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ABSTRACT OF THE DISSERTATION

Topics in Network Communications

by

Jillian Leigh Cannons

Doctor of Philosophy in Electrical Engineering

(Communication Theory and Systems)

University of California San Diego, 2008

Professor Kenneth Zeger, Chair

This thesis considers three problems arising in the study ofnetwork communica-

tions. The first two relate to the use of network coding, whilethe third deals with wireless

sensor networks.

In a traditional communications network, messages are treated as physical com-

modities and are routed from sources to destinations. Network coding is a technique that

views data as information, and thereby permits coding between messages. Network coding

has been shown to improve performance in some networks. The first topic considered in

this thesis is the routing capacity of a network. We formallydefine the routing and coding

capacities of a network, and determine the routing capacityfor various examples. Then,

we prove that the routing capacity of every network is achievable and rational, we present

an algorithm for its computation, and we prove that every rational number in(0, 1] is the

routing capacity of some solvable network. We also show thatthe coding capacity of a

network is independent of the alphabet used.

The second topic considered is the network coding capacity under a constraint on

the total number of nodes that can perform coding. We prove that every non-negative,

x



monotonically non-decreasing, eventually constant, rational-valued function on the non-

negative integers is equal to the capacity as a function of the number of allowable coding

nodes of some direct acyclic network.

The final topic considered is the placement of relays in wireless sensor networks.

Wireless sensor networks typically consist of a large number of small, power-limited sen-

sors which collect and transmit information to a receiver. Asmall number of relays with

additional processing and communications capabilities can be strategically placed to im-

prove system performance. We present an algorithm for placing relays which attempts

to minimize the probability of error at the receiver. We model communication channels

with Rayleigh fading, path loss, and additive white Gaussian noise, and include diversity

combining at the receiver. For certain cases, we give geometric descriptions of regions of

sensors which are optimally assigned to the same, fixed relays. Finally, we give numerical

results showing the output and performance of the algorithm.
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Chapter 1

Introduction

The study of data communications was revolutionized in1948 by Shannon’s sem-

inal paper “A Mathematical Theory of Communication” [26]. Shannon’s work introduced

the framework of information theory (e.g., see [8]), and established both the rate at which

data can be compressed and the rate at which data can be transmitted over a noisy chan-

nel. Equipped with this knowledge, the field of digital communications (e.g., see [24])

addresses the question of how data should be transmitted. The study of network communi-

cations builds further upon these foundations by examininginformation exchange amongst

members of a set of sources and receivers.

This thesis considers three topics in two subfields of network communications. The

first two relate to the use of network coding (e.g, see [31]), which is a technique that permits

coding between streams of transmitted information. The third topic deals with wireless

sensor networks (e.g, see [17]), which typically are groupsof small, data-collecting nodes

that transmit information to a receiver. Both of these areasof network communications

have emerged in the last decade and have since garnered considerable attention.

1.1 Network Coding

A communications network can be modeled by a directed, acyclic multigraph. A

subset of the nodes in the graph are source nodes, which emit source node messages. Sim-

ilarly, a subset of the nodes are sink nodes, which demand specific source node messages.

Each source message is taken to be a vector ofk symbols, while each edge can carry a

1
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vector ofn symbols. Traditionally, network messages are treated as physical commodities,

which are routed throughout the network without replication or alteration. Conversely, the

field of network coding views network messages as information, which can be copied and

transformed by any node within the network. Specifically, the value on each outgoing edge

of a node is some function of the values on its incoming edges (and emitted messages if

it is a source). A goal in network coding is to determine a coding function for each edge

in the network such that each sink can perform decoding operations to determine its de-

sired source messages. Ahlswede, Cai, Li, and Yeung [1] demonstrated that there exist

networks for which network coding (as opposed to simply routing) is required to satisfy

the sink demands. Figure 1.1 gives two copies of a network where source node1 emits

messagex, source node2 emits messagey, sink node5 demands messagesx andy, and

sink node6 demands messagesx andy. The left version depicts an attempt to provide a

routing solution, however the bottleneck between nodes3 and4 prohibits both messagesx

andy from arriving at both sinks. (In the given attempt, the demands of sink5 are not met.)

The right version demonstrates a solution using network coding, where the edge between

nodes3 and4 carries the sum of messagesx andy. Both sinks can decode both messages

using subtraction. This solution is valid for messages drawn from any group with group

operator “+”. Figure 1.2 gives a numerical example of the same network coding solution

with message components from the binary fieldZ2 with “+” being addition modulo2 (i.e.,

the XOR function). In the depicted example, both the messages and the edges are of vector

dimensionk = n = 2.

3

4

65

1 2

Demands: x, y Demands: x, y

x x y y

x

Obtains: x Obtains: x, y

y

Emits: x Emits: y

3

4

65

1 2

Demands: x, y Demands: x, y

x x y y

x+y

Obtains: Obtains:

Emits: x Emits: y

x
y = (x+y) − x

x = (x+y) − y
y

Figure 1.1: Example network with source nodes1 and2 and sink nodes5 and6. Left: Only
routing is permitted. Right: Network coding is permitted.
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3

4

6

1 2
Emits: [1,1]Emits: [0,1]

5

[1,0]

[0,1] [1,1]
[0,1] [1,1]

Demands:
[0,1], [1,1]

Obtains:

Demands:
[0,1], [1,1]

Obtains:
[0,1]
[1,1] = [1,0] − [0,1] [1,1]

[0,1] = [1,0] − [1,1]

Figure 1.2: Numerical example of the network coding solution in Figure 1.1.

We define the coding capacity of a network to be the largest ratio of source message

vector dimension to edge vector dimension for which there exist edge functions allowing

sink demands to be satisfied. Analogously, we define the routing capacity for the case when

network nodes are only permitted to perform routing, and thelinear coding capacity for the

case when only linear edge functions are permitted. Larger capacity values correspond to

better performance, and comparing the routing capacity to the coding capacity illustrates

the benefit of network coding over routing. It is known that the linear coding capacity can

depend on the alphabet size [9], whereas the routing capacity is trivially independent of

the alphabet. We prove in Chapter 2 that the general coding capacity is independent of the

alphabet used. It is not presently known whether the coding capacity or the linear coding

capacity must be rational numbers, nor if the linear coding capacity is always achievable.

It has recently been shown, however, that the (general) coding capacity of a network need

not be achievable [10]. We prove in Chapter 2 that the routingcapacity of every network

is achievable (and therefore is also rational). The computability of coding capacities is

in general an unsolved problem. For example, it is presentlynot known whether there

exists an algorithm for determining the capacity or the linear coding capacity of a network.

We prove in Chapter 2 that the routing capacity of a network iscomputable, by explicitly

demonstrating a linear program solution. Chapter 2 is reprint of paper appearing in the

IEEE Transactions on Information Theory.

It is also interesting to consider the number of coding nodesrequired to achieve
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the coding capacity of a network. A similar problem is to determine the number of coding

nodes needed to satisfy the sink demands for the case when messages are of the same vector

dimension as edges. The number of required coding nodes in both problems can in general

range anywhere from zero up to the total number of nodes in thenetwork. The later problem

has been examined previously by Langberg, Sprintson, and Bruck [19], Tavory, Feder, and

Ron [12], Fragouli and Soljanin [13], Bhattad, Ratnakar, Koetter, and Narayanan [3], and

Wu, Jain, and Kung [30] for the special case of networks containing only a single source

and with all sinks demanding all source messages. We study the related (and more general)

problem of how the coding capacity varies as a function of thenumber of allowable coding

nodes. For example, the network in Figure 1.1 has capacity1/2 when no coding nodes are

permitted (achievable by taking message dimension1 and edge dimension2) and capacity

1 when one or more coding nodes are permitted. In Chapter 3 we show that nearly any

non-decreasing function is the capacity as a function of thenumber of allowable coding

nodes of some network. Thus, over all directed, acyclic networks, arbitrarily large amounts

of coding gain can be attained by using arbitrarily-sized node subsets for coding. Chapter 3

is reprint of paper appearing in the IEEE Transactions on Information Theory.

1.2 Wireless Sensor Networks

A wireless sensor network is a possibly large group of small,power-limited sensors

distributed over a geographic area. The sensors collect information which is transmitted

to a receiver for further analysis. Applications of such networks include the monitoring of

environmental conditions, the tracking of moving objects,and the detection of events of

interest. A small number of radio relays with additional processing and communications

capabilities can be strategically placed in a wireless sensor network to improve system

performance. A sample wireless sensor network is shown in Figure 1.3 where the sensors

are denoted by circles, the relays by triangles, and the receiver by a square. Two important

problems are to position the relays and to determine, for each sensor, which relay should

rebroadcast its signal.

In order to compare various relay placements and sensor assignments, a commu-

nications model and an optimization goal must be determined. We assume transmission
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Rx

Sensor

Relay

Receiver

Figure 1.3: A wireless sensor network with sensors denoted by circles, relays by triangles,
and the receiver by a square.

occur using binary phase shift keying (BPSK) in which a single bit is sent by modulating

a pulse with a cosine wave. The magnitude of the transmitted signal diminishes with the

distance traveled, which is known as path loss. Furthermore, since transmissions occur

wirelessly, a given transmitted signal may traverse multiple paths to the destination (e.g.,

direct transmission versus bouncing off a building wall), causing the receiver to obtain

multiple copies of the signal. This effect is known as multi-path fading and is modeled

using a random variable. Finally, additive white Gaussian noise (AWGN) is also present

at receiving antennae. We consider relays using either the amplify-and-forward or the

decode-and-forward protocol. An amplify-and-forward relay generates an outgoing signal

by multiplying an incoming signal by a gain factor. A decode-and-forward relay generates

an outgoing signal by making a hard decision on the value of the bit represented by an

incoming signal, and transmits a regenerated signal using the result. Each sensor in the

network transmits information to the receiver both directly and through a relay path. The

receiver combines the two received signals to achieve transmission diversity. We assume

transmissions are performed using a slotted mechanism suchas time division multiple ac-

cess (TDMA) so that there is ideally no transmission interference. Figure 1.4 shows the

example wireless sensor network over a sequence of time slots with transmission occurring

using TDMA and single-hop relay paths. Using this network model, we attempt to position

the relays and assign sensors to them in order to minimize theaverage probability of error

at the receiver.

Previous studies of relay placement have considered various optimization criteria
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Rx

T = 0

Rx

T = 1

Rx

T = 2

Rx

T = 3

Rx

T = 4

Rx

T = 5

Figure 1.4: Transmissions in a wireless sensor network oversix time slots.

and communication models. For example, coverage, lifetime, energy usage, error probabil-

ity, outage probability, or throughput were focused on by Balam and Gibson [2]; Chen and

Laneman [4]; Chen, Wang, and Liang [5]; Cho and Yang [6]; Cortés, Martiı́nez, Karataş,

and Bullo [7]; Ergen and Varaiya [11]; Hou, Shi, Sherali, andMidkiff [15]; Iranli, Maleki,

and Pedram [16]; Koutsopoulos, Toumpis, and Tassiulas [18]; Liu and Mohapatra [20];

Ong and Motani [22]; Mao and Wu [21]; Suomela [28]; Tan, Lozano, Xi, and Sheng [29];

Pan, Cai, Hou, Shi, and Shen [23]; Sadek, Han, and Liu [25]; Soand Liang [27]. The com-

munications and/or network models used are typically simplified by techniques such as

assuming error-free communications, assuming transmission energy is an increasing func-

tion of distance, assuming single sensor networks, assuming single relay networks, and

excluding diversity.

In Chapter 4 we present an algorithm that determines relay placement and assigns
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each sensor to a relay. The algorithm has some similarity to asource coding design tech-

nique known as the Lloyd algorithm (e.g., see [14]). We describe geometrically, with re-

spect to fixed relay positions, the sets of locations in the plane in which sensors are (op-

timally) assigned to the same relay, and give performance results based on these analyses

and using numerical computations. Chapter 4 has been submitted as a paper to the IEEE

Transactions on Wireless Communications.
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Chapter 2

Network Routing Capacity

Abstract

We define the routing capacity of a network to be the supremum of

all possible fractional message throughputs achievable byrouting.

We prove that the routing capacity of every network is achievable

and rational, we present an algorithm for its computation, and we

prove that every rational number in(0, 1] is the routing capacity of

some solvable network. We also determine the routing capacity for

various example networks. Finally, we discuss the extension of rout-

ing capacity to fractional coding solutions and show that the coding

capacity of a network is independent of the alphabet used.

2.1 Introduction

A communications network is a finite, directed, acyclic multigraph over which mes-

sages can be transmitted from source nodes to sink nodes. Themessages are drawn from

a specified alphabet, and the edges over which they are transmitted are taken to be error-

free, cost-free, and of zero-delay. Traditionally, network messages are treated as physical

commodities, which are routed throughout the network without replication or alteration.

However, the emerging field of network coding views the messages as information, which

can be copied and transformed by any node within the network.Network coding permits

10
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each outgoing edge from a node to carry some function of the data received on the incoming

edges of the node. A goal in using network coding is to determine a set of edge functions

that allow all of the sink node demands to be satisfied. If sucha set of functions exists, then

the network is said to besolvable, and the functions are called asolution. Otherwise the

network is said to beunsolvable.

A solution to a network is said to be arouting solutionif the output of every edge

function equals a particular one of its inputs. A solution toa network is said to be alinear

solution if the output of every edge function is a linear combination of its inputs, where

linearity is defined with respect to some underlying algebraic structure on the alphabet,

usually a finite field or ring. Clearly, a routing solution is also a linear solution.

Network messages are fundamentally scalar quantities, butit is also useful to con-

sider blocks of multiple scalar messages from a common alphabet as message vectors. Such

vectors may correspond to multiple time units in a network. Likewise, the data transmitted

on each network edge can also be considered as vectors.Fractional codingrefers to the

general case where message vectors differ in dimension fromedge data vectors (e.g., see

[2]). The coding functions performed at nodes take vectors as input on each in-edge and

produce vectors as output on each out-edge. Avector linear solutionhas edge functions

which are linear combinations of vectors carried on in-edges to a node, where the linear

combination coefficients are matrices over the same alphabet as the input vector compo-

nents. In avector routing solutioneach edge function copies a collection of components

from input edges into a single output edge vector.

For any set of vector functions which satisfies the demands ofthe sinks, there is

a corresponding scalar solution (by using a Cartesian product alphabet). However, it is

known that if a network has a vector routing solution, then itdoes not necessarily have a

scalar routing solution. Similarly, if a network has a vector linear solution, then it does not

necessarily have a scalar linear solution [16].

Ahlswede, Cai, Li, and Yeung [1] demonstrated that there exist networks with (lin-

ear) coding solutions but with no routing solutions, and they gave necessary conditions for

solvability of multicast networks (networks with one source and all messages demanded by

all sink nodes).

Li, Yeung, and Cai [15] proved that any solvable multicast network has a scalar



12

linear solution over some sufficiently large finite field alphabet.

For multicast networks, it is known that solvability over a particular alphabet does

not necessarily imply scalar linear solvability over the same alphabet (see examples in [4],

[18], [16], [20]). For non-multicast networks, it has recently been shown that solvability

does not necessarily imply vector linear solvability [5].

Rasala Lehman and Lehman [19] have noted that for some networks, the size of

the alphabet needed for a solution can be significantly reduced if the solution does not

operate at the full capacity of the network. In particular, they demonstrated that, for certain

networks, fractional coding can achieve a solution where the ratio of edge capacityn to

message vector dimensionk is an arbitrarily small amount above one. The observations

in [19] suggest many important questions regarding networksolvability using fractional

coding.

In the present paper, we focus on such fractional coding for networks in the special

case of routing1. We refer to such coding asfractional routing. Specifically, we consider

message vectors whose dimension may differ from the dimension of the vectors carried

on edges. Only routing is considered, so that at any node, anyset of components of the

node’s input vectors may be sent on the out-edges, provided the edges’ capacities are not

exceeded.

We define a quantity called therouting capacityof a network, which characterizes

the highest possible capacity obtainable from a fractionalrouting solution to a network2.

The routing capacity is the the supremum of ratios of messagedimension to edge capacity

for which a routing solution exists. Analogous definitions can be made of the (general) cod-

ing capacity over all (linear and non-linear) network codesand the linear coding capacity

over all linear network codes. These definitions are with respect to the specified alphabet

and are for general networks (e.g., they are not restricted to multicast networks).

1Whereas the present paper studies networks with directed edges, some results on fractional coding were
obtained by Li et al. [13], [14] for networks with undirected(i.e., bidirectional) edges.

