9i : jy

i

j � Æ and m

i

= �1)

hoose H

0

if (9i : jy

i

j � Æ

i

and m

i

= 1)

and (jy

i

j > Æ 8i)

hoose H

0

with probability �; else

H

1

with probability 1� �

(3.4)

where � is a parameter that permits preferene to be given to a spei� hypothesis in the ase

of Regions 1 and 4. From the above derivation, it is known that, asymptotially, the middle
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two ases in the deision statisti will our with ertainty. Hene, this simple detetor

is equivalent to the optimal LRT detetor for nothed distributions, as N goes to in�nity.

Finally, it should be noted that a de�nite yes or no deision is produed by the detetor in

eah of the possible ases.

3.3 Maximum Likelihood Estimation

The previous detetor employed binary hypothesis testing using a likelihood ratio to deter-

mine, for a known embedding strength, s, the likelihood that a spei� watermark is present

in a signal. Another method of watermark detetion is to estimate the embedding strength

given the signal data [4℄. This estimate will indiate the strength of presene of a spei�

watermark in a set of data. Then, the estimate is used as the deision statisti in a binary

hypothesis test to determine the presene of the watermark. However, it should be noted

that this use of hypothesis testing is suboptimal beause a likelihood ratio test is the optimal

binary hypothesis test.

The assumption of an unknown embedding strength that is made in the derivation of

this detetor is often motivated as a simple means of ombating an attak on the watermarked

data. Although the atual embedding strength is known, an attak an be modeled, in a

simplisti sense, as a hange in this parameter. Then, the strength is no longer known

at the detetor and, thus, must be estimated. This approah is not an optimal means of

inorporating an attak and, hene, results in a suboptimal detetor. However, this detetor

has been fairly widely studied and failitates interesting omparisons with the likelihood

ratio test detetor.

To develop the estimation detetor, the tehnique utilized to perform the estimation

given the signal data is �rst de�ned. As the name suggests, maximum likelihood estimation

is a means of estimating the most likely value for a parameter on the basis of knowledge

of the distribution of the data given this parameter. Thus, the detetor should estimate a

value for s knowing the distribution of y given s, p

s

(y). The maximum likelihood estimate

is given by

ŝ = argmax

s

p

s

(y):
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To proeed, the funtion p

s

(y) is maximized over s to �nd the MLE. The resultant maxi-

mizing value for s will be the maximum likelihood estimate, ŝ.

Now, a binary hypothesis test is employed to provide an answer stating whether or

not the watermark is present. The deision statisti, ŝ, is ompared against a threshold, � ,

and the watermark is delared to be present if ŝ > � . Otherwise, the detetor states that

no watermark is present. To selet � , the distribution of the output statisti (MLE) an be

determined and then, for example, a Neyman-Pearson onstraint on the probability of false

alarm ould be used to solve for � . In any ase, � should be between 0 and 1 beause it

represents a uto� in the embedding strength, whih is known to be between 0 and 1.

In summary, the maximum likelihood estimation-based detetor omputes the MLE

for s on the basis of the data vetor, yielding a measure of the strength of presene of the

spei� watermark. This output is then ompared against a threshold to determine a yes or

no answer for the presene of the watermark.

3.3.1 Weibull distribution

The �rst distribution onsidered for the maximum likelihood estimation detetor is the

Weibull distribution [4℄. From the likelihood ratio test setion, the required distribution

of y given s is found to be

p

s
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N

Y

i=1

�
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:

Now, the natural logarithm of this distribution is found to simplify alulations,

ln p

s
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:

To maximize this expression, its derivative is set to 0 and then solved for ŝ, the maximizing

value of s; hene,

0 =

� ln p

s

(y)

�s

�

�

�

�

s=ŝ
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i

+

y

�

i

�

�

�

�m

i

(1 + ŝm
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Sine s is small, the approximation of a �rst-order Taylor series is used, yielding
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i

)

#

=

N

X

i=1

"

��m

i

+ �ŝm

2

i

+

�m

i

y

�

i

�

�

� (� + 1)

�

�ŝm
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ŝ =

N

X

i=1

"

�m

i

�

�m

i

y

�

i

�

�

#

N

X

i=1

�

�m

2

i

� (� + 1)

�

�m

2

i

y

2

i

�

�

��

=

N

X

i=1

y

�

i

m

i

(� + 1)

N

X

i=1

y

�

i

�N�

�

where it was noted that m
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2 f�1; 1g so m
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zero-mean sequene. Thus, the MLE for s is given by
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Hene, an expression for the estimated embedding strength of the given watermark

has been found. The detetor an now ompare this value against an appropriate threshold,

for example, one based on a Neyman-Pearson onstraint, to deide whether or not the spei�

watermark is present in the data.

3.3.2 Power exponential distribution

As expeted, the derivation of the maximum likelihood estimation-based detetor for the

ase of power exponentially distributed data is quite similar to that for Weibull distributed
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data. Again, the maximum likelihood estimate of s is given by

ŝ = argmax

s

p

s

(y)

where p

s

(y) is the distribution of the data, y, given the strength parameter, s. From the like-

lihood ratio test setion for the power exponential distribution, this onditional distribution

is
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:

This funtion is now maximized over s to �nd the MLE, noting again that it is

equivalent to maximize ln p

s

(y) beause ln(x) is an inreasing funtion:
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The derivative of this expression is now set to 0 and solved for ŝ, the maximizing value of s:
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Sine s is small, the approximation of a �rst-order Taylor series is again used, yielding
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N
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�
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�
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�

�
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�

=

N
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�

m

i

(� + 1)

N

X

i=1

jy

i

j

�

�

N�

�

�

where it is noted that m

i

2 f�1; 1g so m

2

i

= 1, and that

N

X

i=1

m

i

= 0 beause m

i

is a

zero-mean sequene. Thus, the MLE for s is given by

ŝ =

N

X

i=1

jy

i

j

�

m

i

(� + 1)

N

X

i=1

jy

i

j

�

�

N�

�

�

: (3.6)

As in the ase of the Weibull distribution, Neyman-Pearson onstraints an be utilized

to provide a binary detetion response based on the estimate.

Similar to the likelihood ratio test, the MLE statisti for the power exponential dis-

tribution bears resemblane to that for the Weibull distribution, Equation (3.5). The major

di�erene is the presene of absolute values in the power exponential ase, reeting its

inlusion of both positive and negative valued data.

3.3.3 Nothed power exponential distribution

The maximum likelihood estimate is now determined for the ase of the nothed power

exponential distribution. From the likelihood ratio testing setion, the distribution of the

output data y given s for this distribution is

p

s

(y) =

8

>

>

<

>

>

:

N

Y

i=1

C

(1� �)(1 + sm

i

)

exp

(

�

�

�

�

�

y

i

� (1 + sm

i

)

�

�

�

�

�

)

if jy

i

j > Æ

i

8i

0 else .

To �nd the MLE, this distribution should be maximized over the parameter s. However, sine

the distribution is de�ned over two ranges where the boundary is a funtion of s (beause

Æ

i

= Æ(1 + sm

i

)), the maximization problem beomes more ompliated.
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To maximize p

s

(y), the maximizing value of s, ŝ, must ensure that jy

i

j > Æ

i

8i. This

requirement will present a restrition on the range of possible values for ŝ. The data y is

split into two groups depending on the value of m

i

. Let I

+

denote the set of indies for

whih m

i

= 1 and let I

�

denote the set of indies for whih m

i

= �1. Then,

jy

i

j > Æ

i

= Æ(1 + ŝ) 8i 2 I

+

ŝ <

jy

i

j

Æ

� 1 8i 2 I

+

ŝ <

min

i2I

+

jy

i

j

Æ

� 1

whih provides an upper bound on ŝ. Similarly,

jy

i

j > Æ

i

= Æ(1� ŝ) 8i 2 I

�

ŝ > 1�

jy

i

j

Æ

8i 2 I

�

ŝ > 1�

min

i2I

�

jy

i

j

Æ

whih provides a lower bound on ŝ. Combining these restritions with the known range of

embedding strengths yields an overall bound of

8

>

>

>

>

<

>

>

>

>

:

1�

min

i2I

�

jy

i

j

Æ

< ŝ < min

 

1;

min

i2I

+

jy

i

j

Æ

� 1

!

if 1�

min

i2I

�

jy

i

j

Æ

> 0

0 � ŝ < min

 

1;

min

i2I

+

jy

i

j

Æ

� 1

!

else.

Let this range of aeptable ŝ values be denoted by S. Therefore, the MLE is given by

ŝ = argmax

s2S

N

Y

i=1

C

(1� �)(1 + sm

i

)

exp

(

�

�

�

�

�

y

i

� (1 + sm

i

)

�

�

�

�

�

)

: (3.7)

This expression an be solved numerially to yield the estimate of the embedding strength.

As before, the resulting estimate may now be ompared against a threshold in the range [0,

1) to yield a binary output from the detetor.

3.4 Loally Optimal Detetor

The �nal detetor onsidered makes use of the knowledge that s takes on small values. Thus,

a loally most powerful test is onsidered, as desribed by Poor [7℄. This test �nds a deision
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rule for the ase when the data distributions under the two hypotheses are known to be quite

lose together. To apply this type of test to the watermark detetion problem, a omposite

binary hypothesis test is formulated. A omposite binary hypothesis test is one in whih at

least one of the hypotheses inludes a range of values for the variable in question. In this

ase, hypothesis 0 states the embedding strength of the watermark in the data is s

0

, whih

here will be taken to be 0, meaning no watermark is present. Hypothesis 1 states that the

watermark is present with some non-zero strength.

Then, the loally most powerful test is given by

argmax

D

P

0

D

(D; s

0

= 0)

subjet to the onstraint that P

F

(D; s

0

) � �, where P

D

is the probability of detetion (the

probability of orretly deteting the watermark when it is present), P

F

is the probability

of false alarm, and D is a deision rule. The loally optimal test an be formulated as a

modi�ed likelihood ratio test in whih p

1

(y) in the standard ratio is replaed by

�p

s

(y)

�s

�

�

�

s=s

0

.

This modi�ed likelihood ratio will yield a deision statisti. As seen previously, a

omparison threshold an be found by onsidering the distribution of the statisti, and

then applying a �-level Neyman-Pearson test, for example, to determine an appropriate

threshold, � . Using this threshold, the detetor an form a binary answer for the presene

of the watermark.

In summary, the detetor based upon a loally optimal test is applied by omputing

a deision statisti, based on a modi�ed likelihood ratio, whih indiates the strength of

presene of the spei� watermark in the data. The statisti an then be ompared against

a threshold to yield a binary output.

3.4.1 Weibull distribution

The loally optimal detetor is �rst developed for the situation when the host data is modeled

by the Weibull distribution. Here, the two hypotheses are given by

H

0

: s = 0 = s

0

y

i

= x

i

; 1 � i � N
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H

1

: s > 0

y

i

= x

i

(1 + sm

i

) ; 1 � i � N:

The loally most powerful test an now be formulated as a modi�ed likelihood ratio test.

Thus, the partial derivative

�p

s

(y)

�s

�

�

�

s=s

0

is required:

p

s

(y) =

�
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��1
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)
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(
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�

�

�
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Now, reall that
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exp
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:

Hene, the modi�ed likelihood ratio is given by

L(y) =
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(y)

�s

�
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��y
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�
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(3.8)
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where, as in the development of the MLE, the fat thatm is a zero-mean sequene has again

been used. A reasonable threshold against whih to ompare the output statisti may now

be determined in order to yield a binary detetor response.

It is interesting to note the relation between this statisti and the ommonly used

orrelation detetor [2℄, whose output is given by

N

X

i=1

y

i

m

i

. Sine the statisti given in Equa-

tion (3.8) has loally optimal properties, it is expeted that the detetor based upon it will

have a lower probability of error than the standard orrelation detetor. This improvement

ours beause, for the loally optimal ase, the separation of the distribution of the statisti

for when the watermark is present and when it is not present, is greater than in the basi

orrelator ase.

3.4.2 Power exponential distribution

In the ase of the loally optimal detetor for power exponentially distributed data [8℄, the

omposite hypothesis test is formulated as follows:

H

0

: s = 0 = s

0

y

i

= x

i

; 1 � i � N

H

1

: s > 0

y

i

= x

i

(1 + sm

i

) ; 1 � i � N:

Now, the partial derivative required in the modi�ed likelihood ratio is given by

p

s

(y) =

N

Y

i=1

C

1 + sm

i

exp

�

�

jy

i

j

�

�

�

(1 + sm

i

)

�

�

�p

s

(y)

�s

= p

s

(y)

� ln p

s

(y)

�s

=

 

N

Y

j=1

C

1 + sm

j

exp

(

�

�

�

�

�

y

j

�(1 + sm

j

)

�

�

�

�

�

)!

�

 

�

N

X

i=1

m

i

1 + sm

i

+

N

X

i=1

�

�

�

y

i

�

�

�

�

�

�m

i

(1 + sm

i

)

�+1

!

:

36



Realling
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;

the modi�ed likelihood ratio is given by
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: (3.9)

One again, a threshold an now be utilized so that the detetor provides a yes or no response.

Again, a strong parallel is seen between this statisti and that for the Weibull distri-

bution under loally optimal detetion, whih is given in Equation (3.8). The only di�erenes

between the two are the presene of the absolute value around the y

i

for the ase of the power

exponential distribution and a saling fator.

3.4.3 Nothed power exponential distribution

The �nal distribution onsidered for the loally optimal detetor is the nothed power expo-

nential distribution. To begin, the omposite hypothesis test is formulated as follows,

H

0

: s = 0 = s

0

y

i

= x

i

; 1 � i � N

H

1

: s > 0

y

i

= x

i

(1 + sm

i

) ; 1 � i � N:

Here, the distribution of the output onditioned on the embedding strength is given by

p
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(y) =
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j > Æ

i

8i

0 else.
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To be able to perform the required derivative with respet to s, the ondition jy

i

j > Æ

i

should

be written expliitly in terms of s. As in the ase of maximum likelihood estimation, the

vetor y is divided into two groups. Let I

+

denote the set of indies for whih m

i

= 1, and

let I

�

denote the set of indies for whih m

i

= �1. Then,

jy

i

j > Æ(1 + s) 8i 2 I

+

jy

i

j

Æ

> 1 + s 8i 2 I

+

s <

jy

i

j

Æ

� 1 8i 2 I

+

s <

min

i2I

+

jy

i

j

Æ

� 1:

Similarly,

jy

i

j > Æ(1� s) 8i 2 I

�
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> 1� s 8i 2 I

�

s > 1�
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j

Æ

8i 2 I

�
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i
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Æ

:

Combining these bounds and the known bound on s, [0, 1), provides the overall ondition
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i2I
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Æ

� 1

!

else.

For simpliity, let this range on s be denoted by S. Note that if kI

�

k � 1, then the �rst

ase ours with high probability. The onditional distribution an now be rewritten with

the ranges shown in terms of s:

p

s
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(1� �)(1 + sm

i

)

exp

(

�

�

�

�

�

y

i
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)
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)

if s 2 S

0 else.

When the derivative of this funtion is used in the modi�ed likelihood ratio test, it is eval-

uated at the point s = s

0

= 0. If 0 is not inluded in S, then the numerator of the ratio is
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equal to 0. However, if 0 is inluded in S, the derivative is non-zero. Thus, the onditions

must be found for whih the lower bound on S inludes 0:

1�

min

i2I
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� 0

min

i2I

�
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Only when this ondition is met is the slope of p

s

(y) not equal to 0 at s = 0. More preisely,

the derivative is given by
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0 else

where the fat that m is a zero-mean sequene is employed. Now, reall that

p
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0 else.

Thus, the modi�ed likelihood ratio is given by

L(y) =
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(3.10)

where the �nal redution an be performed beause the inner two ases an never our. One

again, the result of the likelihood ratio an be ompared against a threshold to produe a

binary answer as to the presene of the watermark in the given data.
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Although this modi�ed likelihood ratio test does not take on the same form as the

ratio for the LRT of the same distribution, onditions still exist for whih the statisti will

attain in�nite values. In these instanes, the presene of the watermark is lear and is

reeted as suh in the statisti. Thus, it is expeted that the performane of the detetor

will be enhaned by the presene of the possible in�nities.
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CHAPTER 4

CHERNOFF BOUNDS

Simple binary hypothesis testing using a likelihood ratio test forms a oneptually simple

statistial detetor. However, the omputation of suh deision statistis an often be quite

omplex. Thus, bounds on the performane indiators P

D

and P

F

are desired. The approah

taken here is to onsider Cherno� bounds [7℄, whih are large-deviation bounds. The bound

provided for P

F

is an upper bound, while the bound provided for P

D

is a lower bound. Hene,

the bound on a reeiver operating harateristi (ROC) urve (P

D

vs. P

F

) is also a lower

bound. Therefore, Cherno� bounds provide an indiation of the worst-ase performane

of a detetor using binary hypothesis testing with a likelihood ratio test. In this hapter,

Cherno� bounds are formulated for the general ase of multipliative watermarking, and then

speialized to the likelihood ratio test detetors based on the Weibull, power exponential,

and nothed power exponential distributions.