2Determining the routing capacity of a (directed) network relates to the maximum throughput problem in
an undirected network in which multiple multicast sessionsexist (see Li et al. [13], [14]), with each demanded
message being represented by a multicast group. In the case where only a single multicast session is present
in the network, determining the routing capacity corresponds to fractional directed Steiner tree packing, as
considered by Wu, Chou, and Jain [23] and, in the undirected case, by Li et al. [13], [14]. In the case where
the (directed) network has disjoint demands (i.e., when each message is only demanded by a single sink),
determining the routing capacity resembles the maximum concurrent multicommodity flow problem [22].
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It is known that the linear coding capacity (with respect to afinite field alphabet)

can depend on the alphabet size [5] whereas the routing capacity is trivially independent of

the alphabet. We prove here, however, that the general coding capacity is independent of

the alphabet used.

It is not presently known whether the coding capacity or the linear coding capacity

of a network must be rational numbers. Also, it is not presently known if the linear coding

capacity of a network is always achievable. It has recently been shown, however, that the

(general) coding capacity of a network need not be achievable [6]. We prove here that the

routing capacity of every network is achievable (and therefore is also rational). We also

show that every rational number in(0, 1] is the routing capacity of some solvable network.

The computability of coding capacities is in general an unsolved problem. For

example, it is presently not known whether there exists an algorithm for determining the

coding capacity or the linear coding capacity (with respectto a given alphabet size) of

a network. We prove here that the routing capacity is indeed computable, by explicitly

demonstrating a linear program solution. We do not attempt to give a low complexity or

efficient algorithm, as our intent is only to establish the computability of routing capacity.

Section 2.2 gives formal definitions of the routing capacityand related network

concepts. Section 2.3 determines the routing capacity of a variety of sample networks

in a semi-tutorial fashion. Section 2.4 proves various properties of the routing capacity,

including the result that the routing capacity is achievable and rational. Section 2.5 gives

the construction of a network with a specified routing capacity. Finally, Section 2.6 defines

the coding capacity of a network and shows that it is independent of the alphabet used.

2.2 Definitions

A networkis a finite, directed, acyclic multigraph, together with non-empty sets of

source nodes, sink3 nodes, source node messages, and sink node demands. Each message

is an arbitrary element of a fixed finite alphabet and is associated with exactly one source

node, and each demand at a sink node is a specification of a specific source message that

needs to be obtainable at the sink. A network isdegenerateif there exists a source message

3Although the terminology “sink” in graph theory indicated anode with no out-edges, we do not make
that restriction here. We merely refer to a node which demands at least one message as a sink.
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demanded at a particular sink, but with no directed path through the graph from the source

to the sink.

Each edge in a network carries a vector of symbols from some alphabet. The max-

imum allowable dimension of these vectors is called theedge capacity. (If an edge carries

no alphabet symbols, it is viewed as carrying a vector of dimension zero.) Note that a net-

work with nonuniform, rational-valued edge capacities canalways be equivalently modeled

as a network with uniform edge capacities by introducing parallel edges. For a given finite

alphabet, anedge functionis a mapping, associated with a particular edge(u, v), which

takes as inputs the edge vector carried on each in-edge to thenodeu and the source mes-

sages generated at nodeu, and produces an output vector to be carried on the edge(u, v).

A decoding functionis a mapping, associated with a message demanded at a sink, which

takes as inputs the edge vector carried on each in-edge to thesink and the source messages

generated at the sink, and produces an output vector hopefully equal to the demanded mes-

sage.

A solutionto a network for a given alphabet is an assignment of edge functions to

a subset of edges and an assignment of decoding functions to all sinks in the network, such

that each sink node obtains all of its demands. A network issolvableif it has a solution

for some alphabet. A network solution is avector routing solutionif every edge function

is defined so that each component of its output is copied from a(fixed) component of one

of its inputs. (So, in particular, no “source coding” can occur when generating the outputs

of source nodes.) It is clear that vector routing solutions do not depend on the chosen

alphabet. A solution isreducibleif it has at least one edge function which, when removed,

still yields a solution. A vector solution isreducibleif it has at least one component of at

least one edge function which, when removed, still yields a vector solution.

A (k, n) fractional routing solutionof a network is a vector routing solution that

uses messages withk components and edges with capacityn, with k, n ≥ 1. Note that

if a network is solvable then it must have a (coding) solutionwith k = n = 1. A (k, n)

fractional routing solution isminimalif it is not reducible and if no(k, n′) fractional routing

solution exists for anyn′ < n. Solvable networks may or may not have routing solutions.

However, every nondegenerate network has a(k, n) fractional routing solution for somek

andn. In fact, it is easy to construct such a solution by choosingk = 1 andn equal to
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the total number of messages in the network, since then everyedge has enough capacity to

carry every message that can reach it from the sources.

The ratiok/n in a (k, n) fractional routing solution quantifies the capacity of the

solution and the rational numberk/n is said to be anachievable routing rateof the network.

Define the set

U = {r ∈ Q : r is an achievable routing rate}.

Therouting capacityof a network is the quantity

ǫ = sup U.

If a network has no achievable routing rate then we make the convention thatǫ = 0.

It is clear thatǫ = 0 if and only if the network is degenerate. Also,ǫ < ∞ (e.g., since

k/n is trivially upper bounded by the number of edges in the network). Note that the

supremum in the definition ofǫ can be restricted to achievable routing rates associated with

minimal routing solutions. The routing capacity is said to beachievableif it is an achievable

routing rate. Note that an achievable routing capacity mustbe rational. A fractional routing

solution is said toachievethe routing capacity if the routing rate of the solution is equal to

the routing capacity.

Intuitively, for a given network edge capacity, the routingcapacity bounds the

largest message dimension for which a routing solution exists. If ǫ = 0, then at least

one sink has an unsatisfied demand, which implies that no pathbetween the sink and the

source emitting the desired message exists. Ifǫ ∈ (0, 1), then the edge capacities need to

be inflated with respect to the message dimension to satisfy the demands of the sinks. If

ǫ = 1, then it will follow from results in this paper that a fractional routing solution exists

where the message dimensions and edge capacities are identical. If ǫ > 1, then the edge

capacities need not even be as large as the message dimensionto satisfy the demands of the

sinks. Finally, if a network has a routing solution, then therouting capacity of the network

satisfiesǫ ≥ 1.

2.3 Routing Capacity of Example Networks

To illustrate the concept of the routing capacity, a number of examples are now

considered. For each example in this section, letk be the dimension of the messages and
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let n be the capacity of the edges. All figures in this section have graph nodes labeled

by positive integers. Any node labeled by integeri is referred to asni. Also, any edge

connecting nodesi andj is referred to asei,j (instead of the usual notation(i, j)), as is the

message vector carried by the edge. The distinction betweenthe two meanings ofei,j is

made clear in each such instance.

Example 2.3.1.(See Figure 2.1.)

2

1

3

76

5

4

x1,x2,x3 1,y y1,y2,y3 1,x

,y2 3,y

x, y

x, y x, y

x2,x3

Figure 2.1: The multicast networkN1 whose routing capacity is3/4.

The single source produces two messages which are both demanded by the two

sinks. The network has no routing solution but does have a linear coding solution [1]. The

routing capacity of this multicast network isǫ = 3/4.

Proof. In order to meet the sink node demands, each of the2k message components must

be carried on at least two of the three edgese1,2, e1,3, ande4,5 (because deleting any two

of these three edges would make at least one of the sinks unreachable from the source).

Hence, we have the requirement2(2k) ≤ 3n, for arbitraryk andn. Henceǫ ≤ 3/4.

Now, letk = 3 andn = 4, and route the messages as follows:

e1,2 = e2,6 = (x1, x2, x3, y1)

e1,3 = e3,7 = (y1, y2, y3, x1)
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e2,4 = (x2, x3)

e3,4 = (y2, y3)

e4,5 = (x2, x3, y2, y3)

e5,6 = (y2, y3)

e5,7 = (x2, x3).

This is a fractional routing solution toN1. Thus,3/4 is an achievable routing rate ofN1,

soǫ ≥ 3/4. �

Example 2.3.2.(See Figure 2.2.)

21

3

4

65
x, yx, y x, yx, y

yx

x x y y

x,y

Figure 2.2: The networkN2 whose routing capacity is1/2.

Each of the two sources emits a message and both messages are demanded by the

two sinks. The network has no routing solution but does have alinear coding solution

(similar to Example 2.3.1). The routing capacity of this network is ǫ = 1/2.

Proof. The only path over which messagex can be transmitted from sourcen1 to sinkn6

is n1, n3, n4, n6. Similarly, the only path feasible for the transmission of messagey from

sourcen2 to sinkn5 is n2, n3, n4, n5. Thus, there must be sufficient capacity along edge

e3,4 to accommodate both messages. Hence, we have the requirement 2k ≤ n, yielding

k/n ≤ 1/2 for arbitraryk andn. Thus,ǫ ≤ 1/2.

Now, letk = 1 andn = 2, and route the messages as follows:

e1,5 = e1,3 = e4,6 = (x)
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e2,6 = e2,3 = e4,5 = (y)

e3,4 = (x,y).

This is a fractional routing solution toN2. Thus,1/2 is an achievable routing rate ofN2,

soǫ ≥ 1/2. �

Example 2.3.3.(See Figure 2.3.)

4N

2N+5

1

3

54 2N+3

2
N
N

x, y

x, y x, y

N+24

...

...

...

+3+

NN

...

...

2

N+42

N+22

4N+3

N+44

Figure 2.3: The multicast networkN3 whose routing capacity isN/(N + 1).

The networkN3 contains a single sourcen1 with two messages,x andy. The

second layer consists of two nodes,n2 andn3. The third and fourth layers each contain2N

nodes. The bottom layer contains
(

2N
N

)

sink nodes, where each such node is connected to a

distinct set ofN nodes from the fourth layer. Each of these sink nodes demandsboth source

messages. The network has no routing solution but does have alinear coding solution for

N ≥ 2 (since the network is multicast and the minimum cut size is2 for each sink node

[15]). The routing capacity of this network isǫ = N/(N + 1).

Proof. LetD be a2k×2N binary matrix satisfyingDi,j = 1 if and only if theith symbol in

the concatenation of messagesx andy is present on thejth vertical edge between the third

and fourth layers. Since the dimension of these vertical edges is at mostn, each column of
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D has weight at mostn. Thus, there are at least2k − n zeros in each column ofD and,

therefore, at least2N(2k − n) zeros in the entire matrix.

Since each sink receives input from onlyN fourth-layer nodes and must be able

to reconstruct all2k components of the messages, every possible choice ofN columns

must have at least one1 in each row. Thus, each row inD must have weight at least

N + 1, implying that each row inD has at most2N − (N + 1) = N − 1 zeros. Thus,

counting along the rows,D has at most2k(N −1) zeros. Relating this upper bound and the

previously calculated lower bound on the number of zeros yields2N(2k−n) ≤ 2k(N −1)

or equivalentlyk/n ≤ N/(N + 1), for arbitraryk andn. Thus,ǫ ≤ N/(N + 1).

Now, letk = N andn = N + 1, and route the messages as follows:

e1,2 = (x1, . . . , xk)

e1,3 = (y1, . . . , yk)

e2,i = (x1, . . . , xk) (4 ≤ i ≤ 2N + 3)

e3,i = (y1, . . . , yk) (4 ≤ i ≤ 2N + 3)

ei,2N+i = (x1, . . . , xk, yi−3) (4 ≤ i ≤ N + 3)

ei,2N+i = (y1, . . . , yk, xi−(N+3)) (N + 4 ≤ i ≤ 2N + 3).

Each node in the fourth layer simply passes to its out-edges exactly what it receives on

its in-edge. If a sink node in the bottom layer is connected tonodesni and nj where

2N + 4 ≤ i ≤ 3N + 3 and3N + 4 ≤ j ≤ 4N + 3 (i.e., a node in the left half of the

fourth layer and a node in the right half of the fourth layer) then the sink receives all of

messagex from ni and all of messagey from nj . On the other hand, if a sink is connected

only to nodes in the left half of the fourth layer, then it receives all of messagex from each

such node, and receives a distinct component of messagey from each of the fourth-layer

nodes, thus giving all ofy. A similar situation occurs if a sink node is only connected to

fourth-layer nodes on the right half.

Thus, this assignment is a fractional routing solution toN3. Therefore,N/(N + 1)

is an achievable routing rate ofN3, soǫ ≥ N/(N + 1). �

Example 2.3.4.(See Figure 2.4.)

The networkN4 contains a single sourcen1 with m messages. The second layer

of the network consists ofN nodes, each connected to the source via a single edge. The
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Figure 2.4: The multicast networkN4 whose routing capacity isN/(m(N − I + 1)).

third layer consists of
(

N
I

)

nodes, each receiving a distinct set ofI in-edges from the second

layer. Each third-layer node demands all messages. The network is linearly solvable if and

only if m ≤ I (since the network is multicast and the minimum cut size isI for each sink

node [15]). The routing capacity of this network isǫ = N/(m(N − I + 1)).

Proof. In order to meet the demands of each node in the bottom layer, every subset ofI

nodes in layer two must receive allmk message components from the source. Thus, each of

themk message components must appear at leastN − (I − 1) times on theN out-edges of

the source (otherwise there would be some set ofI of theN layer-two nodes not containing

some message component). Since the total number of symbols on theN source out-edges

is Nn, we must havemk(N − (I − 1)) ≤ Nn or, equivalently,k/n ≤ N/(m(N − I +1)),

for arbitraryk andn. Hence,ǫ ≤ N/(m(N − I + 1)).

Now, let k = N andn = m(N − I + 1) and denote the components of them

messages (in some order) byb1, . . . , bmk. Let D be ann × N matrix filled with message

components from left to right and from top to bottom, with each message component being

repeatedN − I + 1 times in a row, i.e.,Di,j = b⌊(N(i−1)+j−1)/(N−I+1)⌋+1 with 1 ≤ i ≤
m(N − I + 1) and1 ≤ j ≤ N .

Let theN columns of the matrix determine the vectors carried on theN out-edges

of the source. Since each message component is placed inN − I + 1 different columns of
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the matrix, every set ofI layer-two nodes will receive all of themN message components.

Them(N − I + 1) = n components at each layer-two node are then transmitted directly

to all adjacent layer-three nodes.

Thus, this assignment is a fractional routing solution toN4. Therefore,N/(m(N −
I + 1)) is an achievable routing rate ofN4, soǫ ≥ N/(m(N − I + 1)). �

We next note several facts about the network shown in Figure 2.4.

• The capacity of this network was independently obtained (ina more lengthy argu-

ment) by Ngai and Yeung [17]. See also Sanders, Egner, and Tolhuizen [21].

• Ahlswede and Riis [20] studied the case obtained by using theparametersm =

5, N = 12, andI = 8, which we denote byN5. They showed that this network has

no binary scalar linear solution and yet it has a nonlinear binary scalar solution based

upon a(5, 12, 5) Nordstrom-Robinson error correcting code. We note that, byour

above calculation, the routing capacity of the Ahlswede-Riis network isǫ = 12/25.

• Rasala Lehman and Lehman [18] studied the case obtained by using the parameters

m = 2, N = p, andI = 2. They proved that the network is solvable, provided that

the alphabet size is at least equal to the square root of the number of sinks. We note

that, by our above calculation, the routing capacity of the Rasala Lehman-Lehman

network isǫ = p/(2(p − 1)).

• Using the parametersm = 2 andN = I = 3 illustrates that the network’s routing

capacity can be greater than 1. In this case, the network consists of a single source,

three second layer nodes, and a single third layer node. The routing capacity of this

network isǫ = 3/2.

Example 2.3.5.(See Figure 2.5.)

This network, due to R. Koetter, was used by Médard et al. [16] to demonstrate

that there exists a network with no scalar linear solution but with a vector linear solution.

The network consists of two sources, each emitting two messages, and four sinks, each

demanding two messages. The network has a vector routing solution of dimension two.

The routing capacity of this network isǫ = 1.
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Figure 2.5: The networkN6 whose routing capacity is1.

Proof. Each source must emit at least2k components and the total capacity of each source’s

two out-edges is2n. Thus, the relation2k ≤ 2n must hold, for arbitraryk andn, yielding

ǫ ≤ 1.

Now letk = 2 andn = 2, and route the messages as follows (as given in [16]):

e1,3 = (a1, b2) e1,4 = (a2, b1)

e2,4 = (c1, d2) e2,5 = (c2, d1)

e3,6 = (a1) e4,6 = (a2, c1) e5,6 = (c2)

e3,7 = (a1) e4,7 = (a2, d2) e5,7 = (d1)

e3,8 = (b2) e4,8 = (b1, c1) e5,8 = (c2)

e3,9 = (b2) e4,9 = (b1, d2) e5,9 = (d1)

This is a fractional routing solution toN6. Thus,1 is an achievable routing rate ofN6, so

ǫ ≥ 1. �

Example 2.3.6.(See Figure 2.6.)

The networkN7 was demonstrated in [5] to have no linear solution for any vector

dimension over a finite field of odd cardinality. The network has three sourcesn1, n2, and

n3 emitting messagesa, b, andc, respectively. The messagesc, b, anda are demanded by

sinksn12, n13, andn14, respectively. The network has no routing solution but doeshave a

coding solution. The routing capacity of this network isǫ = 2/3.
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Figure 2.6: The networkN7 whose routing capacity is2/3.

Proof. First, note that the edgese1,12, e3,9, ande7,14 cannot have any affect on a fractional

routing solution, so they can be removed. Thus, edgese4,6 ande5,7 must carry all of the

information from the sources to the sinks. Therefore,3k ≤ 2n, for arbitraryk andn,

yielding an upper bound on the routing capacity ofǫ ≤ 2/3.

Now, letk = 2 andn = 3 and route the messages as follows:

e1,4 = (a1, a2) e2,4 = (b1)

e2,5 = (b2) e3,5 = (c1, c2)

e4,6 = (a1, a2, b1) e5,7 = (c1, c2, b2)

e6,9 = (a1, a2, b1) e7,8 = (b2, c1, c2)

e8,10 = (b2, c1, c2) e9,11 = (a1, a2, b1)

e10,12 = (c1, c2) e10,13 = (b2)

e11,13 = (b1) e11,14 = (a1, a2).

This is a fractional routing solution toN7. Thus,2/3 is an achievable routing rate
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of N7, soǫ ≥ 2/3. �

Example 2.3.7.(See Figure 2.7.)
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Figure 2.7: The networkN8 whose routing capacity is1/3.

The networkN8 shown in Figure 2.7 was given in [5] as a portion of a larger net-

work which was solvable but not vector-linearly solvable. This network piece consists of

six sources,n7 throughn12, emitting messagesa,b, c, c,d, ande, respectively. The net-

work contains seven sinks,n40 throughn46, demanding messagesc,b, a, c, e,d, andc,

respectively. The network has no routing solution but does have a coding solution. The

routing capacity of this network isǫ = 1/3.

Proof. A number of edges in the network do not affect any fractional routing solution and

can be removed, yielding the reduced network shown in Figure2.8. Clearly the demands

of noden43 are easily met. The remaining portion of the network can be divided into two

disjoint, symmetric portions. In each case all3k symbols of information must flow across

a single edge (eithere15,19 or e16,20), implying that3k ≤ n for arbitraryk andn. Thus,

ǫ ≤ 1/3.

Now, letk = 1 andn = 3 and route the messages as follows:

e15,19 = (a1, . . . , ak, b1, . . . , bk, c1, . . . , ck)



25

25

ba
7 8 9

15

23 24

31 32 33

19

40 41 42

10 11 12

16

20

26 27 28

34 35 36

4443 45 46

c c d e

b a c e d cc

Figure 2.8: Reduced form of the networkN8 given in Figure 2.7.

e16,20 = (c1, . . . , ck, d1, . . . , dk, e1, . . . , ek).

This is a fractional routing solution toN8. Thus,1/3 is an achievable routing rate

of N8, soǫ ≥ 1/3. �

By combining networksN7 andN8 (i.e., by adding shared sourcesa, b, and c)

a network was created which established that linear vector codes are not sufficient for

all solvable networks [5]. In the combined network, the two pieces effectively operate

independently, and thus the routing capacity of the entire network is limited by the second

portion, namely,ǫ = 1/3.

2.4 Routing Capacity Achievability

The examples of the previous section have illustrated various techniques to deter-

mine the routing capacity of a network. In this section, someproperties of the routing

capacity are developed and a concrete method is given, by which the routing capacity of a

network can be found.

To begin, a set of inequalities which are satisfied by any minimal fractional routing

solution is formulated. These inequalities are then used toprove that the routing capacity
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of any network is achievable. To facilitate the construction of these inequalities, a variety

of subgraphs for a given network are first defined.

Consider a network and its associated graph,G = (V, E), sourcesS, messagesM ,

and sinksK. For each messagex, we say that a directed subgraph ofG is anx-tree if

the subgraph has exactly one directed path from the source emitting x to each destination

node which demandsx, and the subgraph is minimal with respect to this property4. (Note

that such a subgraph can be both anx-tree and ay-tree for distinct messagesx andy.)

For each messagex, let s(x) denote the number ofx-trees. For a given network and for

each messagex, let T x

1 , T x

2 , . . . , T x

s(x) be an enumeration of all thex-trees in the network.

Figure 2.9 depicts all of thex-trees andy-trees for the networkN2 shown in Figure 2.2.
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Figure 2.9: All of thex-trees andy-trees of the networkN2.

If x is a message andj is the unique index in a minimal(k, n) fractional routing

solution such that every edge carrying a componentxi appears inT x

j , then we say the

x-treeT x

j carries the message componentxi. Such a tree is guaranteed to exist since in

the supposed solution each message component must be routedfrom its source to every

destination node demanding the message, and the minimalityof the solution ensures that

4The definition of anx-tree is similar to that of a directed Steiner tree (also known as a Steiner arbores-
cence). Given a directed, edge-weighted graph, a subset of the nodes in the graph, and a root node, a directed
Steiner tree is a minimum-weight subgraph which includes a directed path from the root to every other node
in the subset [9]. Thus, anx-tree is a directed Steiner tree where the source node is the root node, the subset
contains the source and all sinks demandingx, the edge weights are taken to be0, and with the additional
restrictions that only one directed path from the root to each sink is present, and edges not along these di-
rected paths are not included in the subgraph. In the undirected case, the first additional restriction coupled
with the0-edge-weight case corresponds to the requirement that the subgraph be a tree, which is occasionally
incorporated in the definition of a Steiner tree [11].
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the edges carrying the message form anx-tree.

Note that we considerT x

i and T y

j to be distinct whenx 6= y, even if they are

topologically the same directed subgraph of the network. That is, such trees are determined

by their topology together with their associated message.

Denote byTi theith tree in some fixed ordering of the set

⋃

x∈M

{T x

1 , . . . , T x

s(x)}

and define the following index sets:

A(x) = {i : Ti is anx-tree}
B(e) = {i : Ti contains edgee}.

Note that the setsA(x) andB(e) are determined by the network, rather than by any partic-

ular solution to the network. Denote the total number of treesTi by

t =
∑

x∈M

s(x).

For any given minimal(k, n) fractional routing solution, and for eachi = 1, . . . , t, let ci

denote the number of message components carried by treeTi in the given solution.

Lemma 2.4.1.For any given minimal(k, n) fractional routing solution to a nondegenerate

network, the following inequalities hold:

(a)
∑

i∈A(x)

ci ≥ k (∀x ∈ M)

(b)
∑

i∈B(e)

ci ≤ n (∀e ∈ E)

(c) 0 ≤ ci ≤ k (∀i ∈ {1, . . . , t})

(d) 0 ≤ n ≤ k|M | ≤ kt.

Proof.
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(a) Follows from the fact that allk components of every message must be sent to every

destination node demanding them.

(b) Follows from the fact that every edge can carry at mostn message components.

(c) Follows from that fact that each message hask components.

(d) Since the routing solution is minimal, it must be the casethatn ≤ k|M |, since edge

capacities of sizek|M | suffice to carry every component of every message. Also,

clearly |M | ≤ t, since the network is nondegenerate.

�

Lemma 2.4.2.For any given minimal(k, n) fractional routing solution to a nondegenerate

network, the following inequalities, over the real variablesd1, . . . , dt, ρ, have a rational

solution5:

∑

i∈A(x)

di ≥ 1 (∀x ∈ M) (2.1)

∑

i∈B(e)

di ≤ ρ (∀e ∈ E) (2.2)

0 ≤ di ≤ 1 (∀i ∈ {1, . . . , t}) (2.3)

0 ≤ ρ ≤ t (2.4)

by choosingdi = ci/k andρ = n/k.

Proof. Inequalities (2.1)–(2.4) follow immediately from Lemma 2.4.1(a)–(d), respectively,

by division byk.

�

We refer to (2.1)–(2.4) as thenetwork inequalitiesassociated with a given network.6

Note that the routing rate in the given(k, n) fractional routing solution in Lemma 2.4.2 is

1/ρ.

5If a solution(d1, . . . , dt, ρ) to these inequalities has all rational components, then it is said to be arational
solution.

6Similar inequalities are well-known for undirected network flow problems (e.g., see [11] for the case of
single-source networks).
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For convenience, define the sets

V = {ρ ∈ R : (d1, . . . , dt, ρ) is a solution to the

network inequalities for some(d1, . . . , dt)}
V̂ = {r : 1/r ∈ V }.

Lemma 2.4.3.If the network inequalities corresponding to a nondegenerate network have

a rational solution withρ > 0, then there exists a fractional routing solution to the network

with achievable routing rate1/ρ.

Proof. Let (d1, . . . , dt, ρ) be a rational solution to the network inequalities withρ > 0. To

construct a fractional routing solution, let the dimensionk of the messages be equal to the

least common multiple of the denominators of the non-zero components of(d1, . . . , dt, ρ).

Also, let the capacity of the edges ben = kρ, which is an integer. Now, for eachi =

1, . . . , t, let ci = dik, each of which is an integer. A(k, n) fractional routing solution

can be constructed by, for each messagex, arbitrarily partitioning thek components of the

message over allx-trees such that exactlyci components are sent along each associated

treeTi. �

The following corollary shows that the setU (defined in Section 2.2) of achievable

routing rates of any network is the same as the set of reciprocals of rationalρ that satisfy

the corresponding network inequalities.

Corollary 2.4.4. For any nondegenerate network,V̂ ∩ Q = U .

Proof. Lemma 2.4.2 implies thatU ⊆ V̂ ∩Q and Lemma 2.4.3 implies thatV̂ ∩Q ⊆ U . �

We next use the network inequalities to prove that the routing capacity of a network

is achievable. To prove this property, the network inequalities are viewed as a set of in-

equalities int + 1 variables,d1, . . . , dt, ρ, which one can attempt to solve. By formulating

a linear programming problem, it is possible to determine a fractional routing solution to

the network which achieves the routing capacity. As a consequence, the routing capacity

of every network is rational and the routing capacity of every nondegenerate network is

achievable. The following theorem gives the latter result in more detail.

Theorem 2.4.5.The routing capacity of every nondegenerate network is achievable.
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Proof. We first demonstrate that the network inequalities can be used to determine the

routing capacity of a network. Let

H = {(d1, . . . , dt, ρ) ∈ Rt+1 : the network inequalities are satisfied}
ρ0 = inf V

and define the linear function

f(d1, . . . , dt, ρ) = ρ.

Note thatH is non-empty since a rational solution to the network inequalities can be found

for any network by settingdi = 1, ∀i andρ = t. Also, sinceH is compact (i.e., a closed

and bounded polytope), the restriction off to H achieves its infimumρ0 on H. Thus,

there existd̂1, . . . , d̂t ∈ R such that(d̂1, . . . , d̂t, ρ0) ∈ H. In fact, a linear program can be

used to minimizef onH, yieldingρ0. Furthermore, since the variablesd1, . . . , dt, ρ in the

network inequalities have rational coefficients, we can assume without loss of generality

thatd̂1, . . . , d̂t, ρ0 ∈ Q. Now, by Corollary 2.4.4, we have

ǫ = sup U

= sup
(

V̂ ∩ Q

)

= sup{r ∈ Q : (d1, . . . , dt, 1/r) ∈ H}
= sup{1/ρ ∈ Q : (d1, . . . , dt, ρ) ∈ H}
= max{1/ρ ∈ Q : (d1, . . . , dt, ρ) ∈ H}
= 1/ρ0.

Thus, the network inequalities can be used to determine the routing capacity of a network.

Furthermore, the fractional routing solution induced by the solution(d̂1, . . . , d̂t, ρ0)

to the network inequalities has achievable routing rate1/ρ0 = ǫ. Thus, the routing capacity

of any network is achievable.

�

Corollary 2.4.6. The routing capacity of every network is rational.

Proof. If a network is degenerate, then its capacity is zero, which is rational. Otherwise,

Theorem 2.4.5 guarantees that there exists a(k, n) fractional routing solution such that the

routing capacity equalsk/n, which is rational. �
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Since any linear programming algorithm (e.g., the simplex method) will work in

the proof of Theorem 2.4.5, we also obtain the following corollary.

Corollary 2.4.7. There exists an algorithm for determining the routing capacity of a net-

work.

We note that the results in Section 2.4 can be generalized to networks whose edge

capacities are arbitrary rational numbers. In such case, the termρ in (2.2) of the network

inequalities would be multiplied by the capacity of the edgee, and the termt in (2.4) would

be multiplied by the maximum edge capacity.

2.5 Network Construction for Specified Routing Capacity

Given any rational numberr ≥ 0, it is possible to form a network whose routing

capacity isǫ = r. The following two theorems demonstrate how to construct such net-

works. The first theorem considers the general case whenr ≥ 0, but the resulting network

is unsolvable (i.e., fork = n) for r < 1. The second theorem considers the case when

0 < r ≤ 1 and yields a solvable network.

Theorem 2.5.1.For each rationalr ≥ 0, there exists a network whose routing capacity is

ǫ = r.

1

2

(1),x x(2), ... , x v(  )

(1),x x(2), ... , v(  )x

u

...

Figure 2.10: A networkN9 that has routing capacityr = u/v ≥ 0.
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Proof. If r = 0 then any degenerate network suffices. Thus, assumer > 0 and letr =

u/v whereu andv are positive integers. Consider a network with a single source and a

single sink connected byu edges, as shown in Figure 2.10. The source emits messages

x(1),x(2), . . . ,x(v) and all messages are demanded by the sink. Letk denote the message

dimension andn denote the edge capacity.

In a fractional routing solution, the fullvk components must be transferred along

the u edges of capacityn. Thus, for a fractional routing solution to exist, we require

vk ≤ un, and hence the routing capacity is upper bounded byu/v.

If k = u andn = v, thenkv = uv message components can be sent arbitrarily

along theu edges since the cumulative capacity of all the edges isnu = vu. Thus, the

routing capacity upper bound is achievable.

Thus, for each rationalr ≥ 0, a single-source, single-sink network can be con-

structed which has routing capacityǫ = r.

�

The networkN9 discussed in Theorem 2.5.1 is unsolvable for0 < r < 1, since the

min cut across the network does not have the required transmission capacity. However, the

network is indeed solvable forr ≥ 1 using a routing solution.

Theorem 2.5.2.For each rationalr ∈ (0, 1] there exists a solvable network whose routing

capacity isǫ = r.

Proof. Let r = p/m wherep ≤ m. Consider a network with four layers, as shown in Fig-

ure 2.11 where all edges point downward. The network containsm sources, all in the first

layer. Each source emits a unique message, yielding messages x(1), . . . ,x(m) in the net-

work. The second layer of the network containsp nodes, each of which is connected to all

m sources, forming a complete connection between the first andsecond layers. The third

layer also containsp nodes and each is connected in a straight through fashion to acorre-

sponding node in the second layer. The fourth layer consistsof m sinks, each demanding

all m messages. The third and fourth layers are also completely connected. Finally, each

sink is connected to a unique set ofm − 1 sources, forming a complete connection except

the straight through edges between the first and fourth layers. Thus, the network can be

thought of as containing both a direct and an indirect route between the sources and sinks.
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Figure 2.11: A solvable networkN10 that has routing capacityr = p/m ∈ (0, 1]. All edges
in the network point downward.

The routing capacity of this network is now shown to beǫ = r = p/m. Let k

be the dimension of the messages and letn be the capacity of the edges. To begin, the

routing capacity is demonstrated to be upper bounded byp/m. First, note that since each

sink is directly connected to all but one of the sources and sincer = p/m ≤ 1, each sink

can receive all but one of the messages directly. Furthermore, in each case, the missing

message must be transmitted to the sink along the indirect route (from the source through

the second and third layers to the sink). Since each of them messages is missing from

one of the sinks, a total ofmk message components must be transmitted along the indirect

paths. The cumulative capacity of the indirect paths ispn, as clearly seen by considering

the straight through connections between layers two and three. Thus, the relationmk ≤ pn

must hold, yieldingk/n ≤ p/m for arbitraryk andn. Thusǫ ≤ p/m.

To prove that this upper bound on the routing capacity is achievable, consider a

solution which setsk = p andn = m. As noted previously, direct transmission ofm − 1

of the messages to each sink is clearly possible. Now, each second-layer node receives all

k components of allm messages, for a total ofmk = mp components. The cumulative
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capacity of the links from the second to third layers ispn = pm. Thus, since the sinks

receive all data received by the third-layer nodes, themp message components can be as-

signed arbitrarily to thepm straight-through slots, allowing each sink to receive the correct

missing message. Hence, this assignment is a fractional routing solution. Therefore,p/m

is an achievable routing rate of the network, soǫ ≥ p/m.

Now, the network is shown to be solvable by presenting a solution. Let the alphabet

from which the components of the messages are drawn be an Abelian group. As previously,

all but one message is received by each source along the direct links from the sources to

the sinks. Now, note that nodenm+1 receives allm messages from the sources. Thus, it is

possible to send the combinationx(1) + x(2) + · · · + x(m) along edgeem+1,m+p+1. Node

nm+p+1 then passes this combination along to each of the sinks. Since each sink possesses

all but one message, it can extract the missing message from the combination received from

nodenm+p+1. Thus, the demands of each sink are met.