4.1 Cherno� Bounds for Multipliative Watermarking

As noted in the development of the various likelihood ratio test detetors, when multipliative

watermarking is employed to insert a watermark into a set of host data, the distribution of

eah element of the output under H

1

is a saled version of the orresponding distribution

under H

0

:

p

1

(y

i

) =

1

1 + s

�

m

i

p

0

�

y

i

1 + s

�

m

i

�

:

This property allows Cherno� bounds to be onstruted in a general sense, and later spe-

ialized to individual distributions.
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To begin, the umulant generating funtion of lnL(y) under H

0

, �

0

(t

0

), for t

0

> 0, is

de�ned as [7℄
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0
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1

(y)dy:

Using the above saling property, the umulant generating funtion an be rewritten entirely

in terms of p

0

:

�
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) = ln
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0
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0
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0
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�
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�
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�
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i

=

N

X

i=1

lnG

�

t

0

; p

0

;

1

1 + s

�

m

i

�

where the funtion G(t; f; z) =

R

f

1�t

(y)z

t

f

t

(yz)dy is introdued to simplify notation. The

umulant generating funtion under H

1

is similarly given for t

1

< 0 by

�

1

(t

1

) = �

0

(t

1

+ 1)

=

N

X

i=1

lnG

�

t

1

+ 1; p

0

;

1

1 + s

�

m

i

�

:

With the umulant generating funtions de�ned, a bound on the probability of false

alarm an be written as [7℄

P

F

� expf�t

0

 + �

0

(t

0

)g

where  is the deision threshold. Then, the Cherno� bound is de�ned as the bound resulting

from hoosing a value, t

�

0

, whih maximizes t

0

 � �

0

(t

0

):

P

F

� expf�t
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0

 + �
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)g:

Similarly, a bound on P

M

, and hene P

D

, is given by

P
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� expf�t
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)g
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)g:

Finally, the Cherno� bound on P

D

is found by maximizing t

1

 � �

1

(t

1

) over t

1

, yielding

P

D

� 1� expf�t

�

1

 + �

1

(t

�

1

)g:
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These Cherno� bounds developed for multipliative watermarking may now be spe-

ialized for the three modeling distributions simply by substituting the desired p

0

into the

funtion G de�ning the umulant generating funtions.

In addition to examining detetor performane using Cherno� bounds on the P

D

and P

F

urves, another related measure is often utilized. The Cherno� distane is de�ned as

D(t

�

0

) = ��

0

(t

�

0

), and measures the degree of separation between the distributions of the log-

likelihood statisti under the two hypotheses. Thus, a higher Cherno� distane orresponds

to a stronger detetor.

4.2 Weibull Distribution

The �rst Cherno� bound speialized for the Weibull distribution is one on the probability

of false alarm, P

F

. Consider the umulant generating funtion of lnL(y) under H

0

, �
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),
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> 0:
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�

�(1� t
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(4.1)
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:

Note that for the integral to onverge in (4.1), it is required that

�1 + t

0

�

t

0

(1 + s

�

m

i

)

�

< 0

t

0

�

1�

1
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�

m

i

)

�

�

< 1

t

0

�
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�

m
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)
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� 1
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�

m
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)
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�
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<
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�
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)

�
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�

m
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)

�

� 1

:

But when m

i

= �1,

(1+s

�

m

i

)

�

(1+s

�

m

i

)

�

�1

< 0, so the bound t

0

> 0 suÆes. However, the upper bound

holds for all i for whih m

i

= 1. But, sine only a single value of t

0

is seleted, if m

i

= 1 for

any i, then the upper bound must be inluded. Thus, the overall range restrition is given

by

8
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)

�
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Using the equation for �

0

(t

0

) and the above bound, a bound on P

F

is given by

P
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� exp f�t

0

 + �

0
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By maximizing t

0

 � �

0

(t

0

) numerially over the allowable range of t

0

, the tightest

bound on P

F

an be ahieved. The maximizing value of t

0

will be denoted by t

�

0

. Then, the

Cherno� bound on P

F

is given by

P

F

� exp f�t

�

0

 + �

0

(t

�

0

)g :

Similarly, a lower bound on the probability of miss (not deteting a watermark when

it is present), P

M

, and, hene, an upper bound on the probability of detet, P

D

= 1� P

M

,

an be found. Consider the umulant generating funtion of lnL(y) under H

1

, �

1

(t

1

), for

t

1

< 0:
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Here the restrition on t

1

for onvergene is given by

t
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)
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But when m

i

= 1,

(1+s

�

m

i

)

�

(1+s

�

m

i

)

�

�1

� 1 > 0, so the bound t

1

< 0 suÆes. The lower bound holds

for all i for whih m

i

= �1. But, sine only one value of t

1

is hosen, the lower bound is

inluded if m

i

= �1 for any i. Thus the overall bounds on t

1

are given by
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Then, a bound is given for the above restritions by

P

D

� 1� exp f�t

1

 + �

1

(t

1

)g :

In order to ahieve the tightest bound, t

1

 � �

1

(t

1

) is numerially maximized over t

1

to �nd the maximizing value t

�

1

. Hene, the Cherno� bound is given by

P
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4.3 Power Exponential Distribution

Cherno� bounds are now developed for the ase when the oeÆients are modeled using the

power exponential distribution. First, an upper bound on the probability of false alarm, P

F

,

is found. To begin, onsider the umulant generating funtion of lnL(y) under H

0

, �
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Note that for the integral in the above expression to onverge, the same restrition on t

0

as

present in the ase of the Weibull distribution holds, namely,

�1 + t
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This expression leads to the overall restritions of
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Using the equation for �
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) and the above bound, a bound on P
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To ahieve the tightest bound, t
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) is maximized with respet to t
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performing this maximization numerially to �nd the maximizing value, t
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, the Cherno�

bound on P
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an be written as
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Now, using a similar onstrution, a lower bound on the probability of miss, P

M

,

and, hene, an upper bound on the probability of detet, P

D

= 1� P

M

, is found. To begin,

onsider the umulant generating funtion of lnL(y) under H

1

, �

1
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), for t
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Here the restrition on t

1

for onvergene is also idential to that in the Weibull distribution

ase, namely,
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Hene, the overall bounds on t

1

are given by
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< 0 else.
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Thus, a bound is given for the above restritions by
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Again, wishing to obtain the tightest bound, t
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4.4 Nothed Power Exponential Distribution

Finally, the Cherno� bounds on the probability of false alarm and the probability of detet

are now found for the ase of the nothed power exponential distribution. To begin, an upper

bound on the probability of false alarm, P

F

, is found. Consider the umulant generating

funtion of lnL(y) under H
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(4.2)

where �(a; z) =

R

1

z

expf�tgt

a�1

dt with a > 0, is the inomplete Gamma funtion. As

seen in the ase of the power exponential distribution, t

0

must be bounded suh that the

integral onverges. The resulting bound is the same as that found in the ase of the power

exponential, namely,

8

<

:

0 < t

0

<

(1+s

�

)

�

(1+s

�

)

�

�1

if 9i : m

i

= 1

0 < t

0

else.

Using this equation for �

0

(t

0

), a bound on P

F

is given by

P

F

� exp f�t

0

 + �

0

(t

0

)g :

To ahieve the tightest bound, t

0

 � �

0

(t

0

) is maximized with respet to t

0

. This

maximization is performed numerially to �nd the maximizing value, t

�

0

. Then, the Cherno�

bound on P

F

an be written as

P

F

� exp f�t

�

0

 + �

0

(t

�

0

)g :

Now, using a similar onstrution, a lower bound on the probability of miss, P

M

,

and hene an upper bound on the probability of detet, P

D

= 1 � P

M

, is found. To begin,
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onsider the umulant generating funtion of lnL(y) under H

1

, �

1

(t

1

) for t

1

< 0:

�

1

(t

1

) = �

0

(t

1

+ 1)

=

N

X
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�

� ln �

�

1

�

�

� ln(1� �) + (t

1

+ 1) ln

�

1

1 + s

�

m

i

�

+ ln�

�

1

�

;

�

1

�

�

�
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+ 1

�

�

+

t
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+ 1

�

�

(1 + s

�

m

i

)

�

�

~

Æ

�

i

�

�

1

�

ln

�

�t

1

+

t

1

+ 1

(1 + s

�

m

i

)

�

��

:

Again, restritions on t

1

for onvergene are present and are the same as in the ase of the

power exponential,

8

<

:

(1�s

�

)

�

(1�s

�

)

�

�1

� 1 < t

1

< 0 if 9i : m

i

= �1

t

1

< 0 else.

Thus, a bound is given by

P

M

� exp f�t

1

 + �

1

(t

1

)g

1� P

D

� exp f�t

1

 + �

1

(t

1

)g

P

D

� 1� exp f�t

1

 + �

1

(t

1

)g :

Again, wishing to obtain the tightest bound, t

1

 � �

1

(t

1

) is maximized with respet

to t

1

. By solving this equation numerially for the maximizing value, t

�

1

, the Cherno� bound

on P

D

an be written as

P

D

� 1� exp f�t

�

1

 + �

1

(t

�

1

)g :
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CHAPTER 5

THEORETICAL ANALYSIS

This hapter desribes the analyzes and experiments performed in order to test the water-

mark detetors using syntheti data, and presents their results. First, the Cherno� bounds

on the likelihood ratio test detetors are presented to study the behavior of the detetors

over a range of watermark lengths. The performane of the simpli�ed detetor is then

derived and examined. Next, omments are made on the degree of diÆulty experiened

by an eavesdropper attempting to detet the watermark. Finally, for a spei� watermark

length, the performane of the detetors is evaluated through Monte Carlo simulation using

data synthesized aording to the orresponding distributions. By omparing the Monte

Carlo simulation results for the likelihood ratio test detetor with the Cherno� bounds, the

tightness of the bounds an be assessed.

5.1 Evaluation of Cherno� Bounds

In order to demonstrate the behavior of the derived Cherno� bounds, the bounds are alu-

lated for eah of the three distributions, averaging over 100 messages, for a range of message

sizes. The averaging is performed beause of the dependene of the bound on the message,

m. This dependene diminishes as the length of the message inreases beause then the

number of instanes of m

i

= 1 and of m

i

= �1 will eah beome loser to

N

2

. However,

small message sizes are also inluded in the experiments, so multiple simulations are utilized

and averaged. The omputed bounds may be used to evaluate detetor performane without

the need for the large Monte Carlo simulations that are required for very high detetion

probabilities and low false alarm probabilities.
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Figures 5.1 and 5.2 ontain the Cherno� bound results for the Weibull and power ex-

ponential distributions, respetively. Figure 5.3 ontains the bounds for the nothed power

exponential distribution on a logarithmi sale. Some general omments an be made re-

garding the plots for all of the distributions. In the ase of P

D

vs. Threshold and P

F

vs.

Threshold, the graphs demonstrate that as the number of watermark bits is inreased, the

transition from high probabilities to low probabilities is spread out aross a larger range

of thresholds. For the P

D

vs. P

F

graph, the urves approah the top left-hand orner as

the number of bits inreases. This result is expeted beause the number of bits used for

the watermark is inreased; hene, more data are present, making the watermark easier to

detet. Thus, higher detetion probabilities are ahieved for the same false alarm probabili-

ties. The latter plot demonstrates the bound on the reeiver operating harateristi urve.

For the Weibull and power exponential distributions, many of the sequene lengths result

in bounds lying below the line P

D

= P

F

. These bounds are trivial bounds beause better

performane ould be ahieved simply by ipping a oin (yielding (P

D

; P

F

) = (0:5; 0:5)),

by always hoosing H

0

((P

D

; P

F

) = (0; 0)), or by always hoosing H

1

((P

D

; P

F

) = (1; 1)).

The logarithmi plots for the nothed power exponential ROC urve are utilized beause,

unlike the Weibull and power exponential bounds, the detetion and false alarm probabilities

beome extremely lose to 1 and 0, respetively, as the number of bits is inreased. Thus,

the log sale allows these preise values to be examined more expliitly. However, to plot

P

D

more learly in a log fashion, the aÆne transform P

D

� 1 = �P

M

is used. Finally, the

urves for 128, 256, and 512 watermark bits are not present on the P

D

or ROC graphs for the

nothed power exponential ase beause their detetion probabilities were identially equal

to 1 for the number of simulations performed.

The Cherno� distanes are omputed for eah of the three oeÆient modeling dis-

tributions, for the spei� threshold of zero, and for watermark length of 32. The results are

given in Table 5.1 for embedding strengths of 0.05 and 0.10. Similar to the ROC urves, the

Cherno� distanes demonstrate learly higher performane by the nothed power exponential

distribution over both the Weibull and power exponential distributions.
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Figure 5.1 Cherno� bounds on the WB

LRT detetor (s

�

= 0:10).
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Figure 5.2 Cherno� bounds on the PE

LRT detetor (s
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= 0:10).
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�

= 0:10).

54



Table 5.1 Cherno� distanes for the three modeling distributions using a threshold of zero.

Distribution

Cherno� distane

s

�

= 0:05 s

�

= 0:10

Weibull 0:0120 0:0497

Power exponential 0:0111 0:0452

Nothed power exponential 5:0135 31:6715

5.2 Performane of the Simple Detetor for Nothed

Distributions

In the previous setion, bounds were presented on the likelihood ratio test detetor based on

the nothed power exponential distribution. The performane of the related simple detetor

(3.4) is now analyzed. First, exat expressions for the detetion and false alarm probabilities

are derived. Then, error exponents are omputed, indiating the rate of onvergene of these

probabilities as message length inreases.

To begin, P

D

and P

F

are onsidered for the SD for any nothed distribution, and will

be later speialized to the nothed power exponential. Using this detetor, false alarms will

our with probability 1�� when the data fail to lie in Region 3 under H

0

. Mathematially,

P

F

= (1� �) (1� P

0

[E

3

℄)

= (1� �)

�

1� 1 + (2P

0

(�Æ(1 + s

�

)))

N

2

�

= (1� �) (2P

0

(�Æ(1 + s

�

)))

N

2

: (5.1)

Similarly, misses will our with probability � when the data fail to lie in Region 2 under

H

1

. Thus,

P

M

= � (1� P

1

[E

2

℄)

= �

�

1� 1 + (2P

1

(�Æ))

N

2

�

= � (2P

1

(�Æ))

N

2

P

D

= 1� P

M

= 1� � (2P

1

(�Æ))

N

2

: (5.2)
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For the ase of the nothed power exponential distribution,

P

F

= (1� �)

"

2

Z

�Æ(1+s

�

)

�1

C

1� �

exp

�

�

�

�

�

y

�

�

�

�

�

�

dy

#

N

2

= (1� �)

�

2

C

1� �

Z

1

Æ(1+s

�

)

exp

�

�

�

y

�

�

�

�

dy

�

N

2

:

Performing the substitution w =

�

y

�

�

�

yields

P

F

= (1� �)

"

2C

1� �

Z

1

(

Æ(1+s

�

)

�

)

�

expf�wg

�

�

w

1

�

�1

dw

#

N

2

= (1� �)

"

2C�

(1� �)�

�

 

1

�

;

�

Æ(1 + s

�

)

�

�

�

!#

N

2

= (1� �)

2

4

0

�

1

(1� �)�

�

1

�

�

1

A

�

 

1

�

;

�

Æ(1 + s

�

)

�

�

�

!

3

5

N

2

:

Similarly,

P

D

= 1� �

"

2

Z

�Æ

�1

C

(1� �)(1� s

�

)

exp

(

�

�

�

�

�

y

�(1� s

�

)

�

�

�

�

�

)

dy

#

N

2

= 1� �

"

2

C

(1� �)(1� s

�

)

Z

1

Æ

exp

(

�

�

y

�(1� s

�

)

�

�

)

dy

#

N

2

:

Performing the substitution w =

�

y

�(1�s

�

)

�

�

yields

P

D

= 1� �

"

2C

(1� �)(1� s

�

)

Z

1

(

Æ

�(1�s

�

)

)

�

expf�wg
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�
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2C�(1� s

�

)

(1� �)(1� s

�

)�

�

 

1

�

;

�

Æ

�(1� s

�

)

�

�

!#

N

2

= 1� �

2

4

0

�

1

(1� �)�

�

1

�

�

1

A

�

 

1

�

;

�

Æ

�(1� s

�

)

�

�

!