Hence, the generalized network shown in Figure 2.11 represents a solvable network

whose routing capacity is the rationalr = p/m ∈ (0, 1].

�

In the networkN10, a routing solution (withk = n) would require allm messages

to be transmitted along thep straight-through paths in the indirect portion of the network.

However, forr ∈ (0, 1) we havep < m, hence no routing solution exists. Thus, the network

requires coding to achieve a solution. Also, note that if thenetworkN10 is specialized to

the casem = 2 andp = 1, then it becomes the network in Figure 2.2.

2.6 Coding Capacity

This section briefly considers the coding capacity of a network, which is a general-

ization of the routing capacity. The coding capacity is firstdefined and two examples are

then discussed. Finally, it is shown that the coding capacity is independent of the chosen

alphabet.

A (k, n) fractional coding solutionof a network is a coding solution that uses mes-

sages withk components and edges with capacityn. If a network has a(k, n) fractional

coding solution, then the rational numberk/n is said to be anachievable coding rate. The
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coding capacityis then given by

γ = sup {r ∈ Q : r is an achievable coding rate} .

If a (k, n) fractional coding solution uses only linear coding, thenk/n is anachievable

linear coding rateand we define thelinear coding capacityto be

λ = sup {r ∈ Q : r is an achievable linear coding rate} .

Note that unlike fractional routing solutions, fractionalcoding solutions must be considered

in the context of a specific alphabet. Indeed, the linear coding capacity in general depends

on the alphabet [5]. However, it will be shown in Theorem 2.6.5 that the coding capacity

of a network is independent of the chosen alphabet.

Clearly, for a given alphabet, the coding capacity of a network is always greater

than or equal to the linear coding capacity. Also, if a network is solvable (i.e., withk = n),

then the coding capacity is greater than or equal to 1, sincek/n = k/k is an achievable

coding rate. Similarly, if a network is linearly solvable, then the linear coding capacity is

greater than or equal to 1.

The following examples illustrate the difference between the routing capacity and

coding capacity of a network.

Example 2.6.1.The special caseN5 of the network shown in Figure 2.4 has routing ca-

pacityǫ = 12/25, as discussed in the note following Example 2.3.4. Using a cut argument,

it is clear that the coding capacity of the network is upper bounded by8/5, since each sink

demands5k message components and has a total capacity of8n on its incoming edges.

Lemmas 2.6.2 and 2.6.3 will respectively prove that this network has a scalar linear so-

lution for every finite field other thanGF (2) and has a vector linear solution forGF (2).

Consequently, the linear coding capacity for any finite fieldalphabet is at least 1, which is

strictly greater than the routing capacity.

Lemma 2.6.2.NetworkN5 has a scalar linear solution for every finite field alphabet other

thanGF (2).

Proof. Let a, b, c, d, ande be the messages at the source. Let the alphabet be a finite field

F with |F | > 2. Let z ∈ F − {0, 1}. Define the following sets (D is a multiset):

A = {a, b, c, d, e}
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B = {za + b, zb + c, zc + d, zd + e, ze + a}
C = {a + b + c + d + e}
D = A ∪ B ∪ C ∪ C.

Then|D| = 12. Let the symbols carried on the12 edges emanating from the source corre-

spond to a specific permutation of the12 elements ofD. We will show that the demands

of all
(

12
8

)

sinks are satisfied by showing that all of the messagesa, b, c, d, ande can be

recovered (linearly) from every multisetS ⊂ D satisfying|S| = 8.

If |S ∩ A| = 5 then the recovery is trivial.

If |S∩A| = 4 then without loss of generality assumee 6∈ S. If a+b+c+d+e ∈ S,

thene can clearly be recovered. Ifa + b + c + d + e 6∈ S, then|S ∩ B| = 4, in which case

{zd + e, ze + a} ∩ S 6= ∅, and thuse can be recovered.

If |S ∩ A| = 1 thenB ⊂ S, so the remaining4 elements ofA can be recovered.

If |S∩A| = 2 then|B∩S| ≥ 4, so the remaining3 elements ofA can be recovered.

If |S ∩ A| = 3 then|B ∩ S| ≥ 3. If |B ∩ S| ≥ 4, then the remaining2 elements

of A can be recovered, so assume|B ∩ S| = 3, in which casea + b + c + d + e ∈ S.

Due to the symmetries of the elements inB, we assume without loss of generality that

A ∩ S ∈ {{a, b, c}, {a, b, d}}. First consider the case whenA ∩ S = {a, b, c}. Then,

d + e can be recovered. Ifzd + e ∈ S then we can solve ford ande sincez 6= 1. If

zd + e 6∈ S thenS ∩ {zc + d, ze + a} 6= ∅, so eitherd can be recovered fromc andzc + d

or e can be recovered froma andze + a. Then the remaining term is recoverable from

d + e. Now consider the case whenA ∩ S = {a, b, d}. Thenc + e can be recovered. If

S∩{zb+ c, zc+d} 6= ∅ thenc can be recovered from eitherb andzb+ c or d andzc+d. If

S ∩ {zb + c, zc + d} = ∅ thenS ∩ {zd + e, ze + a} 6= ∅, soe can be recovered from either

d andzd + e or a andze + a. Finally, the remaining term can be recovered fromc + e.

�

Lemma 2.6.3.NetworkN5 has a binary linear solution for vector dimension2.

Proof. Consider a scalar linear solution overGF (4) (which is known to exist by Lemma

2.6.2). The elements ofGF (4) can be viewed as the following four2 × 2 matrices over
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GF (2):
(

0 0

0 0

)

,

(

1 0

0 1

)

,

(

1 1

1 0

)

,

(

0 1

1 1

)

.

Then, using theGF (4) solution from Lemma 2.6.2 and substituting in the matrix represen-

tation yields the following12 linear functions of dimension2 for the second layer of the

network:
(

a1

a2

)

,

(

b1

b2

)

,

(

c1

c2

)

,

(

d1

d2

)

,

(

e1

e2

)

,

(

1 1

1 0

)

(

a1

a2

)

−
(

b1

b2

)

,

(

1 1

1 0

)

(

b1

b2

)

−
(

c1

c2

)

,

(

1 1

1 0

)

(

c1

c2

)

−
(

d1

d2

)

,

(

1 1

1 0

)

(

d1

d2

)

−
(

e1

e2

)

,

(

1 1

1 0

)

(

e1

e2

)

−
(

a1

a2

)

,

(

a1

a2

)

+

(

b1

b2

)

+

(

c1

c2

)

+

(

d1

d2

)

+

(

e1

e2

)

,

(

a1

a2

)

+

(

b1

b2

)

+

(

c1

c2

)

+

(

d1

d2

)

+

(

e1

e2

)

.

It is straightforward to verify that from any8 of these12 vector linear functions, one can

linearly obtain the5 message vectors
(

a1

a2

)

,
(

b1
b2

)

,
(

c1
c2

)

,
(

d1

d2

)

,
(

e1

e2

)

.

�

Example 2.6.4.As considered in Example 2.3.1, the networkN1 has routing capacity

ǫ = 3/4. We now show that both the coding and linear coding capacities are equal to 1,

which is strictly greater than the routing capacity.

Proof. NetworkN1 has a well known scalar linear solution [1] given by

e1,2 = e2,4 = e2,6 = x
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e1,3 = e3,4 = e3,7 = y

e4,5 = e5,6 = e5,7 = x + y.

Thus,λ ≥ 1 andγ ≥ 1.

To upper bound the coding and linear coding capacities, notethat each sink de-

mands both messages but only possesses two incoming edges. Thus, we have the require-

ment2k ≤ 2n, for arbitraryk andn. Hence,λ ≤ 1 andγ ≤ 1.

�

Theorem 2.6.5.The coding capacity of any network is independent of the alphabet used.

Proof. Suppose a network has a(k, n) fractional coding solution over an alphabetA and

let B be any other alphabet of cardinality at least two. Letǫ > 0 and let

t =

⌈

(k + 1) log2 |B|
nǫ log2 |A|

⌉

.

There is clearly a(tk, tn) fractional coding solution over the alphabetA obtained by inde-

pendently applying the(k, n) solutiont times. Define the quantities

n′ = n

⌈

t · log2 |A|
log2 |B|

⌉

k′ =

⌊

kn′

n

⌋

− k

and notice by some computation that

|B|n′ ≥ |A|tn (2.5)

|B|k′ ≤ |A|tk (2.6)

k′

n′ ≥
k

n
− ǫ. (2.7)

For each edgee, letde andme respectively be the number of relevant in-edges and messages

originating at the starting node ofe, and, for each nodev let dv andmv respectively be the

number of relevant in-edges and messages originating atv. For each edgee, denote the

edge encoding function fore by

fe : (Atn)de × (Atk)me → Atn
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and for each nodev, and each messagem demanded byv denote the corresponding node

decoding function by

fv,m : (Atn)dv × (Atk)mv → Atk.

The functionfe determines the vector carried on the out-edgee of a node based

upon the vectors carried on the in-edges and the message vectors originating at the same

node. The functionfv,m attempts to produce the message vectorm as a function of the

vectors carried on the in-edges of the nodev and the message vectors originating atv. Let

h : Atn → Bn′
andh0 : Bk′ → Atk be any injections (they exist by (2.5) and (2.6)). Define

ĥ : Bn′ → Atn such that̂h(h(x)) = x for all x ∈ Atn and ĥ(x) is arbitrary otherwise.

Also, definêh0 : Atk → Bk′
such that̂h0(h0(x)) = x for all x ∈ Bk′

andĥ0(x) is arbitrary

otherwise. Define for each edgee the mapping

ge : (Bn′
)de × (Bk′

)me → Bn′

by

ge(x1, . . . ,xde ,y1, . . . ,yme)

= h(fe(ĥ(x1), . . . , ĥ(xde), h0(y1), . . . , h0(yme)))

for all x1, . . . ,xde ∈ Bn′
and for ally1, . . . ,yme ∈ Bk′

. Similarly, define for each nodev

and each messagem demanded atv the mapping

gv,m : (Bn′
)dv × (Bk′

)mv → Bk′

by

gv,m(x1, . . . ,xdv ,y1, . . . ,ymv)

= ĥ0(fv,m(ĥ(x1), . . . , ĥ(xdv), h0(y1), . . . , h0(ymv)))

for all x1, . . . ,xdv ∈ Bn′
and for ally1, . . . ,ymv ∈ Bk′

.

Now consider the(k′, n′) fractional network code over the alphabetB obtained by

using the edge functionsge and decoding functionsgv,m. For each edge in the network, the

vector carried on the edge in the(k, n) solution over the alphabetA and the vector carried

on the edge in the(k′, n′) fractional network code overB can each be obtained from the
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other usingh andĥ, and likewise for the vectors obtained at sink nodes from thedecoding

functions for the alphabetsA andB (usingh0 andĥ0). Thus, the set of edge functionsge

and decoding functionsgv,m gives a(k′, n′) fractional routing solution of the network over

alphabetB, since the vector on every edge in the solution overA can be determined (using

h, h0, ĥ, and ĥ0) from the vector on the same edge in the solution overB. The (k′, n′)

solution achieves a rate ofk′/n′, which by (2.7) is at least(k/n) − ǫ. Sinceǫ was chosen

as an arbitrary positive number, the supremum of achievablerates of the network over the

alphabetB is at leastk/n. Thus, if a coding rate is achievable by one alphabet, then that

rate is a lower bound to the coding capacity for all alphabets. This implies the network

coding capacity (the supremum of achievable rates) is the same for all alphabets. �

There are numerous interesting open questions regarding coding capacity, some

of which we now mention. Is the coding capacity (resp. linearcoding capacity) achievable

and/or rational for every network? For which networks is thelinear coding capacity smaller

than the coding capacity, and for which networks is the routing capacity smaller than the

linear coding capacity? Do there exist algorithms for computing the coding capacity and

linear coding capacity of networks?

2.7 Conclusions

This paper formally defined the concept of the routing capacity of a network and

proved a variety of related properties. When fractional routing is used to solve a network,

the dimension of the messages need not be the same as the capacity of the edges. The

routing capacity provides an indication of the largest possible fractional usage of the edges

for which a fractional routing solution exits. A variety of sample networks were considered

to illustrate the notion of the routing capacity. Through a constructive procedure, the rout-

ing capacity of any network was shown to be achievable and rational. Furthermore, it was

demonstrated that every rational number in(0, 1] is the routing capacity of some solvable

network. Finally, the coding capacity of a network was also defined and was proven to be

independent of the alphabet used.

The results in this paper straightforwardly generalize to (not necessarily acyclic)

undirected networks and to directed networks with cycles aswell. Also, the results can be
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generalized to networks with nonuniform (but rational) edge capacities; in such case, some

extra coefficients are required in the network inequalities. An interesting future problem

would be to find a more efficient algorithm for computing the routing capacity of a network.
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Chapter 3

Network Coding Capacity With a

Constrained Number of Coding Nodes

Abstract

We study network coding capacity under a constraint on the to-

tal number of network nodes that can perform coding. That is,

only a certain number of network nodes can produce coded outputs,

whereas the remaining nodes are limited to performing routing. We

prove that every non-negative, monotonically non-decreasing, even-

tually constant, rational-valued function on the non-negative inte-

gers is equal to the capacity as a function of the number of allowable

coding nodes of some directed acyclic network.

3.1 Introduction

Let N denote the positive integers, and letR andQ denote the real and rational

numbers, respectively, with a superscript “+” denoting restriction to positive values. In

this paper, anetworkis a directed acyclic multigraphG = (V, E), some of whose nodes

are information sources or receivers (e.g. see [13]). Associated with the sources arem

generatedmessages, where theith source message is assumed to be a vector ofki arbitrary

elements of a fixed finite alphabetA of size at least two. At any node in the network,

44
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each out-edge carries a vector ofn alphabet symbols which is a function (called anedge

function) of the vectors of symbols carried on the in-edges to the node, and of the node’s

message vectors if it is a source. Each network edge is allowed to be used at most once

(thus, at mostn symbols can travel across each edge). It is assumed that every network edge

is reachable by some source message. Associated with each receiver aredemands, which

are subsets of the network messages. Each receiver hasdecoding functionswhich map the

receiver’s inputs to vectors of symbols in an attempt to produce the messages demanded

at the receiver. The goal is for each receiver to deduce its demanded messages from its

in-edges and source messages by having information propagate from the sources through

the network.

A (k1, . . . , km, n) fractional codeis a collection of edge functions, one for each

edge in the network, and decoding functions, one for each demand of each receiver in the

network. A (k1, . . . , km, n) fractional solutionis a (k1, . . . , km, n) fractional code which

results in every receiver being able to compute its demands via its decoding functions, for

all possible assignments of length-ki vectors over the alphabet to theith source message,

for all i. An edge function performs routing when it copies specified input components

to its output components. A node performsrouting when the edge function of each of its

out-edges performs routing. Whenever an edge function for an out-edge of a node depends

only on the symbols of a single in-edge of that node, we assume, without loss of generality,

that the out-edge carries the same vector of symbols as the in-edge it depends on.

For eachi, the ratioki/n can be thought of as the rate at which sourcei injects

data into the network. Thus, different sources can produce data at different rates. If a

network has a(k1, . . . , km, n) fractional solution over some alphabet, then we say that

(k1/n, . . . , km/n) is anachievable rate vector, and we define theachievable rate region1

of the network as the set

S = {r ∈ Qm : r is an achievable rate vector}.

Determining the achievable rate region of an arbitrary network appears to be a formidable

task. Consequently, one typically studies certain scalar quantities called coding capacities,

which are related to achievable rates. A routing capacity ofa network is a coding capacity

1Sometimes in the literature the closureS̄, with respect toRm, is taken as the definition of the achievable
rate region.
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under the constraint that only routing is permitted at network nodes. Acoding gainof a

network is the ratio of a coding capacity to a routing capacity. For directed multicast2 and

directed multiple unicast3 networks, Sanders, Egner, and Tolhuizen [10] and Li and Li [8]

respectively showed that the coding gain can be arbitrarilylarge.

An important problem is to determine how many nodes in a network are required

to perform coding in order for the network to achieve its coding capacity (or to achieve

a coding rate arbitrarily close to its capacity if the capacity is not actually achievable).

A network node is said to be acoding nodeif at least one of its out-edges has a non-

routing edge function. A similar problem is to determine thenumber of coding nodes

needed to assure the network has a solution (i.e. a(k1, . . . , km, n) fractional solution with

k1 = · · · = km = n = 1). The number of required coding nodes in both problems can in

general range anywhere from zero up to the total number of nodes in the network.