3

5

N

2

:

These expressions failitate the omputation of detetion and false alarm probabil-

ities for the simpli�ed detetor. However, the resulting equations are rather omplex and

56



produe values for P

D

and P

F

that are extremely lose to 1 and 0, respetively, whih makes

omparisons diÆult. Thus, error exponents for these probabilities are now found.

To give meaning to the use of error exponents, it is �rst noted that the expressions

for P

F

and P

D

(Equations (5.1) and (5.2)) an be rewritten as

P

F

= (1� �) exp

�

N

2

ln (2P

0

(�Æ(1 + s

�

)))

�

and

P

D

= 1� � exp

�

N

2

ln (2P

1

(�Æ))

�

:

From these equations, it is lear that the error probabilities P

F

and P

M

= 1 � P

D

behave

as deaying exponentials. Error exponents provide an indiation of the rate of onvergene

as N approahes 1, with a higher value orresponding to a faster onvergene. The error

exponent indiating the rate of onvergene of P

F

to 0 is given by

E

P

F

= � lim

N!1

1

N

lnP

F

= � lim

N!1

1

N

ln

�

(1� �) exp

�

N

2

ln (2P

0

(�Æ(1 + s

�

)))

��

= � lim

N!1

�

1

N

ln(1� �) +

1

2

ln (2P

0

(�Æ(1 + s

�

)))

�

= �

1

2

ln (2P

0

(�Æ(1 + s

�

)))

while the error exponent orresponding to the rate of onvergene of P

D

to 1 is given by

E

P

D

= � lim

N!1

1

N

ln(1� P

D

)

= � lim

N!1

1

N

ln

�

� exp

�

N

2

ln (2P

1

(�Æ))

��

= � lim

N!1

�

1

N

ln� +

1

2

ln (2P

1

(�Æ))

�

= �

1

2

ln (2P

1

(�Æ)) :

It is interesting to note that the error exponents do not depend on the randomization prob-

ability, �.
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To speialize these expressions to the nothed power exponential distribution, the

appropriate umulative density funtions are inserted, yielding

E

P

F

= �

1

2

ln

2

4

0

�

1

(1� �)�

�

1

�

�

1

A

�

 

1

�

;

�

Æ(1 + s

�

)

�

�

�

!

3

5

and

E

P

D

= �

1

2

ln

2

4

0

�

1

(1� �)�

�

1

�

�

1

A

�

 

1

�

;

�

Æ

�(1� s

�

)

�

�

!

3

5

:

For a given set of parameters, the expressions for the error exponents an be evaluated

numerially. Using the parameter values � = 0:1700, � = 1:1, Æ = 0:7760, and s

�

= 0:10,

the resulting error exponents are

E

P

F

= 0:2978

and

E

P

D

= 0:3310:

Note that the error exponents for P

F

and P

D

are of similar values, indiating that P

F

approahes 0 at approximately the same rate that P

D

approahes 1. The simpli�ed detetor

an be ompared against the LRT nothed power exponential detetor, whose error exponent

(for P

F

) is related to the Cherno� distane. Under the assumption of a message with an

equal number of elements having �1 and +1 values, the Cherno� distane (derived in Setion

4.4) an be written in terms of two onstants, K

+

and K

�

, whih are equal to the summand

in (4.2) with m

i

= 1 and m

i

= �1 substituted, respetively,

D(t

�

0

) =

N

2

�

K

+

+K

�

�

:

Then, sine the Cherno� bound using t

�

0

is tight in the exponent, the error exponent for P

F

is given by

E

P

F

= � lim

N!1

1

N

lnP

F

= � lim

N!1

1

N

ln exp f�t

�

0

 �D(t

�

0

)g

= � lim

N!1

1

N

(�t

�

0

 �D(t

�

0

))
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= lim

N!1

D(t

�

0

)

N

=

1

2

�

K

+

+K

�

�

:

Thus, the error exponent is found by alulating the Cherno� distane and dividing by the

length of the message used in its omputation. This distane is given for the NPE using

N = 32 in Table 5.1, yielding an error exponent of E

P

F

= 0:9897. The NPE value is higher

than that for the SD, thereby quantifying the performane derease resulting from the use of

the simpli�ed detetor. However, the orresponding error exponents for the LRT detetors

for the Weibull and power exponential distributions (0.0016 and 0.0014, respetively) are

lower than that for the SD, demonstrating a strong performane by the simple detetor,

despite its simpliity.

5.3 An Eavesdropper's Detetion Problem

Previously, Cherno� distanes were employed to evaluate the diÆulty of the detetion prob-

lem for various modeling distributions. Another problem worthy of study is the relative

diÆulty of the image watermarking detetion problem as seen by the detetor ompared to

that seen by an eavesdropper. The goal of the eavesdropper is to detet whether a message

is present in an image without knowledge of the andidate region, C.

When an eavesdropper obtains an image, two hypothesis are possible: H

0

, whih

states the message is not present; and H

1

, whih states that the message is present. Under

H

0

, the distribution of the output, p

0

, is simply given by a power exponential. However,

sine the eavesdropper does not know the andidate set, the distribution under H

1

, p

1

, is

unknown. Thus, the eavesdropper would assume a mixture distribution, ~p

1

. To formulate

this distribution, a number of addition probability distributions are �rst de�ned:

p

0

: unmarked power exponential

p

0

(y) = C exp

�

�

�

�

�

y

�

�

�

�

�

�

p

2

: unmarked bandpass power exponential

p

2

(y) =

8

<

:

C

1��

exp

n

�

�

�

y

�

�

�

�

o

if jyj � Æ

0 else
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p

3

: unmarked nothed power exponential

p

3

(y) =

8

<

:

C

1��

exp

n

�

�

�

y

�

�

�

�

o

if jyj > Æ

0 else

p

+

4

: positively marked nothed power exponential

p

+

4

(y) =

1

1 + s

�

p

3

�

y

1 + s

�

�

p

�

4

: negatively marked nothed power exponential

p

�

4

(y) =

1

1� s

�

p

3

�

y

1� s

�

�

~p

4

: mixture watermarked nothed power exponential

~p

4

(y) =

1

2

�

p

+

4

+ p

�

4

�

Note that in de�ning the mixture distributions, the assumption that the message is dis-

tributed as an iid binary sequene is employed. If a di�erent distribution were to be present

(for example if error orreting odes were utilized), then the mixtures need be adjusted

aordingly. Using these distributions, the distribution of the output data as seen by the

eavesdropper under H

1

is given by

~p

1

= �(1� �)~p

4

+ ��p

2

+ (1� �)p

0

:

Assuming that the data are iid, the Cherno� distane between the distributions under H

0

and H

1

as seen by the eavesdropper is given by

D(t

�

0

; p

0

; ~p

1

) = MD(t

�

0

; p

0

; �(1� �)~p

4

+ ��p

2

+ (1� �)p

0

): (5.3)

The situation is di�erent for the atual detetor, who has knowledge of the andidate

set. Thus, for eah oeÆient, the detetor knows whih pair of distributions to onsider for

the two hypotheses. Hene, the Cherno� distane as seen by the detetor is given by

D(t

�

0

; p

0

; p

1

) = M�(1� �)

�

1

2

�

D(t

�

0

; p

0

; p

+

4

) +M�(1� �)

�

1

2

�

D(t

�

0

; p

0

; p

�

4

)

+M��D(t

�

0

; p

o

; p

2

) +M(1� �)D(t

�

0

; p

0

; p

0

)

= M�(1� �)

�

1

2

�

D(t

�

0

; p

0

; p

+

4

) +M�(1� �)

�

1

2

�

D(t

�

0

; p

0

; p

�

4

)

+M��D(t

�

0

; p

o

; p

2

): (5.4)

A omparison may now be made between the Cherno� distanes, (5.3) and (5.4), seen

by the eavesdropper and the detetor, to provide insight into the relative diÆulty of the
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detetion problems. With the above formulations and by the onavity of Cherno� distane,

it is lear that

D(t

�

0

; p

0

; p

1

) > D(t

�

0

; p

0

; ~p

1

):

Thus, as is to be expeted, the Cherno� distane seen by the detetor is larger than that

seen by an eavesdropper. Hene, the detetion problem is more diÆult for the eavesdropper

than for the detetor.

To quantify this e�et, the Cherno� distanes are evaluated over the range of possible

� values using the parameters � = 0:17, � = 1:1, Æ = 0:7760, and s

�

= 0:10. Note that when

� = 0, the andidate set has size zero; while when � = 1, the andidate set onsists of the

entire M oeÆients. The resulting Cherno� distane urves are given in Figure 5.4. These

urves illustrate that the detetor observes a signi�antly larger Cherno� distane than the

eavesdropper and, hene, will be better able to detet the message.
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Figure 5.4 Cherno� distanes as seen by (a) an eavesdropper and (b) the detetor as a

funtion of �.

5.4 Monte Carlo Simulations Using Syntheti Data

To begin testing the Weibull, power exponential, and nothed power exponential detetors,

data are generated as previously disussed aording to eah of the three distributions. More

spei�ally, 512

2

= 262 144 oeÆients are generated for eah distribution to model image
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transform oeÆients. The Weibull data utilize parameters of � = 0:4437 and � = 1:1, while

the power and nothed power exponential use the parameter values of � = 0:1700, � = 1:1,

Æ = 0:7760, and � = 0:9961 (approximately 0.4% of the oeÆients are watermarked), as

shown in Figure 5.5. The values seleted for the distribution parameters reet the estimated

parameters for the Lena image, as will be presented in the next hapter.

As disussed previously, multipliative watermarking is used to insert the watermark.

Experiments are performed using the two embedding strengths of 0.05 and 0.10. These values

are seleted to be quite small, so that the distortion introdued into the original oeÆients is

minimal. Using these watermarked oeÆients, the performane of the watermark detetors

for a given distribution an be determined. A Monte Carlo simulation for eah distribution

is performed to analyze eah of the three main detetors. The simulations are done over a

range of thresholds, with either 10 000 or 500 000 runs for eah threshold (depending on the

required preision), where eah run ontains a new message. In eah run, 32 oeÆients are

watermarked, and di�erent sets of oeÆients are used for the di�erent runs. A large number

of runs is utilized so that data an be gathered for an average message and oeÆient set,

and so as to ahieve a higher degree of preision in the probability values. From these data,

P

D

and P

F

urves an be plotted. For the simpli�ed detetor, a simulation utilizing 500

000 runs is performed for the ase where the detetor is speialized to the nothed power

exponential distribution.

The hoie of 32 watermark oeÆients is motivated by onsidering the problem

of embedding a watermark within a small portion of an image. A typial image size is

512 � 512, hene, 32 is only a small fration of the available oeÆients. However, many

image oding tehniques allow an image to be manipulated in smaller bloks. For example,

image transforms an be taken blok-wise, and di�erent levels of details may be stored for

eah blok. Thus, it is possible, and often desirable, to embed a watermark in only a redued

region of the image. Furthermore, the small message length results in extremely minimal

distortion introdued by the watermarking proess. Hene, the hoie of 32 oeÆients is

reasonable.
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Figure 5.5 Generated oeÆients for the (a) Weibull distribution with � = 0:4437 and

� = 1:1, (b) power exponential distribution with � = 0:1700 and � = 1:1, and () nothed

power exponential distribution with � = 0:1700, � = 1:1, Æ = 0:7760, and � = 0:9961.
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5.4.1 Simple likelihood ratio test

The �rst detetor examined is that based on likelihood ratio testing. For eah distribution,

three �gures will be presented. The �rst will show the distribution of the test statisti

under eah hypothesis for two embedding strengths, s

�

= 0:05 and s

�

= 0:10. Due to the

diÆulty in omputing these distributions analytially, the urves are found using Monte

Carlo simulations. The separation between the distributions under H

0

and H

1

determines

detetor performane.

The seond and third �gures will present estimates of P

D

and P

F

based on Monte

Carlo simulations, with the orresponding Cherno� bounds overlaid. One �gure will ontain

these results for an embedding strength of s

�

= 0:05, while the other is for the ase when

s

�

= 0:10. In eah of these �gures, the P

D

vs. P

F

urves are the best performane indiators.

Ideally, these urves will be present in the top left of the graphs, demonstrating that high

detetion probabilities result for low false alarm probabilities. Finally, sine the Monte Carlo

results are plotted with the Cherno� bounds, it is observed that for the P

D

vs. Threshold

and P

D

vs. P

F

plots, the Monte Carlo urves are neessarily above the Cherno� bounds,

while for the P

F

vs. Threshold, the experimental urve is below the Cherno� bound.

5.4.1.1 Weibull distribution results

To evaluate the likelihood ratio test based-detetor, the host oeÆients are �rst modeled

using a Weibull distribution. Figure 5.6 shows the distribution of the test statisti, de�ned

by Equation (3.1), under the two hypotheses. From this �gure, it is lear that the H

0

and

H

1

distributions are more separated when a higher embedding strength is employed.

Now, the performane of the detetor is onsidered in terms of P

D

and P

F

urves.

Figures 5.7 and 5.8 eah ontain three plots showing the output of the Monte Carlo simulation

ompared to the Cherno� bounds for embedding strengths of 0.05 and 0.10, respetively.

First, it is noted that the bounds are muh tighter (loser to the simulation urve) for

extremely high and low probabilities of detetion and false alarm. For example, when s

�

=

0:10 for the simulation point P

D

= 0:8, the Cherno� bound is only approximately P

D

=

0:2, while for P

D

= 0:99, the bound is loser to 0.97. It is in these regions of extreme

probabilities where Cherno� bounds most losely bound the performane. However, as
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Figure 5.6 Distribution of the test statisti for syntheti data using the WB distribution

and LRT with an embedding strength of (a) 0.05 and (b) 0.10.

seen in the previous hapter, the Cherno� bounds on the ROC urves do not onvey any

information beause they are below the trivial bound of P

D

= P

F

. Also, the urves depit a

small improvement gained by inreasing the embedding strength. For an embedding strength

of 0.05, to obtain a detetion probability of approximately 65%, the false alarm probability

is approximately 50%. Conversely, for an embedding strength of 0.10, this same detetion

probability is ahieved with a lower false alarm probability, just under 40%. Finally, these

�gures demonstrate that the likelihood ratio test detetor using the Weibull distribution

does not perform overly well, and is likely not suitable for pratial appliations.

5.4.1.2 Power exponential distribution results

The likelihood ratio test-based detetor is now evaluated when the power exponential dis-

tribution is used to model the host oeÆients. Figure 5.9 shows the distribution of the

test statisti, de�ned by Equation (3.2), under the two hypotheses. These results are similar

to those in the ase of the Weibull distribution; the inreased embedding strength auses

the two distributions to beome further apart. Thus, an inrease in performane is seen for

higher embedding strengths.
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Figure 5.7 P

D

and P

F

urves for the WB

LRT for syntheti data (s

�

= 0:05).
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Figure 5.8 P

D

and P

F

urves for the WB

LRT for syntheti data (s

�

= 0:10).
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Figure 5.9 Distribution of the test statisti for syntheti data using the PE distribution and

LRT with an embedding strength of (a) 0.05 and (b) 0.10.

Now, the P

D

and P

F

urves for the Monte Carlo simulations and their Cherno�

bounds are onsidered. Figures 5.10 and 5.11 eah ontain the three probability plots, the

�rst �gure for an embedding strength of 0.05, and the seond for 0.10. It an immediately be

seen that the power exponential results are almost idential to the Weibull results. In atual

fat, the Weibull results are just slightly better. Here, a detetion probability of just under

65% is ahieved at the ost of approximately a 50% false alarm probability for s

�

= 0:05. It

is again noted that the urves do indeed obey the Cherno� bounds (whih are uninformative

in the ROC ase), and that the bounds beome tighter for probabilities near 0 and 1. Also,

an inrease in performane is observed as the embedding strength is raised. However, it is

onluded that the high false alarm probabilities render this detetor likely infeasible in a

pratial sense.

5.4.1.3 Nothed power exponential results

The �nal likelihood ratio test-based detetor studied is that developed for the ase when the

host data are modeled using the newly de�ned nothed power exponential distribution. To

begin, the distribution of the deision statisti, de�ned by Equation (3.3), under eah of the

two hypotheses is onsidered. Figure 5.12 gives these distributions for embedding strengths of
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Figure 5.10 P

D

and P

F

urves for the PE

LRT for syntheti data (s

�

= 0:05).
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Figure 5.11 P

D

and P

F

urves for the PE

LRT for syntheti data (s

�

= 0:10).

68



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

x 10
8

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Distribution of Test Statistic 

 (32 WM Bits, α = 0.2, β = 1.1, δ = 0.8, κ = 1.0, s
*
 = 0.05)

Test Statistic Value

C
o
u
n
t

Under H
0

Under H
1

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

x 10
8

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Distribution of Test Statistic 

 (32 WM Bits, α = 0.2, β = 1.1, δ = 0.8, κ = 1.0, s
*
 = 0.10)

Test Statistic Value

C
o
u
n
t

Under H
0

Under H
1

(b)

Figure 5.12 Distribution of the test statisti using for syntheti data the NPE distribution

and LRT with an embedding strength of (a) 0.05 and (b) 0.10.

0.05 and 0.10. Sine it is diÆult to represent the in�nities that an be present in the deision

statisti for this distribution, the implementation of the detetor uses �1 � 10

8

instead. In

performing this simpli�ation, it is assumed that the nonin�nite statistis will be muh less

than this value, whih appears to be quite valid for the simulations in question. From the

graphs, it is observed that for both embedding strengths, most of eah distribution's mass

lies at +1 or �1. The ongregation of the mass at these in�nity points indiates that the

majority of times the deision statisti is evaluated, a de�nitive response is provided for the

presene or absene of the watermark (beause one hypothesis is not possible). Furthermore,

these in�nities result when at least one data point lies below the noth threshold, Æ

i

or the

distribution threshold, Æ, yielding �1 and1, respetively. For both hypotheses, the urves

possess muh smaller amounts of mass around the origin. These setions represent the

nonin�nite statistis in the Monte Carlo simulations, and the plots demonstrate that they

are quite diminished as the embedding strength inreases. The derease in mass of the

nonin�nite statistis with inreased embedding strength is aused by the larger strength

perturbing the data points greater distanes. Thus, it is possible for more points to be

moved below the thresholds, making the in�nite statistis more probable. From these plots

it is lear that the separation between the distributions under H

0

and H

1

is profound.
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With the favorable results shown in the distribution of the test statisti, the Monte

Carlo simulations and Cherno� bounds for the nothed power exponential detetor are now

onsidered. Figures 5.13 and 5.14 eah ontain the three plots used to evaluate detetor

performane. First, it should be noted that, in the graphs, P

D

only ranges from 0.99 to 1

and P

F

only ranges from 0 to 0.01 beause values outside these ranges do not our in the

bounds or simulation. In order to more aurately represent these preise probabilities, 500

000 runs are utilized in generating the P

D

and P

F

urves. As expeted, the experimental

probabilities satisfy the Cherno� bounds. Also, ontrary to the Weibull and power exponen-

tial distributions, the nothed power exponential distribution displays a signi�ant inrease

in performane as the embedding strength is inreased; the range of P

D

shrinks to approx-

imately [0.9995, 1℄, while that of P

F

dereases to approximately [0, 0.0005℄. The impat of

the redued and shrinking ranges is reeted in the ROC urves, whih are now muh loser

to the top left orner, espeially when s

�

= 0:10. For example, even for the small embedding

strength, a detetion probability just over 99.8% inurs a false alarm probability of approx-

imately 0.3%; while for an embedding strength of s

�

= 0:10, a 99.98% detetion is ahieved

with a 0% false alarm probability (to the degree of auray provided by the simulation

runs). This is an astonishing improvement in performane over the detetors where the host

oeÆients are modeled using the Weibull or power exponential distributions. The major

ontributing fator to this improvement is the presene of the Æ and Æ

i

thresholds against

whih the y

i

are ompared. If even one y

i

value is below one threshold but not the other, one

hypothesis an be eliminated immediately. From the plots, it is seen that, even with as few

as 32 watermark bits, this situation ours quite frequently. Thus, employing the nothed

power exponential distribution to model the data yields a system that ould quite easily be

used in pratial situations.

5.4.2 Simple detetor for nothed distributions

The simple detetor derived from the likelihood ratio test detetor is now evaluated when

the nothed power exponential distribution is employed. The behavior of the detetor is

examined in terms of the number of times a hypothesis is seleted with ertainty versus the

number of times one is seleted at random using the deision rule (3.4). Table 5.2 ontains

70



−3 −2 −1 0 1 2 3
0.99

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

P
D

 versus Threshold (32 WM Bits, β = 1.1, s
*
 = 0.05)

Threshold

P
D

Monte Carlo   
Chernoff Bound

(a)

−3 −2 −1 0 1 2 3
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

P
F
 versus Threshold (32 WM Bits, β = 1.1, s

*
 = 0.05)

Threshold

P
F

Monte Carlo   
Chernoff Bound

(b)

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0.99

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

P
D

 versus P
F
 (32 WM Bits, β = 1.1, s

*
 = 0.05)

P
F

P
D

Monte Carlo   
Chernoff Bound

()

Figure 5.13 P

D

and P

F

urves for the

NPE LRT for syntheti data (s

�

= 0:05).
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Figure 5.14 P

D

and P

F

urves for the

NPE LRT for syntheti data (s

�

= 0:10).
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Table 5.2 Simple detetor output for synthetially generated data.

Situation

Count

s

�

= 0:05 s

�

= 0:10

Certain H

0

under H

0

493 529 499 853

Certain H

1

under H

0

0 0

Random seletion under H

0

6471 147

Certain H

0

under H

1

0 0

Certain H

1

under H

1

494 862 499 932

Random seletion under H

1

5138 68

these ounts for the watermark embedding strengths of 0.05 and 0.10 using a value of � =

1

2

.

For eah embedding strength, 500 000 runs are performed �rst using data that have not

been watermarked (denoted \under H

0

"), and then for watermarked data (denoted \under

H

1

"). From these data, it is lear that a deision is made with ertainty for the majority of

the trials, with the perentage inreasing with the embedding strength. Sine the number of

times a deision is made randomly is small, the performane of the detetor is expeted to

be quite omparable to that of the likelihood ratio test detetor for the NPE distribution.

The omparison between the simple detetor and the likelihood ratio test detetor is

made more expliit by onsidering the detetion and false alarm probabilities over a range of

� values. The ROC urve produed by the simpli�ed detetor is overlaid with that resulting

from the LRT detetor, as shown in Figure 5.15 for both embedding strengths. In both

sub�gures, the axes have been redued to reet these preise probabilities. These plots

illustrate the lower performane attained by the simple detetor by the presene of its ROC

urve to the lower right of the LRT ROC urve. However, the simple detetor still performs

extremely well, demonstrating the bene�t of the use of nothed distributions.

5.4.3 Maximum likelihood estimation

The next detetor onsidered is that based upon the tehnique of maximum likelihood esti-

mation. Beause of the poor performane of the Weibull and power exponential distributions

for the likelihood ratio test detetor, the MLE detetors based on these distributions are rel-
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Figure 5.15 ROC urves for the LRT and SD for the NPE distribution with syntheti data

using an embedding strength of (a) 0.05 and (b) 0.10.

egated to Appendix A. For the nothed power exponential distribution, the three analytial

plot types used for the previous detetor are again employed to examine detetor perfor-

mane.

The distributions of the test statistis (estimates), de�ned by Equation (3.7), found

through Monte Carlo simulations are presented in Figure 5.16. Unlike the orresponding

�gures found in the appendix for the Weibull and power exponential distributions, the sepa-

ration between the urves under H

0

and H

1

is quite signi�ant for the nothed distribution.

Under hypothesis 1, a lear peak is visible at the true value of the embedding strength. The

degree of separation, whih is due to this peak, beomes more pronouned as the embedding

strength is inreased.

To failitate further examination, urves of the P

D

and P

F

statistis are given in

Figures 5.17 and 5.18. The �rst notable observation is the rapid derease in detetion prob-

ability as the threshold is raised above the atual embedding strength. This result is quite

intuitive beause it is illogial to threshold a strength estimate using a value signi�antly

above the true strength. Next, by omparing the two �gures, an inrease in performane

is seen for higher embedding strengths, as is expeted. For the low embedding strength, a

detetion probability of approximately 98% an be obtained at the ost of a 5% false alarm
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Figure 5.16 Distribution of the test statisti using the NPE distribution and MLE with an

embedding strength of (a) 0.05 and (b) 0.10.

probability. While these statistis possibly still render this detetor impratial in real-world

situations, they do represent a signi�ant improvement over the Weibull and power exponen-

tial maximum likelihood estimators. However, the nothed power exponential MLE detetor

performs substantially worse than the likelihood ratio test detetor for the same distribution,

whose ROC urves are presented in Figures 5.13 and 5.14.

5.4.4 Loally optimal detetion

The �nal detetor examined is the loally optimal detetor. One again, only the nothed

power exponential distribution is onsidered in this setion, while the Weibull and power

exponential detetors are analyzed in Appendix A. As before, three �gures are presented

for the nothed power exponential distribution detetor in order to analyze the experimental

results.

The distributions of the test statisti, de�ned by Equation (3.10), as found through

Monte Carlo simulations, are given in Figure 5.19. These plots demonstrate one again the

large degree of separation that the nothed power exponential detetors ahieve. Nearly all

of the distribution mass under H

1

is loated at the 1 point (represented here by 1 � 10

8

),

while, under H

0

, all the mass is lustered near the origin. An extremely small portion of the
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Figure 5.17 P

D

and P

F

urves for the

NPE MLE for syntheti data (s

�

= 0:05).
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NPE MLE for syntheti data (s
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Figure 5.19 Distribution of the test statisti using the NPE distribution and LOD with an

embedding strength of (a) 0.05 and (b) 0.10.

H

1

urve is also loated near the origin, indiating those trials for whih nonin�nite deision

statistis are found. When the two sub-�gures are ompared, the small portion of the H

1

urve beomes impereptible as the embedding strength is inreased.

Figures 5.20 and 5.21 ontain the P

D

and P

F

urves resulting from the Monte Carlo

simulations. Note that the axes have been limited so that P

D

is shown in the range [0.99,

1℄. The values taken on by the detetion probability are all ontained in this range for the

simulations. As before, 500 000 runs for eah threshold are utilized to ahieve a higher

degree of auray for these small probabilities. These plots learly indiate that the use of

the nothed power exponential to model the oeÆients has again produed results superior

to the other two distributions, espeially when the embedding strength is 0.10. For the low

embedding strength, this detetor ahieves approximately a 99.9% probability of detetion for

approximately a 50% probability of false alarm. When the stronger embedding is onsidered,

the detetor responds with approximately a 100% detetion probability for a 50% false

alarm probability. These values reet the separation seen in the distributions of the test

statisti. This separation is aused by the ease with whih H

0

an often be ruled out

simply by onsidering the data points. These results are just slight worse than those for the

orresponding likelihood ratio test detetor, Figures 5.13 and 5.14. As a result, the use of
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Figure 5.20 P

D

and P

F

urves for the

NPE LOD for syntheti data (s

�

= 0:05).
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the nothed power exponential with loally optimal detetion would not likely be used in

real-world situations.

5.5 Summary of Simulation Results

This hapter has presented the results of simulations onduted on the various detetor-

distribution pairs that are developed in this thesis. Eah of the detetors was evaluated using

data generated synthetially aording to the appropriate distribution. The data shown in

the previous �gures and those in the appendix that examine the detetors in terms of their

probability of detetion and false alarm are now summarized in Table 5.3. The probabilities

are shown in perentage form, rounded to the nearest whole number. Data points have been

seleted from the urves in an attempt to failitate omparison between the detetors and

distributions. More spei�ally, points have been hosen to demonstrate the value of P

F

that must be tolerated in order to ahieve a P

D

of approximately 98%. For the detetors

for whih suh a detetion probability is not possible, the point orresponding to the highest

possible P

D

value is inluded.

Table 5.3 Seleted results for synthetially generated data.

Distribution
Detetor

s

�

= 0:05 s

�

= 0:10

P

D

(%) P

F

(%) P

D

(%) P

F

(%)

Weibull LRT 98 96 98 93

Weibull MLE 58 50 67 49

Weibull LOD 98 95 98 92

Power exponential LRT 98 97 98 93

Power exponential MLE 58 50 66 49

Power exponential LOD 98 96 98 93

Nothed power exponential LRT 99 0 100 0

Nothed power exponential MLE 98 0 98 0

Nothed power exponential LOD 99 0 100 0

Nothed power exponential SD 99 0 100 0
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A number of general onlusions an be drawn from the data ontained in the table.

The main observation to be made is the di�erene in performane between the detetors

using the newly developed nothed power exponential distribution and those based on the

Weibull or power exponential distributions. The addition of the noth thresholds (Æ and Æ

i

)

in the NPE distribution provides additional information for deteting the watermark. By

omparing the data points to these thresholds, it is often possible to ompletely rule out

a hypothesis. Thus, the results agree with the intuitive onlusion that the nothed power

exponential provides a superior means of modeling the oeÆients seleted for watermarking,

and thus yields superior results. To further illustrate the high quality of the nothed power

exponential distribution, Figure 5.22 ontains plots of the ROC urves resulting from the

LRT detetor for eah of the three modeling distributions. These plots are depited on a

log sale using P

D

� 1 to illustrate the small probabilities under the NPE distribution. As a

result, the nothed power exponential distribution data appear rather jagged for the higher

embedding strength beause of the �nite number of simulations performed. Also, the Weibull

and power exponential urves lie so lose together that it is diÆult to disriminate between

them at this sale.
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Figure 5.22 ROC urves for the LRT using the WB, PE, and NPE for embedding strengths

of (a) 0.05 and (b) 0.10.
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It is also possible to ompare solely the detetors developed in this thesis for a par-

tiular distribution. First, it is noted that the maximum likelihood estimation detetors

are often not apable of produing high detetion probabilities, regardless of the false alarm

probability. This result is due to the fat that the detetor is atually estimating the wa-

termark embedding strength. Thus, reasonable threshold values are restrited to the range

[0, 1). Therefore, the highest detetion probability is that found using a threshold of 0,

whih need not be lose to 100%. The other generalization that an be made is that the

likelihood ratio test detetor tends to perform better than the other three detetors. Also,

for the NPE distribution, the simple detetor performs just slightly worse than its optimal

LRT ounterpart. To highlight the performane di�erene between the detetors, Figure

5.23 ontains plots of the resulting ROC urves for the nothed power exponential distribu-

tion, for embedding strengths of 0.05 and 0.10. Note that a log sale has been utilized and,

hene, P

D

� 1 is plotted instead of P

D

. The urves appear somewhat jagged in these plots,

in partiular for the higher embedding strength beause of the �nite number of Monte Carlo

simulations performed. However, these graphs learly demonstrate the superior performane

of the LRT detetor and the poor performane of the MLE detetor.
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Figure 5.23 ROC urves for the LRT, MLE, LOD, and SD using the NPE for embedding

strengths of (a) 0.05 and (b) 0.10.
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Combining these observations yields the overall onlusion that the likelihood ratio

test detetor derived for oeÆients modeled by the nothed power exponential distribu-

tion is far better suited for watermark detetion than the other detetor-distribution pairs

onsidered in this thesis.
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CHAPTER 6

IMAGE WATERMARKING

EXPERIMENTS

The previous hapter examined the detetors based on likelihood ratio testing, maximum

likelihood estimation, and loally optimal detetion using data synthesized to follow the ap-

propriate distribution. Now, these detetors are applied to standard real-world test images to

asertain how well they perform on oeÆients that do not neessary follow the distributions

upon whih they are based.

6.1 Implementation Details

The image watermarking experiments performed utilize the proedure desribed in Setion

2.2. As in the ase of the syntheti data, 262 144 oeÆients are used, but here the oeÆients

are found by performing the disrete osine transform of a 512 � 512 test image. For

simpliity, the frational size of the andidate set, �, is taken to be 1, so that the entire set

of transform oeÆients an be inluded in the watermarking proess.

A �xed threshold of Æ = 0:7760 is employed, resulting in a value of N = 32 for the

test images onsidered. The other distribution parameters, � and �, must be estimated

beause the true distribution of the oeÆients is unknown. As desribed in Setion 2.3,

these parameters an be found by onsidering the sample moments of the data. However,

during experimentation, it was found that the detetors yield better performane if the value

of the � parameters is seleted to be around 1, rather than alulated from the data. Thus,

for experimentation, a �xed value of � = 1:1 is utilized to improve performane without

82



overly simplifying the deision statistis. Using this seleted �, � an then be estimated

from the sample moments.

With the details of the problem setup formalized, the performane of the detetors on

atual image data an now be analyzed. Beause of the overwhelmingly superior performane

of the nothed power exponential distribution with syntheti data, this hapter fouses only

on its use for modeling the image oeÆients. However, the Weibull and power exponential

distributions are onsidered in Appendix B. For eah detetor type, a Monte Carlo simulation

is performed to analyze the performane in terms of detetion and false alarm probabilities.

The simulations are performed over a range of thresholds, with either 10 000 or 40 000 runs

for eah threshold (depending on the required preision), where a new message is generated

for eah trial.