For the special case of multicast networks, the problem of finding a minimal set

of coding nodes to solve a network has been examined previously in [2], [6], [7], [11];

the results of which are summarized as follows. Langberg, Sprintson, and Bruck [7] de-

termined upper bounds on the minimum number of coding nodes required for a solution.

Their bounds are given as functions of the number of messagesand the number of receivers.

Tavory, Feder, and Ron [11] showed that with two source messages, the minimum number

of coding nodes required for a solution is independent of thetotal number of nodes in the

network, while Fragouli and Soljanin [6] showed this minimum to be upper bounded by

the number of receivers. Bhattad, Ratnakar, Koetter, and Narayanan [2] gave a method for

finding solutions with reduced numbers of coding nodes, but their method may not find the

minimum possible number of coding nodes. Wu, Jain, and Kung [12] demonstrated that

only certain network edges require coding functions. This fact indirectly influences the

number of coding nodes required, but does not immediately give an algorithm for finding

a minimum node set.

We study here a related (and more general) problem, namely how network coding

capacities can vary as functions of the number of allowable coding nodes. Our main re-

2A multicastnetwork is a network with a single source and with every receiver demanding all of the
source messages.

3A multiple unicastnetwork is a network where each message is generated by exactly one source node
and is demanded by exactly one receiver node.
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sult, given in Theorem 3.3.2, shows that the capacities of networks, as functions of the

number of allowable coding nodes, can be almost anything. That is, the class of directed

acyclic networks can witness arbitrary amounts of coding gain by using arbitrarily-sized

node subsets for coding.

3.2 Coding Capacities

Various coding capacities can be defined in terms of the achievable rate region of

a network. We study two such quantities, presenting their definitions and determining

their values for an example network given in Figure 3.1. Thisnetwork is used to establish

Theorem 3.3.2. Li and Li [8] presented a variation of this network and found the routing

and coding capacities for the case whenki = k for all i.

For any(k1, . . . , km, n) fractional solution, we call the scalar value

1

m

(

k1

n
+ · · · + km

n

)

an achievable average rateof the network. We define theaverage coding capacityof a

network to be the supremum of all achievable average rates, namely

Caverage = sup

{

1

m

m
∑

i=1

ri : (r1, . . . , rm) ∈ S

}

.

Similarly, for any(k1, . . . , km, n) fractional solution, we call the scalar quantity

min

{

k1

n
, . . . ,

km

n

}

an achievable uniform rateof the network. We define theuniform coding capacityof a

network to be the supremum of all achievable uniform rates, namely

Cuniform = sup

{

min
1≤i≤m

ri : (r1, . . . , rm) ∈ S

}

.

Note that ifr ∈ S and if r′ ∈ Qm+ is component-wise less than or equal tor, thenr′ ∈ S.

In particular, if

(r1, . . . , rm) ∈ S

and

ri = min
1≤j≤m

rj
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then

(ri, ri, . . . , ri) ∈ S

which implies

Cuniform = sup {ri : (r1, . . . , rm) ∈ S, r1 = · · · = rm} .

In other words, all messages can be restricted to having the same dimension

k1 = · · · = km

when consideringCuniform.

Also, note that

Caverage ≥ Cuniform

and that quantitiesCaverage and Cuniform are attained by points on the boundary of the

closureS̄ of S. If a network’s edge functions are restricted to purely routing functions,

thenCaverage andCuniform will be referred to as theaverage routing capacityanduniform

routing capacity, and will be denotedCaverage
0 andCuniform

0 , respectively.

Example 3.2.1.In this example, we consider the network in Figure 3.1. Note that for each

j = 1, . . . , q, every path from source nodenj to receiver nodenq+2+j contains the edge

ej,q+1. Thus, we must havekj ≤ n for all j, and therefore

k1 + · · ·+ kq ≤ qn,

soCaverage ≤ 1.

Furthermore, we can obtain a(k1, . . . , kq, n) fractional coding solution with

k1 = · · · = kq = n = 1

using routing at all nodes exceptnq+1, which transmits the mod|A| sum of its inputs on

one of its out-edges and nothing on its otherp − 1 out-edges. This solution implies that

Caverage ≥ 1.

Thus, we haveCaverage = 1.
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...

(1) (2)

(1) (2) (q−1) (q)

(q−1) (q)

X X X X

X X X X

1 2 q

q+1

q+2

q+3 q+4 2q+1 2q+2

p

q−1

Figure 3.1: The networkN (p, q), with p ≤ q andp, q ∈ Z+. Nodesn1, . . . , nq are the
sources, with nodeni providing messageX(i), for 1 ≤ i ≤ q. Nodesnq+3, . . . , n2q+2 are
the receivers, with nodeni demanding messageX(i−q−2), for q + 3 ≤ i ≤ 2q + 2. Every
source has one out-edge going to nodenq+1 and every receiver has one in-edge coming
from nodenq+2. Also, every sourceni has an out-edge going to receivernq+2+j, for all
j 6= i. There arep parallel edges from nodenq+1 to nodenq+2.

Clearly,

Cuniform ≤ Caverage = 1.

The presented(k1, . . . , kq, n) fractional coding solution uses

k1 = · · · = kq,

so

Cuniform ≥ 1.

Thus,

Cuniform = 1.

When only routing is allowed, all of the messages must pass through thep edges
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from nodenq+1 to nq+2. Thus, we must have

k1 + · · ·+ kq ≤ pn,

or equivalently,
k1 + · · · + kq

qn
≤ p

q
.

This implies

Caverage
0 ≤ p

q
.

A (k1, . . . , kq, n) fractional routing solution consists of taking

k1 = · · · = kq = p

andn = q and sending each messageX(j) along the corresponding edgeej,q+1, sending all

k1 + · · ·+ kq = qp

message components from nodenq+1 to nq+2 in an arbitrary fashion, and then sending each

messageX(j) from nodenq+2 to the corresponding receiver nodenq+2+j . Hence,

Cuniform
0 ≥ p

q

and therefore
p

q
≤ Cuniform

0 ≤ Caverage
0 ≤ p

q
.

Thus,

Cuniform
0 = Caverage

0 =
p

q
.

Various properties of network routing and coding capacities relating to their rela-

tive values, linearity, alphabet size, achievability, andcomputability have previously been

studied [1], [3]–[5], [9]. However, it is not presently known whether or not there exist

algorithms that can compute the coding capacity (uniform oraverage) of an arbitrary net-

work. In fact, computing the exact coding capacity of even relatively simple networks can

be a seemingly non-trivial task. At present, very few exact coding capacities have been

rigorously derived in the literature.
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3.3 Node-Limited Coding Capacities

For each non-negative integeri, a(k1, . . . , km, n) fractional i-node coding solution

for a network is a(k1, . . . , km, n) fractional coding solutionwith at mosti coding nodes

(i.e. having output edges with non-routing edge functions).4 For eachi, we denote by

Caverage
i andCuniform

i the average and uniform coding capacities, respectively, when solu-

tions are restricted to those having at mosti coding nodes. We make the convention that,

for all i > |V |,
Caverage

i = Caverage
|V |

and

Cuniform
i = Cuniform

|V | .

We callCaverage
i andCuniform

i thenode-limited average capacity functionandnode-limited

uniform capacity function, respectively. Clearly, the minimum number of coding nodes

needed to obtain the average or uniform network capacity is the smallesti such that

Caverage
i = Caverage

or

Cuniform
i = Cuniform,

respectively. Also, the quantitiesCuniform
|V | andCaverage

|V | are respectively the uniform and

average coding capacities.

Example 3.3.1.For the network in Figure 3.1, sinceCaverage andCuniform are both achieved

using only a single coding node (as shown in Example 3.2.1), the node-limited capacities

are

Caverage
i = Cuniform

i =

{

p/q for i = 0

1 for i ≥ 1.
(3.1)

A function f : N ∪ {0} → R is said to beeventually constantif there exists ani

such that

f(i + j) = f(i)

4Arbitrary decoding is allowed at receiver nodes and receiver nodes only contribute to the total number of
coding nodes in a network if they have out-edges performing coding.



52

for all j ∈ N. Thus, the node-limited uniform and average capacity functions are eventually

constant. A network’s node-limited capacity function is also always non-negative. For a

given number of coding nodes, if a network’s node-limited capacity is achievable, then it

must be rational, and cannot decrease if more nodes are allowed to perform coding (since

one can choose not to use extra nodes for coding). By examining the admissible forms

of Caverage
i andCuniform

i we gain insight into the possible capacity benefits of performing

network coding at a limited number of nodes.

Theorem 3.3.2, whose proof appears after Lemma 3.3.4, demonstrates that node-

limited capacities of networks can vary more-or-less arbitrarily as functions of the number

of allowable coding nodes. Thus, there cannot exist any useful general upper or lower

bounds on the node-limited capacity of an arbitrary network(bounds might exist as func-

tions of the properties of specific networks, however).

Theorem 3.3.2.Every monotonically non-decreasing, eventually constantfunctionf : N∪
{0} → Q+ is the node-limited average and uniform capacity function of some directed

acyclic network.

Two lemmas are now stated (the proofs are simple and therefore omitted) and are

then used to prove Theorem 3.3.2.

Lemma 3.3.3.LetN be a network with node-limited uniform and average coding capac-

ities Cuniform
i andCaverage

i , respectively, and letp be a positive integer. If every message

is replaced at its source node byp new independent messages and every receiver has each

message demand replaced by a demand for all of thep new corresponding messages, then

the node-limited uniform and average coding capacity functions of the resulting network

N ′ are (1/p)Cuniform
i and(1/p)Caverage

i , respectively.

Lemma 3.3.4.LetN be a network with node-limited uniform and average coding capaci-

tiesCuniform
i andCaverage

i , respectively, and letq be a positive integer. If every directed edge

is replaced byq new parallel directed edges in the same orientation, then the node-limited

uniform and average coding capacity functions of the resulting networkN ′ are qCuniform
i

andqCaverage
i , respectively.

Proof of Theorem 3.3.2.
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Supposef : N ∪ {0} → Q+ is given by

f(i) =

{

pi/qi for 0 ≤ i < s

ps/qs for i ≥ s

where

p0, . . . , ps, q0, . . . , qs

are positive integers such that

p0/q0 ≤ p1/q1 ≤ · · · ≤ ps/qs.

Define the positive integers

b = ps · lcm{qi : 0 ≤ i < s} = lcm{psqi : 0 ≤ i < s} ∈ N

ai =
pi/qi

ps/qs
· b =

piqs

psqi
· b ∈ N

and construct a networkN as shown in Figure 3.2, which hasm = b source messages and

uses the networks

N (a0, b), . . . ,N (as−1, b)

as building blocks (note thatai/b ≤ 1 for all i).

X
(1)

X X X
(2) (3) (b)

N(a ,b)1 ,b)N(a2
N(as−1,b),b)0N(a

...

... ... ...

...

...

Figure 3.2: The networkN hasb source nodes, each emitting one message. Each source
node has an out-edge to each sub-blockN (a0, b), . . . ,N (as−1, b). Specifically, in each sub-
blockN (ai, b), the previous source messages are removed, however each previous source
node is connected by an in-edge from the unique corresponding source node inN . Each
sub-blockN (ai, b) has routing capacityai/b = (pi/qi)/(ps/qs).
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Let Cuniform
i andCaverage

i denote the uniform and average node-limited capacity

functions of networkN . Also, for j = 0, . . . , s − 1, let Cuniform
j,i andCaverage

j,i denote

the uniform and average node-limited capacity functions ofthe sub-blockN (aj, b). There

are exactly2s nodes inN that have more than one in-edge and at least one out-edge, and

which are therefore potential coding nodes (i.e. two potential coding nodes per sub-block).

However, for each sub-block, any coding performed at the lower potential coding node can

be directly incorporated into the upper potential coding node.

For eachi = 0, . . . , s − 1, in order to obtain a(k1, . . . , km, n) fractional i-node

coding solution, the quantity
k1 + · · · + km

mn

must be at most

min
j

aj

b
= min

j

pj/qj

ps/qs

where the minimization is taken over allj for which sub-blockN (aj, b) has no coding

nodes (as seen from (3.1)). That is, we must have

k1 + · · ·+ km

mn
≤ pi/qi

ps/qs
.

Therefore, the node-limited average and uniform coding capacities ofN using i coding

nodes are at most the respective routing capacities of sub-blockN (ai, b) of N , namely

Cuniform
i ≤ Cuniform

i,0 = ai/b =
pi/qi

ps/qs

Caverage
i ≤ Caverage

i,0 = ai/b =
pi/qi

ps/qs
.

These upper bounds are achievable by using coding at the one useful possible cod-

ing node in each of the sub-blocks

N (a0, b), . . . ,N (ai−1, b)

and using routing elsewhere. By taking

d = lcm(ai, . . . , as−1)

k1 = · · · = km = d

n = bd/ai
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we can obtain a(k1, . . . , km, n) fractional i-node coding solution with coding nodes in

sub-blocks

N (a0, b), . . . ,N (ai−1, b)

and only routing edge-functions in sub-blocks

N (ai, b), . . . ,N (as−1, b).

With such a solution, the coding capacity

Cuniform
j,1 = Caverage

j,1 = 1

is achieved in each sub-block

N (a0, b), . . . ,N (ai−1, b),

and the (unchanging) routing capacity

Cuniform
i,0 = Caverage

i,0

is achieved in each sub-block

N (ai, b), . . . ,N (as−1, b).

Thus, networkN has node-limited average and uniform capacity functions given

by

Caverage
i = Cuniform

i =

{

(pi/qi)/(ps/qs) for 0 ≤ i < s

1 for i ≥ s.

By Lemma 3.3.3 and Lemma 3.3.4, if we replace each message ofN by qs new

independent messages and change the receiver demands accordingly, and if we replace

each directed edge ofN by ps parallel edges in the same orientation, then the resulting

networkN̂ will have node-limited average and uniform capacity functions given by

Ĉaverage
i = Ĉuniform

i = (ps/qs)Cuniform
i = f(i).

�
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We note that a simpler network could have been used in the proof of Theo-

rem 3.3.2 if only the case ofCuniform
i were considered. Namely, we could have used only

maxO≤i<s qips source nodes and then connected edges from source nodes to sub-blocks

N (piqs, qips) as needed.

One consequence of Theorem 3.3.2 is that large coding gains can be suddenly ob-

tained after an arbitrary number of nodes has been used for coding. For example, for any

integeri ≥ 0 and for any real numbert > 0, there exists a network such that

Cuniform
0 = Cuniform

1 = · · · = Cuniform
i

Caverage
0 = Caverage

1 = · · · = Caverage
i

Cuniform
i+1 − Cuniform

i > t

Caverage
i+1 − Caverage

i > t.

In Theorem 3.3.2 the existence of networks that achieve prescribed rational-valued

node-limited capacity functions was established. It is known in general that not all net-

works necessarily achieve their capacities [5]. It is presently unknown, however, whether

a network coding capacity could be irrational.5 Thus, we are not presently able to extend

Theorem 3.3.2 to real-valued functions. Nevertheless, Theorem 3.3.2 does immediately

imply the following asymptotic achievability result for real-valued functions.

Corollary 3.3.5. Every monotonically non-decreasing, eventually constantfunctionf :

N ∪ {0} → R+ is the limit of the node-limited uniform and average capacity function of

some sequence of directed acyclic networks.

3.4 Acknowledgment

The text of this chapter, in full, is a reprint of the materialas it appears in Jillian

Cannons and Kenneth Zeger, “Network Coding Capacity With a Constrained Number of

Coding Nodes,”IEEE Transactions on Information Theory, vol. 54, no.3, March2008.

5It would be interesting to understand whether, for example,a node-limited capacity function of a network
could take on some rational and some irrational values, and perhaps achieve some values and not achieve other
values. We leave this as an open question.
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Chapter 4

An Algorithm for Wireless Relay

Placement

Abstract

An algorithm is given for placing relays at spatial positions to im-

prove the reliability of communicated data in a sensor network. The

network consists of many power-limited sensors, a small setof re-

lays, and a receiver. The receiver receives a signal directly from

each sensor and also indirectly from one relay per sensor. The re-

lays rebroadcast the transmissions in order to achieve diversity at

the receiver. Both amplify-and-forward and decode-and-forward re-

lay networks are considered. Channels are modeled with Rayleigh

fading, path loss, and additive white Gaussian noise. Performance

analysis and numerical results are given.

4.1 Introduction

Wireless sensor networks typically consist of a large number of small, power-

limited sensors distributed over a planar geographic area.In some scenarios, the sensors

collect information which is transmitted to a single receiver for further analysis. A small

number of radio relays with additional processing and communications capabilities can be

58
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strategically placed to help improve system performance. Two important problems we con-

sider here are to position the relays and to determine, for each sensor, which relay should

rebroadcast its signal.