6.2 Watermarking Lena DCT CoeÆients

To ommene the study of the detetors using atual image data, oeÆients are drawn from

the DCT of the Lena test image, whih is shown in Figure 6.1. Histograms of the 262 144

DCT oeÆients and those seleted for watermarking are displayed in Figure 6.2. The graph

depited for the 32 oeÆients is rather bloky due to the limited amount of data being

plotted.

The estimated values for the distribution parameters for the Lena oeÆients are

alulated using a �xed value of � = 1:1, and are shown in Table 6.1 for all three of the

possible modeling distributions.

Table 6.1 Estimated distribution parameters for the Lena DCT oeÆients (� = 1:1).

Distribution

Parameters

� Æ �

Weibull 0.4437 - -

Power exponential 0.1700 - -

Nothed power exponential 0.1700 0.7760 0.9961
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Figure 6.1 The Lena image.
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Figure 6.2 (a) DCT oeÆients of the Lena image and (b) those oeÆients seleted for

watermarking.
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6.2.1 Simple likelihood ratio test

The setup used to present the likelihood ratio test results for the Lena data is idential to

that for syntheti data: three �gures are presented demonstrating the distribution of the test

statisti, and the detetion and false alarm probabilities for embedding strengths of s

�

= 0:05

and s

�

= 0:10.

To begin, the distributions of the deision statisti for the nothed power exponential,

as found through Monte Carlo simulations, are onsidered. Figure 6.3 gives these distribu-

tions for embedding strengths of 0.05 and 0.10. For the ease of viewing, the in�nities present

in the deision statisti have again been represented by the values �1 � 10

8

. The graphs

demonstrate that most of the mass of the distribution lies at these in�nite endpoints, with

a small amount near the origin. The small setions represent the non-in�nite values of the

statisti and diminish as the embedding strength is inreased. From these �gures, it is lear

that there is an extreme degree of separation between the distributions under H

0

and H

1

.
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Figure 6.3 Distribution of the test statisti for the Lena image using the NPE distribution

and LRT with an embedding strength of (a) 0.05 and (b) 0.10.

At this point, the P

D

and P

F

urves are examined for the Monte Carlo simulations

on the Lena data. Figures 6.4 and 6.5 eah ontain the three plots of the detetion and false

alarm probabilities. It should be noted that the urves are graphed on a redued sale be-

ause of the small probability values. P

D

is only plotted over the range of 0.9 to 1, while P

F

is
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Figure 6.4 P

D

and P

F

urves for the NPE

LRT for Lena data (s

�

= 0:05).
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shown between 0 and 0.1. Values outside these ranges do not our in the simulation results.

Sine the resultant probabilities are quite small, the urves appear slightly jagged beause

of the �nite number of simulations performed. By omparing the plots in the two �gures, it

is seen that, unlike with the Weibull and power exponential distributions onsidered in the

appendix (Figures B.2, B.3, B.5, and B.6), a signi�ant inrease in performane is ahieved

by inreasing the embedding strength. However, even at the low embedding strength, the

detetor performs extremely well; a detetion probability of approximately 98% is ahievable

with a false alarm probability of only 2%. These favorable values are reeted in the ROC

urves, whih are situated near the top left orner of a standard range plot. The plots learly

indiate that using the nothed power exponential distribution to model the oeÆients of

the Lena image results in a powerful detetor. The onsiderable performane gain with this

distribution over the Weibull and power exponential is attributed to the ability to eliminate

a hypothesis if a data point is found to lie below one of the noth thresholds, Æ or Æ

i

. It is

also expeted, in an intuitive sense, that the nothed distribution will ahieve better results

than either the Weibull or power exponential distributions beause only the largest magni-

tude oeÆients are seleted for watermarking. Thus, if the entire distribution of the DCT

oeÆients is well modeled using a power exponential distribution, the nothed distribution

should be the natural hoie to model the few seleted for watermarking. Consequently,

the results demonstrate that the likelihood ratio test detetor based on the nothed power

exponential distribution an quite oneivably be used in pratial situations.

It is also interesting to ompare these ROC urves with those presented when the

LRT detetor is used with the nothed power exponential on syntheti data (Figures 5.13

and 5.14). In the ase of the syntheti data with s

�

= 0:05, for P

D

values lying in the

range [0.99, 1℄, P

F

values only our between 0 and 0.01. These data represent a dereased

performane when the detetor is utilized with the Lena oeÆients. A similar drop is notied

when s

�

= 0:10. These drops in performane indiate that the Lena DCT oeÆients do not

follow a nothed power exponential distribution exatly. However, the use of this distribution

to model that of the oeÆients does indeed produe a detetor of high quality.
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6.2.2 Simple detetor for nothed distributions

The simpli�ed detetor speialized to the nothed power exponential distribution is now

onsidered for use in deteting a watermark in the Lena image. As in the ase for syntheti

data, a table is employed to demonstrate the behavior of the detetor for � =

1

2

. Table 6.2

ontains ounts of the deisions produed by the rule (3.4) under eah of the two hypotheses.

Although not as frequently as for syntheti data, a deision is made with ertainty for the

majority of the 40 000 simulation trials. Thus, strong performane is expeted from the

detetor.

Table 6.2 Simple detetor output for data from the Lena DCT oeÆients.

Situation

Count

s

�

= 0:05 s

�

= 0:10

Certain H

0

under H

0

37 518 39 370

Certain H

1

under H

0

0 0

Random seletion under H

0

2480 630

Certain H

0

under H

1

0 0

Certain H

1

under H

1

37 496 39 653

Random seletion under H

1

2504 347

To further the omparison between the simpli�ed detetor and the likelihood ratio

test detetor, plots of the ROC urves for the LRT detetor are shown in Figure 6.6 with

those for the simple detetor overlaid. Note that the axes have been trunated in both

sub�gures to more learly illustrate the preise probability values. In both sub�gures, the

simple detetor urve lies to the lower right of the LRT ROC urve, indiating the derease

in performane. However, the simpli�ed detetor still provides strong results for deteting a

watermark embedded in a test image.

6.2.3 Maximum likelihood estimation

Maximum likelihood estimation of the embedding strength, s, with the nothed power ex-

ponential distribution is now onsidered for deteting a watermark that has been embedded
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Figure 6.6 ROC urves for the LRT and SD for the NPE distribution with Lena data using

an embedding strength of (a) 0.05 and (b) 0.10.

in the DCT oeÆients of the Lena image. As with the other detetors, three �gures are

presented for performane analysis.

The distributions of the test statistis resulting from 10 000 Monte Carlo simulations

are provided in Figure 6.7. Similar to the syntheti data ase, the ompeting distributions

are well separated. For the ase of H

1

, a lear peak is observed in the estimate around the

true strength value. The loation of this peak is more pronouned and further separated

from the H

0

distribution when a higher embedded strength is employed.

The performane of the detetor is now examined in the ontext of P

D

and P

F

urves.

These plots are shown in Figures 6.8 and 6.9 for embedding strengths of 0.05 and 0.10,

respetively. One again, a sharp derease in the probability of detetion is observed as

the threshold is moved above the true embedding strength, as expeted. By omparing the

ROC urves in the two �gures, it is apparent that the detetor performs better when a

higher embedding strength is utilized. However, even when the true strength is 0.05, the

detetor ahieves a 98% detetion probability for a false alarm probability of approximately

50%. Although these results are not as strong as the orresponding likelihood ratio test

detetor (Figures 6.4 and 6.5), they do represent a signi�ant improvement over the MLE

detetors for Weibull and power exponential distributions (Figures B.8, B.9, B.11, and B.12) .
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Figure 6.7 Distribution of the test statisti for the Lena image using the NPE distribution

and MLE with an embedding strength of (a) 0.05 and (b) 0.10.

However, beause of the stronger performane of the LRT detetor, the maximum likelihood

estimation detetor using the nothed power exponential distribution does not likely yield

adequate robustness for use in pratial appliations.

The ROC urves resulting from the appliation of the MLE detetor on atual water-

marked image oeÆients are now ompared with those for the syntheti data ase, Figures

5.17 and 5.18. As expeted, the ROC urve is more favorable for the syntheti data than the

Lena oeÆients. However, the use of the nothed power exponential distribution to model

the image transform oeÆients still produes a reasonably aurate detetor.

6.2.4 Loally optimal detetion

The �nal detetor examined for use in watermark detetion for the Lena image oeÆients

is that based on loally optimal detetion. As before, three �gures are presented to analyze

the performane of the loally optimal detetor resulting from the use of the nothed power

exponential distribution.

The distributions of the test statisti under eah of the two hypotheses are given for

embedding strengths of 0.05 and 0.10 in Figure 6.10. From this �gure, it is lear that most

of the distribution mass under H

1

lies at the endpoint 1, whih is represented by 1 � 10

8

for

90



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

 versus Threshold (32 WM Bits, β = 1.1, s = 0.05)

Threshold

P
D

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F
 versus Threshold (32 WM Bits, β = 1.1, s = 0.05)

Threshold

P
F

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

 versus P
F
 (32 WM Bits, β = 1.1, s = 0.05)

P
F

P
D

()

Figure 6.8 P
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MLE for Lena data (s
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= 0:05).
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the purpose of viewing, while under H

0

, all of the mass is lustered near 0. A small portion

of the H

1

mass is loated near the origin, indiating that non-in�nite deision statistis do

indeed our under this hypothesis. The probability of their ourrene, however, dereases

as the embedding strength is inreased. On the basis of the given plots, strong performane

is expeted from the detetor beause a large degree of separation is present between the

distributions under the two hypotheses.
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Figure 6.10 Distribution of the test statisti for the Lena image using the NPE distribution

and LOD with an embedding strength of (a) 0.05 and (b) 0.10.

The detetor is now examined in terms of the P

D

and P

F

urves generated from

Monte Carlo simulations on the Lena data. Figures 6.11 and 6.12 eah ontain three plots

of the detetion and false alarm probabilities. Sine the values taken on by the detetion

probability in the simulation are in a limited range, the axes are restrited to [0.9, 1℄.

Beause of this inrease in sale, the urves appear more jagged, whih is an artifat of

the �nite number of simulations performed and the use of a di�erent random message for

eah trial. When the two groups of plots are ompared, it is lear that an improvement in

performane results from inreasing the embedding strength. For the ase when s

�

= 0:05,

the detetor performs moderately, with a detetion probability of approximately 98% yielding

a false alarm probability just over 50%. These statistis are signi�antly worse than those

for the orresponding likelihood ratio test detetor; however, they represent a large gain
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over the loally optimal detetors based on the Weibull and power exponential distributions

(Figures B.14, B.15, B.17, and B.18). This result supports the intuitive belief that the

nothed distribution should o�er better performane beause it more losely models the

oeÆients hosen for watermarking. In a mathematial sense, the improvement is aused

by the ability to eliminate a hypothesis when a data element is found below one of the noth

thresholds. However, given the strong performane of the LRT detetor, the loally optimal

detetor based on the nothed power exponential distribution does not yield results that

would support its use in a real-world appliation.

It is interesting to ompare the data resulting from using the NPE loally optimal

detetor on oeÆients from the Lena image with those gathered when syntheti data is

utilized (Figures 5.20 and 5.21). As observed for both the likelihood ratio test and maximum

likelihood estimation detetors, a derease in performane is present for the Lena image data.

This result indiates that the DCT oeÆients of the Lena image do not follow the nothed

power exponential distribution exatly.

6.3 Watermarking Peppers DCT CoeÆients

In order to further test the developed detetors on atual image data, the experiments per-

formed for the Lena image are repeated using the Peppers image given in Figure 6.13. The

nothed power exponential distribution detetors are onsidered in this hapter, while the

Weibull and power exponential distribution analyzes are presented in Appendix B. His-

tograms of the DCT oeÆients of this image and the 32 seleted for watermarking are

shown in Figure 6.14.

The values of the distribution parameters for all three modeling distributions are

estimated by using the moments of the sample data and assuming, as before, a value of

� = 1:1. The results are shown in Table 6.3.

Monte Carlo simulations are now performed for eah detetor to evaluate the perfor-

mane in terms of P

D

and P

F

. Eah simulation onsiders a range of threshold values, with

40 000 runs for eah threshold, where a new message is reated for eah run.
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Figure 6.13 The Peppers image.
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Figure 6.14 (a) DCT oeÆients of the Peppers image and (b) those oeÆients seleted for

watermarking.
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Table 6.3 Estimated distribution parameters for the Peppers DCT oeÆients (� = 1:1).

Distribution

Parameters

� Æ �

Weibull 0.4593 - -

Power exponential 0.1734 - -

Nothed power exponential 0.1734 0.7758 0.9956

6.3.1 Simple likelihood ratio test

The �rst detetor examined for the Peppers image is that based on likelihood ratio testing

with the nothed power exponential distribution. The results are again presented in the forms

of the distributions of the test statisti, and the P

D

and P

F

urves from the simulations.

First, Figure 6.15 presents the distributions of the test statistis under eah hypothe-

sis. One again the two distributions do indeed ontain most of their mass at in�nite values

(represented here by �1 � 10

8

), with only small amounts of mass near the origin. These

small peaks are redued to near invisibility on the depited sale for the higher embedding

strength.
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Figure 6.15 Distribution of the test statisti for the Peppers image using the NPE distribu-

tion and LRT with an embedding strength of (a) 0.05 and (b) 0.10.
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The detetion and false alarm probability results for the Monte Carlo simulations

on the Peppers data are given in Figures 6.16 and 6.17. Note that the plots are shown

on redued sales beause a limited range of probabilities ours during the simulations.

Thus, the urves still remain somewhat jagged beause of the randomness introdued by the

di�erent message in eah run and the �nite number of runs performed. When the graphs in

the two �gures are ompared, a signi�ant inrease in performane is notied for the higher

embedding strength. However, even when s

�

= 0:05, a detetion probability of approximately

99.25% is ahieved for a false alarm probability of approximately 1%. These rates inrease to

an astonishing 99.99% detetion with a 6 � 10

�6

% probability of false alarm when s

�

= 0:10.

Thus, it is lear that the use of the likelihood ratio test detetor with the nothed power

exponential distribution o�ers great promise for use in real-world appliations.

As in the ase of the Lena image, a drop in performane is observed when the detetor

is applied to the Peppers image oeÆients as opposed to syntheti data (Figures 5.13 and

5.14). However, the size of this derease is very similar to that for the Lena image, suggesting

that the performane is not highly dependent on the partiular real-world image that is

watermarked.

6.3.2 Simple detetor for nothed distributions

The next detetor examined for the Peppers image is the simple detetor using the nothed

power exponential distribution. Table 6.4 ontains statistis on the output of the detetor

under eah of the two hypotheses using the derived deision rule (3.4) with � =

1

2

. The values

ontained are similar to those for the Lena image, with slightly more ertain deisions. Thus,

slightly stronger performane than that for the Lena image is expeted.

The simple detetor is now ompared against the likelihood ratio test detetor. Figure

6.18 shows the ROC urve for the LRT detetor with that for the simple detetor overlaid.

One again the axes have been redued for eah sub�gure to highlight the small range of

probabilities. For both embedding strengths, the ROC urves for the SD lie to the lower

right of those for the LRT detetor, demonstrating that a slight drop in performane results

from simplifying the detetor. However, the derived detetor still performs well when applied

to the Peppers image.
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Figure 6.16 P

D

and P

F

urves for the

NPE LRT for Peppers data (s

�

= 0:05).
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Figure 6.17 P
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and P
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urves for the

NPE LRT for Peppers data (s

�

= 0:10).
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Table 6.4 Simple detetor output for data from the Peppers DCT oeÆients.

Situation

Count

s

�

= 0:05 s

�

= 0:10

Certain H

0

under H

0

38 762 39 846

Certain H

1

under H

0

0 0

Random seletion under H

0

1238 154

Certain H

0

under H

1

0 0

Certain H

1

under H

1

38 736 39 906

Random seletion under H

1

1264 94
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Figure 6.18 ROC urves for the LRT and SD for the NPE distribution with Peppers data

using an embedding strength of (a) 0.05 and (b) 0.10.
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6.3.3 Maximum likelihood estimation

The detetor based upon maximum likelihood estimation and the nothed power exponen-

tial distribution is evaluated on its ability to detet a watermark embedded into the DCT

oeÆients of the Peppers image. One again, three �gures are presented to demonstrate

the results.

Figure 6.19 ontains plots of the distributions of the estimates for two di�erent em-

bedding strengths, found through 10 000 Monte Carlo simulations. As seen for the Lena

image, there is a lear separation between the distributions under H

0

and H

1

, with H

1

ex-

hibiting strong peaks around the true values of the embedding strength, partiularly for the

higher embedding strength.
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Figure 6.19 Distribution of the test statisti for the Peppers image using the NPE distribu-

tion and MLE with an embedding strength of (a) 0.05 and (b) 0.10.