Previous studies of relay placement have considered various optimization criteria

and communication models. Some have focused on the coverageof the network (e.g.,

Balam and Gibson [2]; Chen, Wang, and Liang [4]; Cortés, Martiı́nez, Karataş, and Bullo

[7]; Koutsopoulos, Toumpis, and Tassiulas [13]; Liu and Mohapatra [14]; Mao and Wu

[15]; Suomela [22]; Tan, Lozano, Xi, and Sheng [23]). In [13]communication errors are

modeled by a fixed probability of error without incorporating physical considerations; oth-

erwise, communications are assumed to be error-free. Such studies often directly use the

source coding technique known as the Lloyd algorithm (e.g.,see [9]), which is sub-optimal

for relay placement. Two other optimization criteria are network lifetime and energy usage,

with energy modeled as an increasing function of distance and with error-free communica-

tions (e.g., Ergen and Varaiya [8]; Hou, Shi, Sherali, and Midkiff [11]; Iranli, Maleki, and

Pedram [12]; Pan, Cai, Hou, Shi, and Shen [17]). Models incorporating fading and/or path

loss have been used for criteria such as error probability, outage probability, and through-

put, typically with simplifications such as single-sensor or single-relay networks (e.g., Cho

and Yang [5]; So and Liang [21]; Sadek, Han, and Liu [20]). Themajority of the above

approaches do not include diversity. Those that do often do not focus on optimal relay lo-

cation and use restricted networks with only a single sourceand/or a single relay (e.g., Ong

and Motani [16]; Chen and Laneman [3]). These previous studies offer valuable insight;

however, the communication and/or network models used are typically simplified.

In this work, we attempt to position the relays and determinewhich relay should re-

broadcast each sensor’s transmissions in order to minimizethe average probability of error.

We use a more elaborate communications model which includespath loss, fading, additive

white Gaussian noise, and diversity. We use a network model in which all relays either use

amplify-and-forward or decode-and-forward communications. Each sensor in the network

transmits information to the receiver both directly and through a single-hop relay path. The

receiver uses the two received signals to achieve diversity. Sensors identify themselves in

transmissions and relays know for which sensors they are responsible. We assume TDMA

communications by sensors and relays so that there is (ideally) no transmission interfer-
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ence.

We present an algorithm that determines relay placement andassigns each sensor

to a relay. We refer to this algorithm as therelay placement algorithm. The algorithm has

some similarity to the Lloyd algorithm. We describe geometrically, with respect to fixed

relay positions, the sets of locations in the plane in which sensors are (optimally) assigned

to the same relay, and give performance results based on these analyses and using numerical

computations.

In Section 4.2, we specify communications models and determine error probabil-

ities. In Section 4.3, we present our relay placement algorithm. In Section 4.4, we give

analytic descriptions of optimal sensor regions (with respect to fixed relay positions). In

Section 4.5, we present numerical results. In Section 4.6, we summarize our work and

provide ideas for future consideration.

4.2 Communications Model and Performance Measure

4.2.1 Signal, Channel, and Receiver Models

In a sensor network, we refer to sensors, relays, and the receiver asnodes. We

assume that transmission ofbi ∈ {−1, 1} by nodei uses the binary phase shift keyed

(BPSK) signalsi(t), and we denote the transmission energy per bit byEi. In particular,

we assume all sensor nodes transmit at the same energy per bit, denoted byETx. The

communications channel model includes path loss, additivewhite Gaussian noise (AWGN),

and fading. LetLi,j denote the far field path loss between two nodesi and j that are

separated by a distancedi,j (in meters). We consider the free-space law model (e.g., see

[19, pp. 70 – 73]) for which1

Li,j =
F2

d2
i,j

(4.1)

where:

F2 = λ2

16π2 (in meters2)

1Much of the material of this paper can be generalized by replacing the path loss exponent2 by any
positive, even integer, andF2 by a corresponding constant.
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λ = c/f0 is the wavelength of the carrier wave (in meters)

c = 3 · 108 is the speed of light (in meters/second)

f0 is the frequency of the carrier wave (in Hz).

The formula in (4.1) is impractical in the near field, sinceLi,j → ∞ asdi,j → 0. Comaniciu

and Poor [6] addressed this issue by not allowing transmissions at distances less thanλ.

Ong and Motani [16] allow near field transmissions by proposing a modified model with

path loss

Li,j =
F2

(1 + di,j)2
. (4.2)

We assume additive white Gaussian noisenj(t) at the receiving antenna of nodej. The

noise has one-sided power spectral densityN0 (in W/Hz). Assume the channel fading

(excluding path loss) between nodesi andj is a random variablehi,j with Rayleigh density

phi,j
(h) = (h/σ2)e−h2/(2σ2) (h ≥ 0). (4.3)

We also consider AWGN channels (which is equivalent to assuming hi,j = 1 for all i, j).

Let the signal received after transmission from nodei to nodej be denoted by

ri,j(t). Combining the signal and channel models, we haveri,j(t) =
√

Li,j hi,jsi(t)+nj(t).

The received energy per bit without fading isEj = EiLi,j. We assume demodulation

at a receiving node is performed by applying a matched filter to obtain the test statistic.

Diversity is achieved at the receiver by making a decision based on a test statistic that

combines the two received versions (i.e., direct and relayed) of the transmission from a

given sensor. We assume the receiver uses selection combining, in which only the better

of the two incoming signals (determined by a measurable quantity such as the received

signal-to-noise-ratio (SNR)) is used to detect the transmitted bit.

4.2.2 Path Probability of Error

For each sensor, we determine the probability of error alongthe direct path from

the sensor to the receiver and along single-hop2 relay paths, for both amplify-and-forward

and decode-and-forward protocols. Letx ∈ R2 denote a transmitter position and letRx

2Computing the probabilities of error for the more general case of multi-hop relay paths is straightforward.
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denote the receiver. We consider transmission paths of the forms(x, Rx), (x, i), (i, Rx),

and(x, i, Rx), wherei denotes a relay index. For each such pathq, let:

SNRq
H = end-to-end SNR, conditioned on the fades (4.4)

P q
e|H = end-to-end error probability, conditioned on the fades (4.5)

SNRq = end-to-end SNR (4.6)

P q
e = end-to-end error probability. (4.7)

For AWGN channels, we takeSNRq andP q
e to be the SNR and error probability when the

signal is degraded only by path loss and receiver antenna noise. For fading channels, we

takeSNRq andP q
e to also be averaged over the fades. Note that the signal-to-noise ratios

only apply to direct paths and paths using amplify-and-forward relays. Finally, denote the

Gaussian error function byQ(x) = 1√
2π

∫∞
x

e−y2/2dy.

Direct Path (i.e., unrelayed)

For Rayleigh fading, we have (e.g., see [18, pp. 817 – 818])

SNR(x,Rx) =
4σ2ETxLx,Rx

N0
; SNR(x,i) =

4σ2ETxLx,i

N0
; SNR(i,Rx) =

4σ2EiLi,Rx

N0

(4.8)

P (x,Rx)
e =

1

2

(

1 −
(

1 +
2

SNR(x,Rx)

)−1/2
)

. (4.9)

For AWGN channels, we have (e.g., see [18, pp. 255 – 256])

SNR(x,Rx) =
2ETxLx,Rx

N0
; SNR(x,i) =

2ETxLx,i

N0
; SNR(i,Rx) =

2EiLi,Rx

N0

(4.10)

P (x,Rx)
e = Q

(√

SNR(x,Rx)
)

. (4.11)

Note that analogous formulas to those in (4.9) and (4.11) canbe given forP (x,i)
e and

P
(i,Rx)
e .
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Relay Path with Amplify-and-Forward

For amplify-and-forward relays,3 the system is linear. Denote the gain byG. Con-

ditioning on the fading values, we have (e.g., see [10])

SNR
(x,i,Rx)
H =

h2
x,ih

2
i,RxETx/N0

Bih
2
i,Rx + Di

(4.12)

P
(x,i,Rx)
e|H = Q

(
√

SNR
(x,i,Rx)
h

)

(4.13)

where Bi =
1

2Lx,i
; Di =

1

2G2Lx,iLi,Rx
. (4.14)

Then, the end-to-end probability of error, averaged over the fades, is

P (x,i,Rx)
e =

∫ ∞

0

∫ ∞

0

P
(x,i,Rx)
e|H pH (hx,i) pH (hi,Rx) dhx,i dhi,Rx

=

∫ ∞

0

∫ ∞

0

Q

(
√

h2
x,ih

2
i,RxETx/N0

Bih2
i,Rx + Di

)

hx,i

σ2
· exp

{

−h2
x,i

2σ2

}

hi,Rx

σ2

· exp

{

−h2
i,Rx

2σ2

}

dhx,i dhi,Rx [from (4.13), (4.12), (4.3)]

=
1

2
− DiN0/ETx

4σ (σ2 + BiN0/ETx)
3/2

·
∫ ∞

0

√

t

t + 1
· exp

{

−t

(

DiN0/ETx

2σ2 (σ2 + BiN0/ETx)

)}

dt

=
1

2
− Di

√
πN0/ETx

8σ (σ2 + BiN0/ETx)
3/2

· U
(

3

2
, 2,

DiN0/ETx

2σ2 (σ2 + BiN0/ETx)

)

(4.15)

whereU(a, b, z) denotes the confluent hypergeometric function of the secondkind [1, p.

505] (also known as Kummer’s function of the second kind), i.e.,

U(a, b, z) =
1

Γ(a)

∫ ∞

0

e−ztta−1 (1 + t)b−a−1 dt.

For AWGN channels, we have

SNR(x,i,Rx) =
ETx/N0

Bi + Di

[from (4.12)] (4.16)

P (x,i,Rx)
e = Q

(√

SNR(x,i,Rx)
)

. (4.17)

3By amplify-and-forward relayswe specifically mean that a received signal is multiplied by aconstant
gain factor and then transmitted.
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Relay Path with Decode-and-Forward

For decode-and-forward relays,4 the signal at the receiver is not a linear function

of the transmitted signal (i.e., the system is not linear), as the relay makes a hard decision

based on its incoming data. A decoding error occurs at the receiver if and only if exactly

one decoding error is made along the relay path. Thus, for Rayleigh fading, we obtain (e.g.,

see [10])

P (x,i,Rx)
e =

1

4

(

1 −
(

1 +
2

SNR(x,i)

)−1/2
)(

1 +

(

1 +
2

SNR(i,Rx)

)−1/2
)

+
1

4

(

1 −
(

1 +
2

SNR(i,Rx)

)−1/2
)(

1 +

(

1 +
2

SNR(x,i)

)−1/2
)

.

[from (4.9)] (4.18)

For AWGN channels, we have (e.g., see [10])

P (x,i,Rx)
e = P (x,i)

e

(

1 − P (i,Rx)
e

)

+ P (i,Rx)
e

(

1 − P (x,i)
e

)

. (4.19)

4.3 Path Selection and Relay Placement Algorithm

4.3.1 Definitions

We define asensor network with relaysto be a collection of sensors and relays inR2,

together with a single receiver at the origin, where each sensor transmits to the receiver both

directly and through some predesignated relay for the sensor, and the system performance

is evaluated using the measure given below in (4.20). Specifically, letx1, . . . ,xM ∈ R2 be

the sensor positions and lety1, . . . ,yN ∈ R2 be the relay positions. Typically,N ≪ M .

Let p : R2 → {1, . . . , N} be asensor-relay assignment, wherep (x) = i means that if

a sensor were located at positionx, then it would be assigned to relayyi. Let S be a

bounded subset ofR2. Throughout this section and Section 4.4 we will consider sensor-

relay assignments whose domains are restricted toS (since the number of sensors is finite).

4By decode-and-forward relayswe specifically mean that a single symbol is demodulated and then re-
modulated; no additional decoding is performed (e.g., of channel codes).
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Let thesensor-averaged probability of errorbe given by

1

M

M
∑

s=1

P (xs,p(xs),Rx)
e . (4.20)

Note that (4.20) depends on the relay locations through the sensor-relay assignmentp.

Finally, let〈 , 〉 denote the inner product operator.

4.3.2 Overview of the Proposed Algorithm

The proposed iterative algorithm attempts to minimize the sensor-averaged proba-

bility of error5 over all choices of relay positionsy1, . . . ,yN and sensor-relay assignments

p. The algorithm operates in two phases. First, the relay positions are fixed and the best

sensor-relay assignment is determined; second, the sensor-relay assignment is fixed and

the best relay positions are determined. An initial placement of the relays is made either

randomly or using some heuristic. The two phases are repeated until the quantity in (4.20)

has converged within some threshold.

4.3.3 Phase 1: Optimal Sensor-Relay Assignment

In the first phase, we assume the relay positionsy1, . . . ,yN are fixed and choose an

optimal6 sensor-relay assignmentp∗, in the sense of minimizing (4.20). This choice can be

made using an exhaustive search in which all possible sensor-relay assignments are exam-

ined. A sensor-relay assignment induces a partition ofS into subsets for which all sensors

in any such subset are assigned to the same relay. For each relayyi, let σi be the set of all

pointsx ∈ S such that if a sensor were located at positionx, then the optimally assigned

relay that rebroadcasts its transmissions would beyi, i.e.,σi = {x ∈ S : p∗ (x) = i} . We

call σi theith optimal sensor region(with respect to the fixed relay positions).

5Here we minimize (4.20); however, the algorithm can be adapted to minimize other performance mea-
sures.

6This choice may not be unique, but we select one such minimizing assignment here. Also, optimality of
p∗ here depends only on the valuesp∗ (x1) , . . . , p∗ (xM ).
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4.3.4 Phase 2: Optimal Relay Placement

In the second phase, we assume the sensor-relay assignment is fixed and choose

optimal7 relay positions in the sense of minimizing (4.20). Numerical techniques can be

used to determine such optimal relay positions. For the firstthree instances of phase2 in

the iterative algorithm, we used an efficient (but slightly sub-optimal) numerical approach

that quantizes a bounded subset ofR2 into gridpoints. For a given relay, the best gridpoint

was selected as the new location for the relay. For subsequent instances of phase2, the

restriction of lying on a gridpoint was removed and a steepest descent technique was used

to refine the relay locations.

4.4 Geometric Descriptions of Optimal Sensor Regions

We now geometrically describe each optimal sensor region byconsidering spe-

cific relay protocols and channel models. In particular, we examine amplify-and-forward

and decode-and-forward relaying protocols in conjunctionwith either AWGN channels or

Rayleigh fading channels. We define theinternal boundaryof any optimal sensor region

σi to be the portion of the boundary ofσi that does not lie on the boundary ofS. For

amplify-and-forward and AWGN channels, we show that the internal boundary of each op-

timal sensor region consists only of circular arcs. For the other three combinations of relay

protocol and channel type, we show that as the transmission energies of sensors and relays

grow, the internal boundary of each optimal sensor region converges to finite combinations

of circular arcs and/or line segments.

For each pair of relays(yi,yj), let σi,j be the set of all pointsx ∈ S such that if a

sensor were located at positionx, then its average probability of error using relayyi would

be smaller than that using relayyj, i.e.,

σi,j =
{

x ∈ S : P (x,i,Rx)
e < P (x,j,Rx)

e

}

. (4.21)

Note thatσi,j = S − σj,i. Then, for the given set of relay positions, we have

σi =

N
⋂

j = 1
j 6=i

σi,j (4.22)

7This choice may not be unique, but we select one such set of positions here.
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sincep∗ (x) = argmin
j∈{1,...,N}

P (x,j,Rx)
e . Furthermore, for a suitably chosen constantC > 0, in

order to facilitate analysis, we modify (4.2) to8

Li,j =
F2

C + d2
i,j

. (4.23)

Amplify-and-Forward with AWGN Channels

Theorem 4.4.1.Consider a sensor network with amplify-and-forward relaysand AWGN

channels. Then, the internal boundary of each optimal sensor region consists of circular

arcs.

Proof. For any distinct relaysyi andyj , let

Ki =
1

G2F2 + C + ‖yi‖2 ; γi,j =
Ki

Ki − Kj
. (4.24)

Note that for fixed gainG, Ki 6= Kj since we assumeyi 6= yj. Then, we have

σi,j =
{

x ∈ S : P (x,i,Rx)
e < P (x,j,Rx)

e

}

=

{

x ∈ S :
Ki

C + ‖x − yi‖2 >
Kj

C + ‖x − yj‖2

}

[from (4.17), (4.16), (4.14), (4.23), (4.24)] (4.25)

=







x ∈ S : ‖x − (1 − γi,j)yi − γi,jyj‖2

Ki−Kj>0

>
<

Ki−Kj<0

γi,j (γi,j − 1) ‖yi − yj‖2 − C







[from (4.24)] (4.26)

where the notation

Ki−Kj>0

>
<

Ki−Kj<0
indicates that “>” should be used ifKi − Kj > 0, and “<”

if Ki − Kj < 0. By (4.26), the setσi,j is either the interior or the exterior of a circle

(depending on the sign ofKi − Kj). Applying (4.22) completes the proof. �

Figure 4.1a shows the optimal sensor regionsσ1, σ2, σ3, andσ4, for N = 4 ran-

domly placed amplify-and-forward relays with AWGN channels and system parameter

valuesG = 65 dB, f0 = 900 MHz, andC = 1.

8Numerical results confirm that (4.23) is a close approximation of (4.2) for our parameters of interest.
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(a) (b)

(c) (d)

Figure 4.1: Sensor regionsσ1, σ2, σ3, andσ4 for 4 randomly placed relays. Each relay
i ∈ {1, 2, 3, 4} is denoted by a filled square labeledi, while the receiver is denoted by a
filled circle labeledRx. Sensors are distributed as a square grid over±100 meters in each
dimension. The sensor regions are either optimal or asymptotically-optimal as described in
(a) Theorem 4.4.1 (amplify-and-forward relays and AWGN channels), (b) Theorem 4.4.4
(decode-and-forward relays and AWGN channels with highETx/N0 andEi/N0), (c) The-
orem 4.4.6 (amplify-and-forward relays and Rayleigh fading channels with highETx/N0),
and (d) Theorem 4.4.8 (decode-and-forward relays and Rayleigh fading channels) with
highETx/N0 andEi/N0).

Decode-and-Forward with AWGN Channels

Lemma 4.4.2(e.g., see [25, pp. 82 – 83], [24, pp. 37 – 39]). For all x > 0,
(

1 − 1

x2

)

(

e−x2/2

√
2πx

)

≤ Q(x) ≤ e−x2/2

√
2πx

.
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Lemma 4.4.3.Let ǫ > 0 and

Lx,y =
Q (

√
x) + Q

(√
y
)

− 2Q (
√

x)Q
(√

y
)

max
(

e−x/2√
2πx

, e−y/2√
2πy

) .

Then,1 − ǫ ≤ Lx,y ≤ 2 for x andy sufficiently large.

Proof. For the lower bound, we have

Lx,y ≥
e−x/2√

2πx
+ e−y/2√

2πy

e−x/2√
2πx

+ e−y/2√
2πy

−
e−x/2

x
√

2πx
+ e−y/2

y
√

2πy

max
(

e−x/2√
2πx

, e−y/2√
2πy

) − 2 min

(

e−x/2

√
2πx

,
e−y/2

√
2πy

)

[from Lemma 4.4.2]

≥ 1 − 1

min(x, y)
−
(

e−max(x,y)/2

max(x, y)
√

max(x, y)

)(

√

min(x, y)

e−min(x,y)/2

)

− 2 min

(

e−x/2

√
2πx

,
e−y/2

√
2πy

)

[for x, y > 1]

≥ 1 − ǫ. [for x, y sufficiently large]

For the upper bound, we have

Lx,y ≤

(

e−x/2
√

2πx

)

+
(

e−y/2
√

2πy

)

− 2
(

1 − 1
x

)

(

e−x/2
√

2πx

)(

1 − 1
y

)(

e−y/2
√

2πy

)

max
(

e−2/x√
2πx

, e−y/2√
2πy

) [from Lemma 4.4.2]

≤
e−x/2
√

2πx
+ e−y/2

√
2πy

max
(

e−2/x√
2πx

, e−y/2√
2πy

) [for x, y > 1]

≤ 2.

�

Theorem 4.4.4.Consider a sensor network with decode-and-forward relays and AWGN

channels, and, for all relaysi, let Ei/N0 → ∞ and ETx/N0 → ∞ such that

(Ei/N0)/(ETx/N0) has a limit. Then, the internal boundary of each optimal sensor re-

gion consists asymptotically of circular arcs and line segments.

Proof. As an approximation toP (x,i,Rx)
e given in (4.19), define

P̂ (x,i,Rx)
e
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=
1√
2π

· max

(

1
√

SNR(x,i)
exp

{

−SNR(x,i)

2

}

,
1

√

SNR(i,Rx)
exp

{

−SNR(i,Rx)

2

}

)

.

(4.27)

For any relayyi, let αi =
P

(x,i,Rx)
e

P̂
(x,i,Rx)
e

. Let ǫ > 0. Then, using Lemma 4.4.3, it can be shown

that

1 − ǫ ≤ αi ≤ 2. (4.28)

We will now show thatσi,j, given by (4.21), is a finite intersection of unions of

certain setsρ(k)
i,j for k = 1, . . . , 4, where each such set has circular and/or linear boundaries.

For each pair of relays(yi,yj) with i 6= j, define

ρ
(1)
i,j =

{

x ∈ S : SNR(x,i) − 2 lnαi + ln SNR(x,i) > SNR(x,j) − 2 ln αj + ln SNR(x,j)
}

=

{

x ∈ S :
2F2

C + ‖x − yi‖2 +
N0

ETx
ln

(

αj

αi

)

+
N0

ETx
ln

(

C + ‖x − yj‖2

C + ‖x − yi‖2

)

>
2F2

C + ‖x − yj‖2

}

. [from (4.10), (4.23)]

The setS is bounded, so, using (4.28), asETx/N0 → ∞, Ei/N0 → ∞, andEj/N0 → ∞,

ρ
(1)
i,j →

{

x ∈ S : ‖x − yj‖2 > ‖x − yi‖2} which has a linear internal boundary.

Also, for each pair of relays(yi,yj) with i 6= j, define

ρ
(2)
i,j =

{

x ∈ S : SNR(x,i) − 2 lnαi + ln SNR(x,i) > SNR(j,Rx) − 2 ln αj + ln SNR(j,Rx)
}

=

{

x ∈ S :
2F2

C + ‖x − yi‖2

>
2F2

C + ‖yj‖2 · Ej/N0

ETx/N0
+

N0

ETx
ln

(

C + ‖x − yi‖2

C + ‖yj‖2 · Ej/N0

ETx/N0

)

+
N0

ETx
ln

(

αi

αj

)}

. [from (4.10), (4.23)] (4.29)

In the cases that follow, we will show that, asymptotically,ρ
(2)
i,j either contains all of the

sensors, none of the sensors, or the subset of sensors in the interior of a circle.

Case 1:(Ej/N0)/(ETx/N0) → ∞.

The setS is bounded and, by (4.28),ln(αi/αj) is asymptotically bounded. There-

fore, the limit of the right-hand side of the inequality in (4.29) is infinity. Thus,ρ(2)
i,j → ∅.
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Case 2:(Ej/N0)/(ETx/N0) → Gj for someGj ∈ (0,∞).

SinceS is bounded andln(αi/αj) is asymptotically bounded, we haveρ(2)
i,j →

{

x ∈ S : ‖x − yi‖2 <
C+‖yj‖2

Gj
− C

}

which has a circular internal boundary.

Case 3:(Ej/N0)/(ETx/N0) → 0.

SinceS is bounded andln(αi/αj) is asymptotically bounded, the limit of the right-

hand side of the inequality in (4.29) is0. Thus, sinceF2 > 0, we haveρ(2)
i,j → S.

Also, for each pair of relays(yi,yj) with i 6= j, define

ρ
(3)
i,j =

{

x ∈ S : SNR(i,Rx) − 2 ln αi + ln SNR(i,Rx) > SNR(x,j) − 2 lnαj + ln SNR(x,j)
}

.

Observing the symmetry betweenρ
(3)
i,j andρ

(2)
i,j , we have that asETx/N0 → ∞, Ei/N0 →

∞, andEj/N0 → ∞, ρ
(3)
i,j becomes either empty, all ofS, or the exterior of a circle.

Also, for each pair of relays(yi,yj) with i 6= j, define

ρ
(4)
i,j =

{

x ∈ S : SNR(i,Rx) − 2 ln αi + ln SNR(i,Rx)

> SNR(j,Rx) − 2 lnαj + lnSNR(j,Rx)
}

=

{

x ∈ S :
2EiF2

N0

(

C + ‖yi‖2) − ln αi + ln

(

2EiF2

N0

(

C + ‖yi‖2)

)

>
2EjF2

N0

(

C + ‖yj‖2) − ln αj + ln

(

2EjF2

N0

(

C + ‖yj‖2)

)}

.

[from (4.10), (4.23)]

Using (4.28), asETx/N0 → ∞, Ei/N0 → ∞, andEj/N0 → ∞, we haveρ(4)
i,j → S or ∅.

Then, we have

σi,j =
{

x ∈ S : P (x,i,Rx)
e < P (x,j,Rx)

e

}

=
{

x ∈ S : αiP̂
(x,i,Rx)
e < αjP̂

(x,j,Rx)
e

}

=
{

x ∈ S : min
(

SNR(x,i) − 2 ln αi + ln SNR(x,i),

SNR(i,Rx) − 2 lnαi + ln SNR(i,Rx)
)

> min
(

SNR(x,j) − 2 lnαj + lnSNR(x,j),

SNR(j,Rx) − 2 ln αj + ln SNR(j,Rx)
)}

[for ETx/N0, Ei/N0, Ej/N0 sufficiently large] [from (4.27)]
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=
(

ρ
(1)
i,j ∪ ρ

(2)
i,j

)

∩
(

ρ
(3)
i,j ∪ ρ

(4)
i,j

)

. (4.30)

Thus, combining the asymptotic results forρ
(1)
i,j , ρ

(2)
i,j , ρ

(3)
i,j , andρ

(4)
i,j , as ETx/N0 → ∞,

Ei/N0 → ∞, andEj/N0 → ∞, the internal boundary ofσi,j consists of circular arcs

and line segments. Applying (4.22) completes the proof. �

Figure 4.1b shows the asymptotically-optimal sensor regionsσ1, σ2, σ3, andσ4, for

N = 4 randomly placed decode-and-forward relays with AWGN channels and system

parameter valuesC = 1, ERx/N0|d=50 m = 5 dB, andEi/N0 = 2ETx/N0 for all relaysyi.

Amplify-and-Forward with Rayleigh Fading Channels

Lemma 4.4.5.For 0 < z < 1,
(

1

zΓ
(

3
2

)

)

(

1 −√
z
)

exp

{

−
√

z (1 −√
z)

2

2 −√
z

}

≤ U

(

3

2
, 2, z

)

≤ 1

zΓ
(

3
2

) .

Proof. For the upper bound, we have

U

(

3

2
, 2, z

)

=
1

Γ
(

3
2

)

∫ ∞

0

√

t

1 + t
· e−ztdt ≤ 1

Γ
(

3
2

)

∫ ∞

0

e−ztdt =
1

zΓ
(

3
2

) .

For the lower bound, we have

U

(

3

2
, 2, z

)

≥ 1

Γ
(

3
2

)

∫ ∞

(1−
√

z)2√
z(2−

√
z)

√

t

1 + t
· e−ztdt [since0 < z < 1]

≥ 1

Γ
(

3
2

)

∫ ∞

(1−
√

z)2√
z(2−

√
z)

(1 −√
z)e−ztdt [since0 < z < 1]

=
1

zΓ
(

3
2

)

(

1 −√
z
)

exp

{

−
√

z(1 −√
z)2

2 −√
z

}

.

�

We define thenearest-neighbor regionof a relayyi to be

{x ∈ S : ∀j, ‖x − yi‖ < ‖x − yj‖}

where ties (i.e.,‖x − yi‖ = ‖x − yj‖) are broken arbitrarily. The interiors of these regions

are convex polygons intersected withS.
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Theorem 4.4.6.Consider a sensor network with amplify-and-forward relaysand Rayleigh

fading channels, and letETx/N0 → ∞. Then, each optimal sensor region is asymptotically

equal to the corresponding relay’s nearest-neighbor region.

Proof. As an approximation toP (x,i,Rx)
e given in (4.15), define

P̂ (x,i,Rx)
e =

1

2
−
(

Di

√
πN0/ETx

8σ (σ2 + BiN0/ETx)
3/2

)

(

2σ2 (σ2 + BiN0/ETx)

Γ(3/2) · DiN0/ETx

)

(4.31)

=
1

2
− 1

2

(

1 +
1

2σ2Lx,iETx/N0

)−1/2

. [from (4.14)]

(4.32)

For any relayyi, let αi =
P

(x,i,Rx)
e

P̂
(x,i,Rx)
e

. Using Lemma 4.4.5, it can be shown that

lim
ETx/N0→∞

αi = 1. (4.33)

Let

Zk =
1

2σ2Lx,k
; gk

(

N0

ETx

)

=

√

1 +
ZkN0

ETx
− 1 =

(

Zk

2

)

N0

ETx
+ O

(

(

N0

ETx

)2
)

(4.34)

where the second equality in the expression forgk is obtained using a Taylor series. Then,

σi,j =
{

x ∈ S : P (x,i,Rx)
e < P (x,j,Rx)

e

}

=
{

x ∈ S : αiP̂
(x,i,Rx)
e < αjP̂

(x,j,Rx)
e

}

=











x ∈ S :
αi

(√

1 + ZiN0

ETx
− 1
)
√

1 +
ZjN0

ETx

αj

(√

1 +
ZjN0

ETx
− 1
)√

1 + ZiN0

ETx

< 1











[from (4.32), (4.34)]

=







x ∈ S :
αi

αj

·
1

4σ2Lx,i
+ O

(

N0

ETx

)

1
4σ2Lx,j

+ O
(

N0

ETx

) ·

√

√

√

√

1 + N0/ETx

2σ2Lx,j

1 + N0/ETx

2σ2Lx,i

< 1







. [from (4.34)]

(4.35)

SinceS is bounded, we have, forETx/N0 → ∞, that

σi,j → {x ∈ S : ‖x − yj‖ > ‖x − yi‖} . [from (4.35), (4.33), (4.23)]

(4.36)
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Thus, forETx/N0 → ∞, the internal boundary ofσi,j becomes the line equidistant from

yi andyj . Applying (4.22) completes the proof. �

Figure 4.1c shows the asymptotically-optimal sensor regionsσ1, σ2, σ3, andσ4, for

N = 4 randomly placed amplify-and-forward relays with Rayleighfading channels.

Decode-and-Forward with Rayleigh Fading Channels

Lemma 4.4.7.Let

Lx,y =
1 −

(

1 + 2
x

)−1/2
(

1 + 2
y

)−1/2

1
x

+ 1
y

.

Then, lim
x,y→∞

Lx,y = 1.

Proof. We have

1 +
1

2
ǫ − 1

8
ǫ2 ≤ (1 + ǫ)1/2 ≤ 1 +

1

2
ǫ [from a Taylor series]

∴

(

xy

x + y

)

(

x − 1
2

) (

y2 + y − 1
2

)

+ x2
(

y − 1
2

)

(

x2 + x − 1
2

) (

y2 + y − 1
2

) ≤ Lx,y

≤
(

x + y + 1

x + y

)(

x

x + 1

)(

y

y + 1

)

∴

(

x − 1

x + 1

)(

y − 1

y + 1

)(

x + y + 3

x + y

)

≤ Lx,y ≤
(

x + y + 1

x + y

)(

x

x + 1

)(

y

y + 1

)

.

[for x, y sufficiently large]

Now taking the limit asx → ∞ andy → ∞ (in any manner) givesLx,y → 1. �

Theorem 4.4.8.Consider a sensor network with decode-and-forward relays and Rayleigh

fading channels, and, for all relaysi, let Ei/N0 → ∞ and ETx/N0 → ∞ such that

(Ei/N0)/(ETx/N0) has a limit. Then, the internal boundary of each optimal sensor region

is asymptotically piecewise linear.

Proof. As an approximation toP (x,i,Rx)
e given in (4.18), define

P̂ (x,i,Rx)
e =

1/2

SNR(x,i)
+

1/2

SNR(i,Rx)
. (4.37)
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For any relayyi, let αi =
P

(x,i,Rx)
e

P̂
(x,i,Rx)
e

. Using Lemma 4.4.7, it can be shown that

lim
ETx/N0 → ∞,

Ei/N0→∞

αi = 1. (4.38)

Then, we have

σi,j =
{

x ∈ S : P (x,i,Rx)
e < P (x,j,Rx)

e

}

=
{

x ∈ S : αiP̂
(x,i,Rx)
e < αjP̂

(x,j,Rx)
e

}

=

{

x ∈ S : 2 〈x, αjyj − αiyi〉

< αj

(

C + ‖yj‖2) · ETx/N0

Ej/N0
− αi

(

C + ‖yi‖2) · ETx/N0

Ei/N0

+ (αj − αi) ‖x‖2 + αj ‖yj‖2 − αi ‖yi‖2} .

[from (4.37), (4.8), (4.23)] (4.39)

Now, for any relayyk, let Gk = lim
ETx/N0 → ∞,

Ek/N0→∞

Ek/N0

ETx/N0
. Using (4.38), Table 4.1 con-

siders the cases ofGi andGj being zero, infinite, or finite non-zero; for all such possibili-

ties, the internal boundary ofσi,j is linear. Applying (4.22) completes the proof. �

Note that if, for all relaysyi, Ei is a constant andGi = ∞, then each optimal sensor

region is asymptotically equal to the corresponding relay’s nearest-neighbor regions, as was

the case for amplify-and-forward relays and Rayleigh fading channels. In addition, we note

that, while Theorem 4.4.8 considers the asymptotic case, wehave empirically observed that

the internal boundary of each optimal sensor region consists of line segments for a wide

range of moderate parameter values.