In order to further study the detetor, urves for the performane indiators P

D

and

P

F

are given in Figures 6.20 and 6.21. The typial expeted result for MLE is found, where

the detetion probability falls o� dramatially as the threshold is inreased above the atual

embedding strength. Through a omparison of the two �gures, it is evident that inreasing

the embedding strength ontributes to the detetor's performane, as expeted. For the lower

embedding strength, a detetion probability of approximately 98% is ahieved for a false

alarm probability of 50%. Although the use of the nothed power exponential distribution
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Figure 6.20 P

D

and P

F

urves for the

NPE MLE for Peppers data (s

�

= 0:05).
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improves the maximum likelihood estimation detetor substantially, the resulting detetor

does not perform as well as the orresponding likelihood ratio test detetor. Hene, it is

doubtful that this detetor would be employed in real-world situations.

By omparing these results to those for syntheti data, Figures 5.17 and 5.18, a drop

in performane is observed. However, the magnitude of this derease is omparable to that

observed for the Lena image, again suggesting the watermarking detetors are not highly

sensitive to the partiular seletion of the real-world image.

6.3.4 Loally optimal detetion

To omplete the study of the nothed power exponential detetors when a watermark is

inserted into the Peppers image, loally optimal detetion is onsidered. As before, the

experimental results are presented in the form of three �gures.

The distributions of the test statistis under eah hypothesis are shown in Figure 6.22.

In these plots, the in�nite value that is possible for the statisti is represented by 1 �10

8

. The

graphs demonstrate that all of the mass of the distribution under H

0

is lustered near 0. On

the other hand, under H

1

, most of the mass is loated at in�nity, partiularly for the high

embedding strength, where the non-in�nite lobe near 0 is all but invisible. Thus, a strong

performane is expeted from the detetor.

P

D

and P

F

urves are now presented to omplete the examination of the detetor

in question. Figures 6.23 and 6.24 ontain the neessary graphs for embedding strengths

of 0.05 and 0.10, respetively. The axes in the �gures have been trunated suh that P

D

is

shown between [0.95, 1℄. Values outside this area do not our in the Monte Carlo simula-

tions performed. As a onsequene of the inreased sale, the urves appear rather jagged

beause a �nite number of simulations is performed, eah using a di�erent random message.

By omparing the urves for the two embedding strengths, a signi�ant improvement is

observed for the higher ase. However, even for s

�

= 0:05, a detetion probability of approx-

imately 98% an be ahieved with a false alarm probability of 10%. These �gures improve

to approximately 99.95% and 0.44% for s

�

= 0:10. Thus, the detetor o�ers a ommanding

improvement over those for the Weibull and power exponential distributions given in the

appendix, but is slightly worse than the orresponding likelihood ratio test detetor. As a
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Figure 6.22 Distribution of the test statisti for the Peppers image using the NPE distribu-

tion and LOD with an embedding strength of (a) 0.05 and (b) 0.10.

result, its utilization in pratial appliations is unlikely.

It is also interesting to ompare the results from the Pepper image data to those for

syntheti data. As expeted, the detetor does not perform as well on the image data as

it does on the syntheti oeÆients. However, the degree of the drop is quite similar to

that observed for the Lena image, whih again supports the belief that the detetors are not

signi�antly impated by the real-world image seleted for watermarking.

6.4 Summary of Results

This hapter examined the four types of watermarking detetors based on the nothed power

exponential distribution disussed in this thesis for use on real-world test images. The dete-

tion and false alarm probability results from these experiments, and those in the appendix

for the Weibull and power exponential distributions, are ondensed into Tables 6.5 and 6.6

for the Lena and Peppers images, respetively. The probabilities are shown in perentage

form and are rounded to the nearest whole number. As with the summary for syntheti data,

the data points are seleted to demonstrate the false alarm probability that must be inurred

in order to ahieve a detetion probability of approximately 98%. When this probability an

not be ahieved, the highest P

D

value is hosen.

103



−50 −40 −30 −20 −10 0 10 20 30 40 50
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

P
D

 versus Threshold (32 WM Bits, β = 1.1, s
*
 = 0.05)

Threshold

P
D

(a)

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F
 versus Threshold (32 WM Bits, β = 1.1, s

*
 = 0.05)

Threshold

P
F

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

P
D

 versus P
F
 (32 WM Bits, β = 1.1, s

*
 = 0.05)

P
F

P
D

()

Figure 6.23 P

D

and P

F

urves for the

NPE LOD for Peppers data (s

�

= 0:05).
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urves for the

NPE LOD for Peppers data (s
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= 0:10).
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Table 6.5 Seleted results for data from the Lena DCT oeÆients.

Distribution
Detetor

s

�

= 0:05 s

�

= 0:10

P

D

(%) P

F

(%) P

D

(%) P

F

(%)

Weibull LRT 98 95 98 88

Weibull MLE 62 51 72 50

Weibull LOD 98 88 98 64

Power exponential LRT 98 95 98 91

Power exponential MLE 62 51 72 50

Power exponential LOD 97 84 98 63

Nothed power exponential LRT 98 2 99 0

Nothed power exponential MLE 96 4 98 1

Nothed power exponential LOD 98 61 100 1

Nothed power exponential SD 97 3 100 1

Table 6.6 Seleted results for data from the Peppers DCT oeÆients.

Distribution
Detetor

s

�

= 0:05 s

�

= 0:10

P

D

(%) P

F

(%) P

D

(%) P

F

(%)

Weibull LRT 98 95 98 87

Weibull MLE 61 49 71 50

Weibull LOD 98 88 98 63

Power exponential LRT 98 95 98 91

Power exponential MLE 61 50 72 50

Power exponential LOD 98 88 98 62

Nothed power exponential LRT 98 0 100 0

Nothed power exponential MLE 98 1 98 0

Nothed power exponential LOD 98 1 100 0

Nothed power exponential SD 99 2 100 0
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The onlusions that an be drawn from these tables in terms of the best performing

detetor and distribution are the same as those stated for the syntheti data in Setion

5.5. Namely, the likelihood ratio test detetor based on the nothed power exponential

distribution is learly superior to the other detetor-distribution pairs onsidered.

Comparisons an also be made between the experimental results gathered from the

test images and those found for the syntheti data, Table 5.3. In general, a derease in

performane is observed when the detetors are applied to atual image DCT oeÆients.

This result is expeted beause, here, the distributions are simply being used to model the

distribution of the transform oeÆients, whih are not neessarily distributed aording to

the studied distributions. However, the performane drop is observed for both the Lena and

Peppers test images, and is of approximately the same amount: generally a 1% - 2% inrease

in P

F

for the same P

D

for the nothed power exponential distribution. Thus, the detetors

appear to be fairly robust to the image seleted for watermarking.
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CHAPTER 7

IMAGE WATERMARKING

EXPERIMENTS WITH ATTACKS

The previous hapter examined the performane of the developed detetors for use in de-

teting a watermark embedded into a real-world test image. The results demonstrated that

the likelihood ratio test detetor oupled with the nothed power exponential distribution

yields the most promising means of watermark detetion. This hapter again onsiders the

detetion of a watermark in a natural image; however, an attak is now inluded in the sys-

tem. Beause of its strong performane, only the LRT detetor is evaluated, and the nothed

power exponential distribution is ompared with the power exponential distribution. It is

important to note that the development of these detetors did not inlude a model of an

attak; hene, they are no longer optimal. However, the behavior of the detetors in the

presene of an attak remains worthy of study. This hapter disusses the types of attaks

introdued and then presents the results when they are applied to a watermarked version of

the Lena test image.

7.1 Attak Types

Two attak methods are onsidered for appliation on an image in an attempt to redue a

detetor's ability to aurately determine the presene of a watermark. These tehniques in-

lude additive white Gaussian noise (AWGN) and Joint Photographi Experts Group (JPEG)

ompression. This setion desribes the implementation of eah attak, as well as the re-

sulting amount of distortion introdued. In both ases, the attaker does not know whih
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transform oeÆients are watermarked; hene, the attaks are applied to the entire image.

In the formulation of the distortion, the mean squared error measure is used to determine

the di�erene between the watermarked image and the attaked watermark image.

7.1.1 Additive white Gaussian noise

The �rst type of attak onsidered is the addition of white Gaussian noise to the watermarked

image. A matrix, having the same size as the image, of noise is generated randomly aording

to a zero-mean Gaussian distribution, Z � N (0; �

2

), with variane �

2

. The matrix is

then added to the watermarked image, or, equivalently, the transform oeÆients of the

watermarked image, to produe an attaked image (or attaked oeÆients).

In order to derive the amount of distortion introdued by this attak, some additional

notation must �rst be de�ned:

Let

~

b = the pixels of the attaked watermarked image.

Let

~

B = the transform oeÆients of the attaked watermarked image = B+ Z.

Then, the distortion (as de�ned in Equation (2.1)) introdued by the AWGN is given by
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where Parseval's theorem is employed to hange the equation to the transform domain. The

expeted distortion is given by
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Thus, the expeted strength of the AWGN attak is ontrolled diretly by altering the

variane of the noise introdued.

7.1.2 JPEG ompression

The next type of attak onsidered is that of JPEG ompression. JPEG ompression is a

means of reduing the number of bytes required to represent an image by removing some

of the information ontained in the image's transform. More spei�ally, the pixels of an

image are onsidered in 8 � 8 bloks. The DCT of eah blok is taken, and the transform

oeÆients are quantized to redue the number of bits required to represent the data values.

The image is then further ompressed without loss of information using entropy enoding.

The degree of quantization employed is determined through the use of a quality fator in the

range [0, 100℄, where a higher number produes a better-quality image.

The distortion introdued by the JPEG ompression is given by
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where Q

i

is the quantizer applied to oeÆient i (as de�ned by the JPEG standard using

the spei�ed quality fator), and q

i

is the step size orresponding to the applied quantizer.

Beause of the omplexity of this expression, it is diÆult to diretly relate the quality

fator to the orresponding distortion. Hene, to reate a suitable attak, a quality value

is seleted and the resulting distortion is omputed. Through experimentation, the quality

an be hosen suh that the desired amount of distortion is introdued.
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7.2 Simulation Results

To evaluate the performane of the likelihood ratio test detetors based on the nothed

power exponential and power exponential distributions, Monte Carlo simulations are run

for eah of the noise types previously disussed. The number of simulations performed is

40 000 for the ase of AWGN and 10 000 for JPEG ompression. The latter redution is

due to the large amount of omputation required in implementing the attak. To illustrate

detetor performane, plots of the test statisti distributions, P

D

vs. Threshold, P

F

vs.

Threshold, and P

D

vs. P

F

are inluded, with urves for the NPE and the PE displayed

onurrently. Thus, the higher performane expeted from the nothed distribution should

be learly visible.

7.2.1 Lena image with additive white Gaussian noise

To examine the LRT detetor in the presene of an AWGN attak, the Lena image is wa-

termarked multipliatively, as before. The distortion introdued through watermarking has

a value of D

1

= 0:000 193. Two sets of Monte Carlo simulations are performed for eah

distribution, the �rst where D

2

= D

1

and the seond where D

2

= 10D

1

. The appropriate

vetors of white Gaussian noise are reated and added to the image to produe the attaked

images shown in Figure 7.1. Beause of the small amount of distortion introdued in the wa-

termarking proess, the attaker is limited to a orrespondingly little amount of noise when

D

2

= D

1

. This restrition renders the distortion just barely visible in the more smooth

regions of the image. However, for the larger noise magnitude, the dereased quality is quite

visible throughout the entire image.

The distributions of the test statisti for the power exponential distribution, as found

using 40 000 Monte Carlo simulations, are given in Figure 7.2. Little hange in the distribu-

tion is present as the attak strength is inreased. However, these distributions are slightly

less separated than those for the Lena image when no attak is present, as seen in Figure B.4.

Thus, it appears that the performane of the LRT detetor based on the power exponential

distribution is not signi�antly hindered by the AWGN attak.
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(a) (b)

Figure 7.1 The Lena image with AWGN with (a) D

2

= D

1

and (b) D

2

= 10D

1

.
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(b)

Figure 7.2 Distribution of the test statisti using the PE distribution and LRT under an

AWGN attak with (a) D

2

= D

1

and (b) D

2

= 10D

1

.

111



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

x 10
8

0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Distribution of Test Statistic 

 (32 WM Bits, α = 0.2, β = 1.1, δ = 0.8, κ = 1.0, s
*
 = 0.10)

Test Statistic Value

C
o
u
n
t

Under H
0

Under H
1

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

x 10
8

0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Distribution of Test Statistic 

 (32 WM Bits, α = 0.2, β = 1.1, δ = 0.8, κ = 1.0, s
*
 = 0.10)

Test Statistic Value

C
o
u
n
t

Under H
0

Under H
1

(b)

Figure 7.3 Distribution of the test statisti using the NPE distribution and LRT under an

AWGN attak with (a) D

2

= D

1

and (b) D

2

= 10D

1

.

Using another 40 000 Monte Carlo simulations, the distributions of the test statisti

for the nothed power exponential are found for eah distortion ase and are depited in

Figure 7.3. Although, in both ases, most of the distribution mass is loated at the in�nity

points, the enter lobes are muh larger than those seen when no attak is present, Figure

6.3. This inrease in area is more pronouned for the higher-variane attak. The movement

of mass to the inner region is aused by the introdution of noise shifting more data points

to lie within Regions 1 and 4, thereby demonstrating the sensitivity of the detetor to points

around the threshold. Also, the addition of noise auses a small number of false instanes of

Regions 2 and 3, as shown by the mass loated at1 under H

0

and at �1 under H

1

. Overall,

these urves demonstrate that the LRT detetor based on the nothed power exponential

distribution is moderately a�eted by the presene of noise, ausing an expeted derease in

performane.

To more learly illustrate the performane of the detetors, urves of the detetion

and false alarm probabilities are onsidered. Figures 7.4 and 7.5 depit these probabilities for

the two attaker distortion strengths, with both the power exponential and nothed power

exponential results shown. The urves for the power exponential are virtually idential to

those for the unattaked ase, given in Figure B.6. On the other hand, a substantial derease
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Figure 7.4 P
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and P
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urves for the NPE

and PE LRT (AWGN, D
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in performane is present for the NPE ase when ompared with the data resulting from no

attak, Figure 6.5. This derease is ampli�ed in the higher-noise ase, and is onsistent with

the hange in the statisti distribution previously observed. However, the performane of

the likelihood ratio test detetor using the nothed power exponential distribution remains

notably superior to that resulting from the use of power exponential distribution.

7.2.2 Lena image with JPEG ompression

The likelihood ratio test detetor is now examined in the ase where an attaker uses JPEG

ompression to manipulate the watermarked image. One again, Monte Carlo simulations

are performed for ompression qualities resulting in mean squared errors of D

2

= D

1

and

D

2

= 10D

1

. The quality fators required to ahieve these distortion levels are 81 and 6,

respetively, and the two ompressed images are presented in Figure 7.6. The small value

of D

1

auses the visible ompression artifats present in the �rst image to be extremely

minimal. However, when the attaker is permitted to introdue 10 times the amount of

distortion as the embedding proess, typial bloking artifats aused by JPEG ompression

are quite prevalent.

Beause of the large amount of omputation required for JPEG ompression, only

10 000 Monte Carlo simulations are performed to evaluate eah detetor. The resulting

distributions of the test statisti under both ompression strengths are given for the power

exponential in Figure 7.7. Similar to the attak using Gaussian noise, these urves are nearly

idential to those found when no attak is present, Figure B.4. Thus, little performane

degradation is expeted for the LRT power exponential detetor.

Considering the distribution of the statisti when the nothed power exponential is

employed, Figure 7.8, somewhat di�erent results from the AWGN attak are observed. For

the lower attak strength, the statisti distribution appears quite similar to the unattaked

ase (Figure 6.3); most of the mass lies at the in�nity points with only a small amount

near the 0 point. However, the slight derease in mass at the endpoints observed when

D

2

= D

1

is signi�antly ampli�ed when D

2

= 10D

1

. Thus, the LRT NPE detetor possesses

a robustness to lower rates of JPEG ompression, but su�ers onsiderably when severe

ompression is applied.
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(a) (b)

Figure 7.6 The Lena image with JPEG ompression with (a) D

2

= D

1

and (b) D

2

= 10D

1

.
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Figure 7.7 Distribution of the test statisti using the PE distribution and LRT under a

JPEG ompression attak with (a) D

2

= D

1

and (b) D

2

= 10D

1

.
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Figure 7.8 Distribution of the test statisti using the NPE distribution and LRT under a

JPEG ompression attak with (a) D

2
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1

and (b) D

2
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1

.

The performane of the likelihood ratio test detetors is now gauged using the indi-

ators of detetion and false alarm probabilities. Figures 7.9 and 7.10 present the resulting

urves for both the PE and NPE for the two attak strengths. As expeted, the urves for

the power exponential are nearly idential to those for the no-attak ase. Conversely, those

for the nothed power exponential display a derease in performane. This drop is only slight

for the low-attak ase, but is more pronouned for the larger attak. However, these �gures

again demonstrate the lear superiority of the nothed power exponential distribution over

the power exponential distribution for modeling the seleted oeÆients.

7.3 Summary of Results

This hapter has presented the results of experiments employed to evaluate the performane

of the likelihood ratio test detetor for the Lena test image when an attak is present. Tables

7.1 and 7.2 ontain seleted data points from the P

D

and P

F

urves generated through Monte

Carlo simulations for AWGN and JPEG attaks, respetively. Points have been seleted to

illustrate the behavior of the detetors for a detetion probability of approximately 98%. The

probabilities are shown in perentage form and are rounded to the nearest whole number.
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Table 7.1 Seleted results for data from the Lena DCT oeÆients with an AWGN attak.

Distribution

No Attak D

2

= D

1

D

2

= 10D

1

P

D

(%) P

F

(%) P

D

(%) P

F

(%) P

D

(%) P

F

(%)

Power exponential 98 91 98 91 98 91

Nothed power exponential 100 1 98 18 98 22

Table 7.2 Seleted results for data from the Lena DCT oeÆients with a JPEG ompression

attak.

Distribution

No Attak D

2

= D

1

D

2

= 10D

1

P

D

(%) P

F

(%) P

D

(%) P

F

(%) P

D

(%) P

F

(%)

Power exponential 98 91 98 91 98 92

Nothed power exponential 100 1 98 1 98 42

The values given in these tables reinfore the observations made previously regarding

the performane of the LRT detetors based on the two onsidered distributions. While the

use of the power exponential distribution results in very little performane loss when an

attak is applied, the outstanding behavior of the nothed power exponential distribution

translates to a stronger detetor, despite signi�ant drops in performane with the inlusion

of an attak. However, it should again be noted that neither of these two detetors were

derived with attaks inluded in the models; hene, they are not optimal. Thus, it is expeted

that the performane loss experiened by the nothed power exponential detetor will be

redued if the attak were to be inluded in the formulation of the detetor.
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CHAPTER 8

CONCLUSIONS

8.1 Summary

This thesis deals with the problem of deteting a watermark that has been multipliatively

embedded into the highest-magnitude transform oeÆients of a digital image. In the setup

onsidered, the detetor has aess to side information about the original image in the form of

an image hash (a 1-bit quantized version of a seret subset of the original image DCT oeÆ-

ients), reating a joint hashing/watermarking system. The inlusion of the side information

permits the development of detetors that o�er extremely high performane, even for small

messages. Various probability distributions, inluding the Weibull distribution, the power

exponential distribution, and the nothed power exponential distribution, are examined for

use in modeling the statistial distribution of the oeÆients seleted for watermarking.

Through the use of signal detetion and estimation tehniques prevalent in the �eld of om-

muniations, three detetors are developed and then further speialized to the onsidered

probability distributions. The detetors are based on likelihood ratio testing, maximum like-

lihood estimation, and loally optimal detetion. A fourth detetor is also onstruted as a

simpli�ed version of the likelihood ratio test detetor for the ase of nothed distributions.

The preise image watermarking setup employed is semi-blind beause some side information

is required at the detetor; however, the original image need not be available.

Cherno� bounds are formulated for the likelihood ratio test detetors to provide

insight into their worst-ase performane. Evaluation of the bounds reveals tremendous

inreases in auray when the nothed power exponential is utilized for modeling, as opposed
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to the two more traditional approahes. These insights are supported by the study of the

orresponding Cherno� distanes, whih provide an indiation of the relative diÆulty of the

detetion tasks. The Cherno� distane as seen by an eavesdropper attempting to detet the

message is also onsidered, quantifying the inrease in diÆulty for this detetion problem.

Monte Carlo simulations are employed to analyze the behavior of the detetors using

both data generated synthetially to follow the appropriate modeling distribution, and data

gathered from real-world test images. The performane is measured in terms of the probabil-

ity of falsely deteting a watermark, and the probability of orretly deteting a watermark.

In eah of the two simulation settings, the nothed power exponential distribution displays

vastly superior performane over the Weibull and power exponential distributions, o�ering

dereases in false alarm probabilities between 90% to 50%, depending on the detetor type,

for the same detetion probability. Furthermore, the likelihood ratio test detetor provides a

muh higher degree of performane than those based upon maximum likelihood estimation

and loally optimal detetion. In the ase of the nothed power exponential distribution,

the simpli�ed version of the likelihood ratio test detetor still produes remarkably strong

results, with only a small departure from the optimal LRT. Combining these results, it is

lear that the use of a likelihood ratio test and the nothed power exponential distribution

forms a detetor that is unrivaled in the watermark detetion simulations.

Although the development of the detetors assumes no attaks are made on the water-

marked images, further experiments are performed to observe the reperussions of additive

white Gaussian noise and JPEG ompression on the output of the LRT detetors for the

power exponential and nothed power exponential distributions. Trials are performed using

attak distortions up to 10 times that aused by the embedding proess itself, in the mean

squared error sense. The false alarm and detetion probabilities for the power exponential

are only slightly a�eted by the introdution of an attak, while the nothed power exponen-

tial detetor is moderately hindered. However, the use of the power exponential distribution

results in a detetor that, in the presene of an attak, is still onsiderably inferior to that

based on the nothed power exponential distribution. Moreover, the inlusion of an attak

model in the detetor derivation will only strengthen these results, with larger improvements

expeted for the nothed power exponential ase, where the degradation due to the attaks

is more severe.
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The analyses and experiments performed in this thesis demonstrate that the use of

statistial modeling, and signal detetion and estimation theory provides a strutured frame-

work in whih optimal watermark detetors an be developed and assessed. The exemplary

results attained learly reveal the promise of joint digital image hashing/watermarking as a

viable means of information protetion for real-world appliations.

8.2 Reommendations

The �eld of digital watermarking is still in its initial stages of development, providing a vast

array of topis worthy of study. Several possible reommendations for future diretions of

researh based upon the partiular tehniques developed in this thesis follow:

� The simulations performed only onsider the use of the entire set of transform oeÆ-

ients as andidates for embedding (� = 1). Further experiments ould be onduted

to examine the e�ets on the detetor performane of reduing the size of this set to

heighten robustness.

� Multipliative embedding is urrently used to insert the watermark into the highest-

magnitude oeÆients beause it is believed these loations will better withstand at-

taks. Charateristis of the sensitivity of the human visual system to variations in

transform oeÆients ould be inorporated into the embedding proess to better dis-

guise the watermark, while simultaneously inreasing seurity.

� The detetors derived in this thesis do not inorporate models of any of the possible

attaks that ould be performed on the watermarked image. By ompensating for suh

proesses, the watermark detetors would beome more suitable for use in pratial

situations.

� Digital graysale images represent only a single soure of multimedia objets to whih

watermarking tehniques may be applied. Although the detetion approahes desribed

in this thesis are independent of the host data, further onsiderations must be made

to frame the basi watermarking system for use with additional objets suh as olor

images, audio sequenes, and video data.
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8.3 Contributions

The ontributions made by the researh and development of this thesis may be summarized

as follows:

� The onstrution of a joint image hashing/watermarking system based on multiplia-

tive embedding into high-magnitude image transform oeÆients.

� The extension of the power exponential distribution to the nothed power exponential

distribution to better model the oeÆients seleted for watermarking.

� The development of detetors based on likelihood ratio testing, maximum likelihood

estimation, and loally optimal detetion using the nothed power exponential distri-

bution.

� The derivation of Cherno� bounds on the performane of the likelihood ratio test

detetor for the nothed power exponential distribution.

� The formulation of Cherno� distanes for the nothed power exponential likelihood

ratio test detetor, and for the detetion problem as seen by an eavesdropper.

� The simulation of the onsidered detetors, highlighting the substantial performane

gains resulting from the use of nothed distributions.
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APPENDIX A

ADDITIONAL THEORETICAL

ANALYSIS

This appendix presents analyzes of the maximum likelihood estimation detetor and loally

optimal detetor for the Weibull and power exponential distributions when syntheti data

are utilized. The setup of the experiments performed is idential to that desribed in Chapter

5.

A.1 Maximum Likelihood Estimation

The detetors based upon maximum likelihood estimation are now onsidered for the ases

when the Weibull and power exponential distributions are used to model the distribution of

image transform oeÆients. As before, three plots are employed to examine the performane

of the detetors.

A.1.1 Weibull distribution results

The MLE detetor based on the Weibull distribution is now investigated. The distributions

of the test statisti, de�ned by Equation (3.5), under the two hypotheses are shown in Figure

A.1. These plots demonstrate that the distributions of the estimates under eah hypothesis

nearly ompletely overlap. However, the higher embedding strength does result in slightly

more separation, as expeted. Under both hypotheses, a large number of the estimates are

of value 0, thus, a peak exists at this point. A sharp knee results around 0.05 beause of

the large peak and the �nite number of bins utilized when plotting the histograms of the

distributions.
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Figure A.1 Distribution of the test statisti using the WB distribution and MLE with an

embedding strength of (a) 0.05 and (b) 0.10.

The next two �gures, A.2 and A.3, ontain the results of the Monte Carlo simulations

using the MLE detetor. First, it should be noted that the threshold against whih the

estimate is ompared is in the range [0, 1℄ beause the strength must be in this range. As

a result, full ranges of probabilities are not neessarily present in the ROC urves. Sine

the �gures ontain estimates for atual embedding strengths of 0.05 and 0.10, it is expeted

that the detetion probability will be low when the threshold is above these values. By

omparing Figure A.2 and Figure A.3, the expeted inrease in performane is observed as the

embedding strength is inreased. However, neither strength presents a robust detetor. With

approximately a 50% false alarm probably for approximately a 60% detetion probability

for s

�

= 0:05, the MLE detetor performs slightly worse than the orresponding binary

hypothesis testing detetor, whose results are presented in Figure 5.7 (and Figure 5.8 for

the s

�

= 0:10 ase). Hene, it is doubtful that the MLE detetor based on the Weibull

distribution will suÆe in pratial appliations.

A.1.2 Power exponential distribution results

Next, the maximum likelihood estimator that is based on modeling the host oeÆients using

the power exponential distribution is evaluated. The distributions of the test statisti, de�ned
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Figure A.2 P

D

and P

F

urves for the WB

MLE for syntheti data (s

�

= 0:05).
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by Equation (3.6), as found using Monte Carlo simulation are given in Figure A.4. Here the

results are quite similar to those for the MLE detetor using the Weibull distribution: the

distributions are greatly overlapped and a slight improvement is gained by inreasing the

embedding strength.
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Figure A.4 Distribution of the test statisti using the PE distribution and MLE with an

embedding strength of (a) 0.05 and (b) 0.10.

The performane indiators of P

D

and P

F

are shown in the next two �gures, Figure

A.5 and Figure A.6. The urves depited are nearly idential to those for the ase of the

Weibull distribution. An inrease in performane as the embedding strength is inreased is

observed; however, the detetor performs rather poorly overall. One again, for a detetion

probability of approximately 60%, a false alarm probability of approximately 50% must be

tolerated. These results are slightly worse than those for the likelihood ratio test detetor

for the same distribution, whose ROC urves are given in Figures 5.10 and 5.11. Thus,

it appears that the MLE detetor using the power exponential distribution is not a viable

solution.

A.2 Loally Optimal Detetion

This setion examines the watermark detetors based on loally optimal detetion for the

Weibull and power exponential distributions. One again, three �gures are utilized to analyze

the experimental results.
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A.2.1 Weibull distribution results

To further evaluate the loally optimal detetor, the detetor reated for the ase when the

host oeÆients are modeled using the Weibull distribution is onsidered. The distributions

of the test statisti, de�ned by Equation (3.8), under the two hypotheses are given in Figure

A.7. This �gure shows the two distributions overlap quite signi�antly, with slightly more

separation present for the higher embedding strength.
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Figure A.7 Distribution of the test statisti using the WB distribution and LOD with an

embedding strength of (a) 0.05 and (b) 0.10.

The Weibull distribution loally optimal detetor is now examined using the P

D

and

P

F

statistis. Figures A.8 and A.9 ontain the results of the Monte Carlo simulations using

this detetor. The ROC plots illustrate a slight performane gain when the embedding

strength is inreased to 0.10 from 0.05, whih is to be expeted. However, in general, the

results are not promising. In order to ahieve approximately a 64% detetion probability

for the lower embedding strength, lose to a 50% false alarm probability results. These

statistis lie just below those for the orresponding binary hypothesis testing detetor, and

just above the maximum likelihood detetor. Therefore, it appears that the loally optimal

detetor onstruted using the Weibull distribution does not o�er suÆient performane to

be employed in pratie.
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A.2.2 Power exponential distribution results

The next distribution onsidered for the loally optimal detetor is the power exponential

distribution. The distributions of the test statistis, de�ned by Equation (3.9), resulting

from Monte Carlo simulations on this detetor are displayed in Figure A.10. The results

in this situation are quite similar to those of the LOD using the Weibull distribution: the

statisti distributions display muh overlap with a slight improvement in separation for the

higher embedding strength.
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Figure A.10 Distribution of the test statisti using the PE distribution and LOD with an

embedding strength of (a) 0.05 and (b) 0.10.

Figures A.11 and A.12 demonstrate the performane of the loally optimal detetor in

terms of P

D

and P

F

. These results are quite similar to those seen previously. The ROC urve

moves slightly more to the top left orner of the plot as the embedding strength is inreased;

but overall the detetor does not perform well. In order to ahieve a detetion probability

of approximately 65% with the lower embedding strength, a false alarm probability of ap-

proximately 50% results. These statistis are more favorable than those for the maximum

likelihood estimator of the same distribution, and omparable to those of the orresponding

likelihood ratio test detetor. Consequently, it is unlikely that the loally optimal detetor

using the power exponential distribution to model the oeÆients will provide an adequate

watermark detetor in pratie.
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APPENDIX B

ADDITIONAL IMAGE

WATERMARKING EXPERIMENTS

The analyzes of the watermark detetors based on the Weibull and power exponential dis-

tributions for use with the Lena and Peppers images are presented in this appendix. The

setup of the experiments performed is nearly idential to that desribed for the nothed

power exponential distribution in Chapter 6. The main di�erene is that only 10 000 trials

are performed for eah Monte Carlo simulation beause the resulting probabilities for these

distributions are do not require the same �ne degree of preision as those for the nothed

power exponential. Also, note that sine the Weibull distribution requires non-negative data,

the absolute values of the DCT oeÆients are utilized for watermarking.

B.1 Watermarking Lena DCT CoeÆients

In this setion, the Lena image, as shown in Figure 6.1, is utilized as the soure of oeÆients

into whih the watermark is to be inserted.

B.1.1 Simple likelihood ratio test

First, the detetors based upon likelihood ratio testing are examined for the Lena image

through the use of the three typial �gures.

B.1.1.1 Weibull distribution results

To ontinue the analysis of the likelihood ratio test detetor on the Lena image, the Weibull

distribution is utilized to model the seleted oeÆients. The distribution of the test statisti
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under eah hypothesis is given in Figure B.1. As expeted, this �gure demonstrates that the

separation between the two distributions inreases as the embedding strength inreases.
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Figure B.1 Distribution of the test statisti for the Lena image using the WB distribution

and LRT with an embedding strength of (a) 0.05 and (b) 0.10.

At this point the performane of the detetor is onsidered using the detetion and

false alarms probabilities. Figures B.2 and B.3 eah ontain three plots demonstrating the

outome of the Monte Carlo simulations for embedding strengths of 0.05 and 0.10, respe-

tively. From these graphs, it is seen that the detetor performs better as the embedding

strength is inreased. However, for an embedding strength of 0.05, a false alarm probability

of approximately 50% must be tolerated to ahieve a detetion probability just under 70%.

Thus, using the Weibull distribution to model the hosen Lena oeÆients appears to not

result in a pratial watermark detetor.

B.1.1.2 Power exponential distribution results

The next distribution evaluated for use in a likelihood ratio test detetor is the power expo-

nential distribution. Figure B.4 shows the distribution of the test statisti under eah of the

two hypotheses. These results are similar to those in the ase of the Weibull distribution:

the inreased embedding strength auses the two distributions to beome further apart. It

should be noted that the jaggedness in the seond plot is simply due to an inrease in the

number of bins used to ompute the histogram.
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Figure B.2 P
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urves for the WB

LRT for Lena data (s
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= 0:05).
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Figure B.4 Distribution of the test statisti for the Lena image using the PE distribution

and LRT with an embedding strength of (a) 0.05 and (b) 0.10.

The P

D

and P

F

urves for the Monte Carlo simulations are now onsidered. Figures

B.5 and B.6 present the three performane plots: the �rst �gure for an embedding strength

of 0.05, and the seond for a strength of 0.10. One again, it is notied that the ROC

moves slightly loser to the top left orner when the embedding strength is inreased, thus

indiating that the watermark is easier to detet. Unfortunately, to ahieve a detetion

probability of approximately 64%, a false alarm probability of approximately 50% is inurred.

This performane is slightly worse than that demonstrated for the binary hypothesis testing

detetor using the Weibull distribution to model the Lena image oeÆients. Thus, the

detetor based on the power exponential distribution is likely also un�t for real-world use.

B.1.2 Maximum likelihood estimation

The detetor based on maximum likelihood estimation is now onsidered for the Weibull and

power exponential distributions. One again, �gures of the distribution of the test statisti

and P

D

and P

F

urves are employed to analyze detetor performane.
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urves for the PE

LRT for Lena data (s
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= 0:05).
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B.1.2.1 Weibull distribution results

To ontinue the evaluation of the maximum likelihood estimation detetors, the ase when

the Weibull distribution is used to model the DCT oeÆients is onsidered. The distribution

of the estimate under eah of the two hypotheses is given in Figure B.7. For both s = 0:05

and s = 0:10, the two distributions are nearly ompletely overlapping, but do ontain larger

values near the atual embedding strengths. The two distributions also beome slightly more

separated as the watermark embedding strength is inreased, whih is to be expeted.
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Figure B.7 Distribution of the test statisti for the Lena image using the WB distribution

and MLE with an embedding strength of (a) 0.05 and (b) 0.10.

Figures B.8 and B.9 display the result of the Monte Carlo simulation in terms of

detetion and false alarm probabilities. As previously with maximum likelihood estimation,

the range of threshold is limited to [0, 1) beause the embedding strength must be inside

this range. Consequently, P

D

and P

F

do not neessarily vary over the full range of 0 to 1.

It is observed that, in the �gures, when the threshold is raised above the atual embedding

strength, the detetion probability falls o� signi�antly beause the threshold is greater than

the value being estimated. When the two �gures are ompared, an inrease in performane

is observed for the higher embedding strength. However, the detetor performane is quite

laking. To ahieve a detetion probability of approximately 62% when s = 0:05, approxi-

mately a 50% hane of produing a false alarm is inurred, whih is slightly worse than the

138



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

 versus Threshold (32 WM Bits, β = 1.1, s = 0.05)

Threshold

P
D

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F
 versus Threshold (32 WM Bits, β = 1.1, s = 0.05)

Threshold

P
F

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

 versus P
F
 (32 WM Bits, β = 1.1, s = 0.05)

P
F

P
D

()

Figure B.8 P
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and P
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urves for the WB

MLE for Lena data (s
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= 0:05).
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orresponding likelihood ratio test detetor. These statistis indiate that the use of maxi-

mum likelihood estimation and the Weibull distribution to model the Lena image oeÆients

likely will not provide a pratial watermark detetor. This onlusion is expeted given the

poor performane of this detetor on syntheti data.

B.1.2.2 Power exponential distribution results

The maximum likelihood estimator used to detet a watermark's presene is now evaluated

for the Lena image data when the oeÆients are modeled using the power exponential

distribution. To begin, Figure B.10 illustrates the Monte Carlo simulation results for the

distribution of the estimate under eah of the two hypotheses. As in the ase of the Weibull

distribution, the distributions are quite overlapping and display values in the areas around

the true embedding strengths. It is also observed that the distributions beome slightly more

separated as the embedding strength is inreased.
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Figure B.10 Distribution of the test statisti for the Lena image using the PE distribution

and MLE with an embedding strength of (a) 0.05 and (b) 0.10.

Figures B.11 and B.12 ontain the performane indiator plots for embedding strengths

of 0.05 and 0.10, respetively. These plots are quite similar to those found for the Weibull

distribution. The detetion probability drops o� signi�antly as the threshold is inreased

above the atual embedding strength, as expeted. Also observable is an inrease in perfor-

mane with the higher embedding strength. However, the detetor performs rather poorly
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Figure B.11 P
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and P

F

urves for the PE

MLE for Lena data (s

�

= 0:05).
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overall. For the ase when s = 0:05, a detetion probability of approximately 62% an only

be ahieved with a false alarm probability of approximately 50%. These statistis are slightly

worse than the orresponding likelihood ratio test results. Thus, it is doubtful that using

maximum likelihood estimation with the power exponential distribution will yield a detetor

that is suitable for real-world appliations.

B.1.3 Loally optimal detetion

The analysis of the loally optimal detetor on the Lena image data is now studied for the

ases when the Weibull and power exponential distributions are employed to model the image

transform oeÆients. Again, three �gures are utilized for eah distribution to examine the

detetor performane.

B.1.3.1 Weibull distribution results

The �rst additional distribution evaluated for use with loally optimal detetion is the

Weibull distribution. Figure B.13 provides the distribution of the test statisti under eah

of the two hypotheses as found through Monte Carlo simulations. Considering the plot for

the low embedding strength, the two distributions are still fairly overlapping; however, for

the larger embedding strength, a moderate degree of separation is indeed present.
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Figure B.13 Distribution of the test statisti for the Lena image using the WB distribution

and LOD with an embedding strength of (a) 0.05 and (b) 0.10.
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The P

D

and P

F

urves for the two embedding strengths, found through Monte Carlo

simulations, are given in Figures B.14 and B.15. By omparing ROC urves in the two

�gures, a lear improvement in performane is seen for the higher embedding strength, as

expeted. However, the detetor performs only moderately well in general. For the ase

when s

�

= 0:05, a detetion probability of approximately 80% is ahieved with a false

alarm probability of approximately 50%. These results o�er an improvement over both the

orresponding likelihood ratio test and maximum likelihood estimator detetors; however,

it is doubtful that the detetor will yield strong enough performane for use in real-world

appliations.

B.1.3.2 Power exponential distribution results

The loally optimal detetor formulated based on the power exponential distribution is now

evaluated using the Lena DCT oeÆients. First, the distributions of the test statistis

under H

0

and H

1

are given in Figure B.16. These graphs are quite similar to those for the

Weibull distribution loally optimal detetor. The separation between the two distributions

inreases to a moderate amount as the embedding strength is inreased.

Figures B.17 and B.18 demonstrate the performane of the detetor in terms of

detetion and false alarm probabilities. Considering the ROC urves, a lear inrease in

performane is observed as the embedding strength is raised. Unfortunately, the general

performane is somewhat laking. With the low embedding strength, approximately a 50%

false alarm probability must be tolerated to ahieve a detetion probability just over 80%.

These statistis represent an improvement over the orresponding binary hypothesis testing

and maximum likelihood estimation detetors. However the results indiate that modeling

the seleted DCT oeÆients using the power exponential distribution for loally optimal

detetion likely does not provide a detetor that is suitable for pratial situations.

B.2 Watermarking Peppers DCT CoeÆients

This setion uses the Peppers test image, shown in Figure 6.13 to further evaluate detetor

performane for the Weibull and power exponential distributions.
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Figure B.14 P
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and P
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urves for the

WB LOD for Lena data (s

�

= 0:05).
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Figure B.16 Distribution of the test statisti for the Lena image using the PE distribution

and LOD with an embedding strength of (a) 0.05 and (b) 0.10.

B.2.1 Simple likelihood ratio test

The �rst experiments for the Weibull and power exponential distributions for the Peppers

image are those using the binary hypothesis testing detetors. One again, the experimental

results are presented in the three standard �gures.

B.2.1.1 Weibull distribution results

To begin, the oeÆients from the Peppers image used for watermarking are to be modeled

using the Weibull distribution. The resulting distributions of the test statistis are depited

in Figure B.19. The separation between the two distributions is quite small for the low-

embedding ase and only slightly better for the stronger embedding strength.

Figures B.20 and B.21 ontain graphs that demonstrate the detetor's performane

in terms of detetion and false alarm probabilities. A omparison of the two �gures reveals

that an inrease in performane ours when the embedding strength is made larger, as

to be expeted. However, for the lower embedding strength, a detetion probability of

approximately 68% is only realized with a false alarm probability of approximately 50%.

Thus, it is quite unlikely that this detetor will be e�etive in a pratial situation.

145



−20 −15 −10 −5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

 versus Threshold (32 WM Bits, β = 1.1, s
*
 = 0.05)

Threshold

P
D

(a)

−20 −15 −10 −5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F
 versus Threshold (32 WM Bits, β = 1.1, s

*
 = 0.05)

Threshold

P
F

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

 versus P
F
 (32 WM Bits, β = 1.1, s

*
 = 0.05)

P
F

P
D

()

Figure B.17 P
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urves for the PE

LOD for Lena data (s
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= 0:05).
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Figure B.19 Distribution of the test statisti for the Peppers image using the WB distribution

and LRT with an embedding strength of (a) 0.05 and (b) 0.10.

B.2.1.2 Power exponential distribution results

The binary hypothesis detetor developed for the power exponential distribution is now

examined for the DCT oeÆients gathered from the Peppers image. The distributions of

the test statisti under H

0

and H

1

are given in Figure B.22. As before, the statistis are not

well separated, with only a slight inrease when the embedding is strengthened.

Figures B.23 and B.24 ontain urves of the probabilities P

D

and P

F

. Although a

slight gain is observed as the embedding strength is inreased, the detetor does not o�er

high performane. In order to obtain just over a 60% detetion probability, a 50% false alarm

probability is inurred. These statistis likely render the detetor-distribution pair unusable

in a pratial situation.

B.2.2 Maximum likelihood estimation

Further testing is now performed using the Weibull and power exponential distributions

to model the Peppers image oeÆients for use with the maximum likelihood estimation

detetor. As before, the results are illustrated in the typial thee �gure formats.
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Figure B.20 P

D

and P

F

urves for the

WB LRT for Peppers data (s

�

= 0:05).

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

 versus Threshold (32 WM Bits, β = 1.1, s
*
 = 0.10)

Threshold

P
D

(a)

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F
 versus Threshold (32 WM Bits, β = 1.1, s

*
 = 0.10)

Threshold

P
F

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

 versus P
F
 (32 WM Bits, β = 1.1, s

*
 = 0.10)

P
F

P
D

()

Figure B.21 P

D

and P

F

urves for the

WB LRT for Peppers data (s

�

= 0:10).
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Figure B.22 Distribution of the test statisti for the Peppers image using the PE distribution

and LRT with an embedding strength of (a) 0.05 and (b) 0.10.

B.2.2.1 Weibull distribution results

The �rst additional distribution investigated for use with MLE is the Weibull distribution.

Figure B.25 presents a plot of the distributions of the test statistis for two embedding

strengths. The distributions under H

0

and H

1

overlap quite severely, with only a slight

inrease in separation for the higher embedding strength. However, the estimates for the

embedding strength are indeed gathered around the atual value of the strength.

The performane indiators of P

D

and P

F

are shown in Figures B.26 and B.27. Sine

the deision statisti takes the form of an estimate, the range of thresholds is limited to [0,

1). Thus, the maximum ahievable detetion probability is not neessarily equal to 1. The

graphs illustrate that, if the threshold is inreased muh above the atual strength value,

the detetion probability drops o� signi�antly, as expeted. Also, the detetor displays

better performane for the higher embedding strength. However, the detetor is overall

quite poor. To ahieve a P

D

of approximately 62% for the low embedding strength, a P

F

of

approximately 50% results. Thus, this detetor-distribution pair is not a desirable detetion

solution.
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Figure B.23 P

D

and P

F

urves for the PE

LRT for Peppers data (s

�

= 0:05).

−15 −10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

 versus Threshold (32 WM Bits, β = 1.1, s
*
 = 0.10)

Threshold

P
D

(a)

−15 −10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F
 versus Threshold (32 WM Bits, β = 1.1, s

*
 = 0.10)

Threshold

P
F

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

 versus P
F
 (32 WM Bits, β = 1.1, s

*
 = 0.10)

P
F

P
D

()

Figure B.24 P
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and P
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urves for the PE

LRT for Peppers data (s
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= 0:10).
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Figure B.25 Distribution of the test statisti for the Peppers image using the WB distribution

and MLE with an embedding strength of (a) 0.05 and (b) 0.10.

B.2.2.2 Power exponential distribution results

Maximum likelihood estimation is now examined for the ase when the watermarked Peppers

DCT oeÆients are modeled using the power exponential distribution. The distributions

of the test statisti under the two hypotheses are shown in Figure B.28. These results are

quite similar to those for the Weibull distribution MLE: the statisti urves overlap severely

with only a small inrease in separation as the embedding strength is inreased. Although,

the estimates do somewhat aurately reet the true embedding strength.

The next two �gures, B.29 and B.30, demonstrate the performane of the detetor in

terms of detetion and false alarm probabilities. These urves exhibit the behavior seen pre-

viously for maximum likelihood estimation. The detetion probability ahieves a maximum

of only approximately 60% (at the expense of just under a 50% probability of false alarm)

and drops o� as the threshold is inreased above the atual embedding strength. A slight

improvement is present as the embedding strength is inreased, but overall the detetor does

not o�er adequate performane to be employed in a realisti setting.
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Figure B.26 P

D

and P
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urves for the

WB MLE for Peppers data (s

�

= 0:05).
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Figure B.27 P
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and P
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urves for the

WB MLE for Peppers data (s

�

= 0:10).
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Figure B.28 Distribution of the test statisti for the Peppers image using the PE distribution

and MLE with an embedding strength of (a) 0.05 and (b) 0.10.

B.2.3 Loally optimal detetion

The �nal detetor onsidered for use with the Pepper image and the Weibull and power

exponential distributions is the loally optimal detetor. One again, three �gures are utilized

to illustrate the results.

B.2.3.1 Weibull distribution results

To begin, the loally optimal detetor derived though modeling the seleted oeÆients using

the Weibull distribution is onsidered. Figure B.31 provides the test statisti distributions

under H

0

and H

1

. For the lower embedding strengths, the two distributions are fairly

overlapped: however, when the strength is raised to 0.10, a relatively moderate degree of

separation is ahieved.

Figures B.32 and B.33 demonstrate the performane of the detetor with respet to

detetion and false alarm probabilities. A notieable inrease in performane is present as

the embedding strength is inreased from 0.05 to 0.10. However, for the lower strength, a

detetion probability of approximately 80% an only be attained at the ost of a false alarm

probability of approximately 50%. As a result, the detetor will not likely be aeptable in

pratial appliations.
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Figure B.29 P
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urves for the PE

MLE for Peppers data (s
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= 0:05).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

 versus Threshold (32 WM Bits, β = 1.1, s = 0.10)

Threshold

P
D

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F
 versus Threshold (32 WM Bits, β = 1.1, s = 0.10)

Threshold

P
F

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

 versus P
F
 (32 WM Bits, β = 1.1, s = 0.10)

P
F

P
D

()

Figure B.30 P
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Figure B.31 Distribution of the test statisti for the Peppers image using the WB distribution

and LOD with an embedding strength of (a) 0.05 and (b) 0.10.

B.2.3.2 Power exponential distribution results

The loally optimal detetor is now examined for the ase when the seleted DCT oeÆients

from the Peppers image are modeled using the power exponential distribution. First, the

distributions of the test statistis under the two hypotheses are illustrated in Figure B.34.

Similar to the loally optimal detetor for the Weibull distribution, the separation between

the two distributions of the test statisti inreases to a relatively moderate amount as the

embedding strength is inreased.

The detetor's behavior is now onsidered in the ontext of the detetion and false

alarm probabilities. These urves are presented in Figure B.35 and B.36 for the two em-

bedding strengths. When the �gures are ompared, it is lear that the stronger presene

of the watermark aids in its detetion. However, the overall performane is still fairly low.

For the low embedding, a false alarm probability of approximately 50% is required to yield

a detetion probability of approximately 80%. Thus, the power exponential loally optimal

detetor is likely not suitable for most appliations.
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Figure B.32 P
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and P
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urves for the

WB LOD for Peppers data (s

�

= 0:05).
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Figure B.33 P
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urves for the

WB LOD for Peppers data (s
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= 0:10).
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Figure B.34 Distribution of the test statisti for the Peppers image using the PE distribution

and LOD with an embedding strength of (a) 0.05 and (b) 0.10.
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Figure B.35 P
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LOD for Peppers data (s
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= 0:05).
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