Table 4.1: Asymptotic properties ofσi,j for decode-and-forward relays and Rayleigh fading
channels.

Gj Gi σi,j

non-zero non-zero linear internal boundary
non-zero 0 ∅

0 non-zero S
0 0 linear internal boundary or∅ or S
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Figure 4.1d shows the asymptotically-optimal sensor regionsσ1, σ2, σ3, andσ4, for

N = 4 randomly placed decode-and-forward relays with Rayleigh fading channels and

system parameter valuesC = 1, ERx/N0|d=50 m = 5 dB, andEi/N0 = 2ETx/N0 for all

relaysyi.

4.5 Numerical Results for the Relay Placement Algorithm

The relay placement algorithm was implemented for both amplify-and-forward and

decode-and-forward relays. The sensors were placed uniformly in a square of sidelength

100 m. For decode-and-forward and all relaysyi, the energyEi was set to a constant

which equalized the total output power of all relays for bothamplify-and-forward and de-

code-and-forward. Specific numerical values for system variables weref0 = 900 MHz,

σ =
√

2/2, M = 10000, andC = 1.

In order to use the relay placement algorithm to produce goodrelay locations and

sensor-relay assignments, we ran the algorithm10 times. Each such run was initiated with

a different random set of relay locations (uniformly distributed on the squareS) and used

the sensor-averaged probability of error given in (4.20). For each of the10 runs completed,

1000 simulations were performed with Rayleigh fading and diversity (selection combining)

at the receiver. Different realizations of the fade values for the sensor network channels

were chosen for each of the1000 simulations. Of the10 runs, the relay locations and

sensor-relay assignments of the run with the lowest averageprobability of error over the

1000 simulations was chosen.

Figure 4.2 gives the algorithm output for2, 3, 4, and12 decode-and-forward re-

lays with ERx/N0|d=50 m = 10 dB, Ei = 100ETx, and using the exact error probability

expressions. Relays are denoted by squares and the receiveris denoted by a circle at the

origin. Boundaries between the optimal sensor regions are shown. For2, 3, and4 re-

lays a symmetry is present, with each relay being responsible for approximately the same

number of sensors. A symmetry is also present for12 relays; here, however, eight relays

are responsible for approximately the same number of sensors, and the remaining four re-

lays are located near the corners ofS to assist in transmissions experiencing the largest

path loss due to distance. Since the relays transmit at higher energies than the sensors, the
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(a) (b)

(c) (d)

Figure 4.2: Optimal sensor regions output by the algorithm for decode-and-forward relays
and fading channels withEi = 100ETx, andERx/N0|d=50 m = 10 dB. Relays are denoted
by squares and the receiver is located at(0, 0). Sensors are distributed as a square grid over
±100 meters in each dimension. The number of relays is (a)N = 2, (b)N = 3, (c) N = 4,
and (d)N = 12.

probability of detection error is reduced by reducing path loss before a relay rebroadcasts

a sensor’s signal, rather than after the relay rebroadcaststhe signal (even at the expense

of possibly greater path loss from the relay to the receiver). Thus, some sensors actually

transmit “away” from the receiver to their associated relay. The asymptotically-optimal

sensor regions closely matched those for the exact error probability expressions, which is

expected due to the large value selected forEi. In addition, the results for amplify-and-for-
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Figure 4.3: Optimal sensor regionsσ1, . . . , σ12 output by the algorithm for decode-and-for-
ward relays and fading channels withN = 12, Ei = 1.26ETx, andERx/N0|d=50 m = 5 dB.

ward relays were quite similar, with the relays lying closerto the corners ofS for the2 and

3 relay cases, and the corner regions displaying slightly curved boundaries for12 relays.

With the exception of this curvature, the asymptotic regions closely matched those from

the exact error probability expressions. This similarity between decode-and-forward and

amplify-and-forward relays is expected due to the large value selected forEi.

Figures 4.3 and 4.4 give the algorithm output for12 decode-and-forward and am-

plify-and-forward relays, respectively, withERx/N0|d=50 m = 5 dB, Ei = 1.26ETx, and

using the exact error probability expressions. For decode-and-forward relays, the results are

similar to those in Figure 4.3; however the relays are located much closer to the receiver

due to their decreased transmission energy, and the corner regions ofS exhibit slightly

curved boundaries. For amplify-and-forward relays, the relays are located much closer to

the corners since, with lower gain, the relays are less effective and thus primarily assist

those sensors with the largest path loss.

The maximum, average, and median of the sensor probabilities of error for all of

the above figures are given in Table 4.2. The sensor error probability is lowest for sensors

that are closest to the relays, and increases with distance.
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Figure 4.4: Optimal sensor regionsσ1, . . . , σ12 output by the algorithm for amplify-and-
forward relays and fading channels withN = 12, G = 56 dB, andERx/N0|d=50 m = 5 dB.

Table 4.2: Sensor probability of error values.

Figure Max. Pe Avg. Pe MedianPe

4.2a 7.3 · 10−2 1.8 · 10−2 1.2 · 10−2

4.2b 6.9 · 10−2 1.2 · 10−2 7.2 · 10−3

4.2c 3.3 · 10−2 7.0 · 10−3 5.1 · 10−3

4.2d 1.4 · 10−2 2.8 · 10−3 2.3 · 10−3

4.3 2.0 · 10−1 6.2 · 10−2 5.6 · 10−2

4.4 1.7 · 10−1 9.9 · 10−2 1.1 · 10−1

4.6 Conclusions

This paper presented an algorithm for amplify-and-forwardand decode-and-for-

ward relay placement and sensor assignment in wireless sensor networks that attempts

to minimize the average probability of error. Communications were modeled using path

loss, fading, AWGN, and diversity combining. We determinedthe geometric shapes of

regions for which sensors would be optimally assigned to thesame relay (for a given set of

relay locations), in some instances for the asymptotic caseof the ratios of the transmission

energies to the noise power spectral density growing without bound. Numerical results

showing the algorithm output were presented. The asymptotic regions were seen to closely

match the regions obtained using exact expressions.
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A number of extensions to the relay placement algorithm could be incorporated

to enhance the system model. Some such enhancements are multi-hop relay paths, more

sophisticated diversity combining, power constraints, sensor priorities, and sensor informa-

tion correlation.
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Appendix

This appendix contains expanded versions of proofs in this chapter.

Expanded Proof of Theorem 4.4.1.For any distinct relaysyi andyj, let

Ki =
1

G2F2 + C + ‖yi‖2 γi,j =
Ki

Ki − Kj
. (4.40)

Note that for fixed gainG, Ki 6= Kj since we assumeyi 6= yj. Then, we have

σi,j

=
{

x ∈ S : P (x,i,Rx)
e < P (x,j,Rx)

e

}

=
{

x ∈ S : SNR(x,i,Rx) > SNR(x,j,Rx)
}

[from (4.17)]

=

{

x ∈ S :
1

Bi + Di
>

1

Bj + Dj

}

[from (4.16)]

=

{

x ∈ S :
1

1/(2Lx,i) + 1/(2G2Lx,iLi,Rx)

>
1

1/(2Lx,j) + 1/(2G2Lx,jLj,Rx)

}

[from (4.14)]

=

{

x ∈ S :
Lx,iLi,Rx

G2Li,Rx + 1
>

Lx,jLj,Rx

G2Lj,Rx + 1

}
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=

{

x ∈ S :
1

G2F2(C + d2
x,i) + (C + d2

x,i)(C + d2
i,Rx)

>
1

G2F2(C + d2
x,j) + (C + d2

x,j)(C + d2
j,Rx)

}

[from (4.23)]

=

{

x ∈ S :
Ki

C + ‖x − yi‖2 >
Kj

C + ‖x − yj‖2

}

[from (4.40)]

=







x ∈ S : ‖x − (1 − γi,j)yi − γi,jyj‖2

Ki−Kj>0

>
<

Ki−Kj<0
γi,j (γi,j − 1) ‖yi − yj‖2 − C







[from (4.40)]

where the notation

Ki−Kj>0

>
<

Ki−Kj<0
indicates that “>” should be used ifKi − Kj > 0, and “<”

if Ki − Kj < 0. Note that the description ofσi,j given in (4.26) is either the interior or

the exterior of a circle (depending on the sign ofKi − Kj). Applying (4.22) completes the

proof. �

Extended Proof of Lemma 4.4.3.For the lower bound we have

Lx,y ≥
(

1 − 1
x

)

(

e−x/2
√

2πx

)

+
(

1 − 1
y

)(

e−y/2
√

2πy

)

− 2
(

e−x/2
√

2πx

)(

e−y/2
√

2πy

)

max
(

e−x/2√
2πx

, e−y/2√
2πy

) [from Lemma 4.4.2]

=

e−x/2
√

2πx
+ e−y/2

√
2πy

max
(

e−x/2√
2πx

, e−y/2√
2πy

) −
e−x/2

x
√

2πx
+ e−y/2

y
√

2πy

max
(

e−x/2√
2πx

, e−y/2√
2πy

) −
2
(

e−x/2
√

2πx

)(

e−y/2
√

2πy

)

max
(

e−x/2√
2πx

, e−y/2√
2πy

)

=

e−x/2
√

2πx
+ e−y/2

√
2πy

max
(

e−x/2√
2πx

, e−y/2√
2πy

) −
e−x/2

x
√

2πx
+ e−y/2

y
√

2πy

max
(

e−x/2√
2πx

, e−y/2√
2πy

) − 2 min

(

e−x/2

√
2πx

,
e−y/2

√
2πy

)

≥
e−x/2
√

2πx
+ e−y/2

√
2πy

e−x/2√
2πx

+ e−y/2√
2πy

−
e−x/2

x
√

2πx
+ e−y/2

y
√

2πy

max
(

e−x/2√
2πx

, e−y/2√
2πy

) − 2 min

(

e−x/2

√
2πx

,
e−y/2

√
2πy

)

= 1 −
e−x/2

x
√

2πx
+ e−y/2

y
√

2πy

max
(

e−x/2√
2πx

, e−y/2√
2πy

) − 2 min

(

e−x/2

√
2πx

,
e−y/2

√
2πy

)

≥ 1 − 1

min(x, y)
−
(

e−max(x,y)/2

max(x, y)
√

max(x, y)

)(

√

min(x, y)

e−min(x,y)/2

)

− 2 min

(

e−x/2

√
2πx

,
e−y/2

√
2πy

)

[for x, y > 1]
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= 1 − 1

min(x, y)
− e−(max(x,y)−min(x,y))/2

max(x, y)
− 2 min

(

e−x/2

√
2πx

,
e−y/2

√
2πy

)

≥ 1 − 1

min(x, y)
− e0

max(x, y)
− 2 min

(

e−x/2

√
2πx

,
e−y/2

√
2πy

)

= 1 − 1

x
− 1

y
− 2 min

(

e−x/2

√
2πx

,
e−y/2

√
2πy

)

≥ 1 − ǫ. [for x, y sufficiently large]

For the upper bound we have

Lx,y ≤

(

e−x/2
√

2πx

)

+
(

e−y/2
√

2πy

)

− 2
(

1 − 1
x

)

(

e−x/2
√

2πx

)(

1 − 1
y

)(

e−y/2
√

2πy

)

max
(

e−2/x√
2πx

, e−y/2√
2πy

) [from Lemma 4.4.2]

≤
e−x/2
√

2πx
+ e−y/2

√
2πy

max
(

e−2/x√
2πx

, e−y/2√
2πy

) [for x, y > 1]

≤
2 max

(

e−2/x
√

2πx
, e−y/2
√

2πy

)

max
(

e−2/x√
2πx

, e−y/2√
2πy

)

= 2.

�

Extended Proof of Theorem 4.4.4.As an approximation toP (x,i,Rx)
e given in (4.19), define

P̂ (x,i,Rx)
e

=
1√
2π

· max

(

1
√

SNR(x,i)
exp

{

−SNR(x,i)

2

}

,
1

√

SNR(i,Rx)
exp

{

−SNR(i,Rx)

2

}

)

.

(4.41)

For any relayyi, let αi =
P

(x,i,Rx)
e

P̂
(x,i,Rx)
e

. Let ǫ > 0. Then, using Lemma 4.4.3, it can be shown

that

1 − ǫ ≤ αi ≤ 2. (4.42)

We will now show thatσi,j, given by (4.21), is a finite intersection of unions of

certain setsρ(k)
i,j for k = 1, . . . , 4, where each such set has circular and/or linear boundaries.
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For each pair of relays(yi,yj) with i 6= j, define

ρ
(1)
i,j =

{

x ∈ S : SNR(x,i) − 2 lnαi + ln SNR(x,i) > SNR(x,j) − 2 ln αj + ln SNR(x,j)
}

=

{

x ∈ S :
2ETxF2

N0

(

C + ‖x − yi‖2) − ln αi + ln

(

2ETxF2

N0

(

C + ‖x − yi‖2)

)

>
2ETxF2

N0

(

C + ‖x − yj‖2) − ln αj + ln

(

2ETxF2

N0

(

C + ‖x − yj‖2)

)}

[from (4.10), (4.23)]

=

{

x ∈ S :
2F2

C + ‖x − yi‖2 +
N0

ETx

ln

(

αj

αi

)

+
N0

ETx

ln

(

C + ‖x − yj‖2

C + ‖x − yi‖2

)

>
2F2

C + ‖x − yj‖2

}

. [from (4.10), (4.23)]

The setS is bounded, so, using (4.42), asETx/N0 → ∞, Ei/N0 → ∞, andEj/N0 → ∞,

ρ
(1)
i,j →

{

x ∈ S : 2F2

C+‖x−yi‖2 > 2F2

C+‖x−yj‖2

}

=
{

x ∈ S : ‖x − yj‖2 > ‖x − yi‖2} which

has a linear internal boundary.

Also, for each pair of relays(yi,yj) with i 6= j, define

ρ
(2)
i,j =

{

x ∈ S : SNR(x,i) − 2 lnαi + ln SNR(x,i) > SNR(j,Rx) − 2 ln αj + ln SNR(j,Rx)
}

=

{

x ∈ S :
2ETxF2

N0

(

C + ‖x − yi‖2) − ln αi + ln

(

2ETxF2

N0

(

C + ‖x − yi‖2)

)

>
2EjF2

N0

(

C + ‖yj‖2) − ln αj + ln

(

2EjF2

N0

(

C + ‖yj‖2)

)}

[from (4.10), (4.23)]

=

{

x ∈ S :
2F2

C + ‖x − yi‖2

>
2F2

C + ‖yj‖2 · Ej/N0

ETx/N0
+

N0

ETx
ln

(

C + ‖x − yi‖2

C + ‖yj‖2 · Ej/N0

ETx/N0

)

+
N0

ETx
ln

(

αi

αj

)}

. [from (4.10), (4.23)] (4.43)

In the cases that follow, we will show that, asymptotically,ρ
(2)
i,j either contains all of the

sensors, none of the sensors, or the subset of sensors in the interior of a circle.

Case 1:(Ej/N0)/(ETx/N0) → ∞.
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The setS is bounded and, by (4.42),ln(αi/αj) is asymptotically bounded. There-

fore, the limit of the right-hand side of the inequality in (4.43) is infinity. Thus,ρ(2)
i,j → ∅.

Case 2:(Ej/N0)/(ETx/N0) → Gj for someGj ∈ (0,∞).

SinceS is bounded andln(αi/αj) is asymptotically bounded, we have

ρ
(2)
i,j →

{

x ∈ S :
2F2

C + ‖x − yi‖2 >
2F2

C + ‖yj‖2 · Gj

}

=

{

x ∈ S :
C + ‖yj‖2

Gj
> C + ‖x − yi‖2

}

=

{

x ∈ S : ‖x − yi‖2 <
C + ‖yj‖2

Gj
− C

}

which has a circular internal boundary.

Case 3:(Ej/N0)/(ETx/N0) → 0.

SinceS is bounded andln(αi/αj) is asymptotically bounded, the limit of the right-

hand side of the inequality in (4.43) is0. Thus, sinceF2 > 0, we haveρ(2)
i,j → S.

Also, for each pair of relays(yi,yj) with i 6= j, define

ρ
(3)
i,j =

{

x ∈ S : SNR(i,Rx) − 2 lnαi + ln SNR(i,Rx) > SNR(x,j) − 2 lnαj + ln SNR(x,j)
}

=

{

x ∈ S :
2EiF2

N0

(

C + ‖yi‖2) − ln αi + ln

(

2EiF2

N0

(

C + ‖yi‖2)

)

>
2ETxF2

N0

(

C + ‖x − yj‖2) − ln αj + ln

(

2ETxF2

N0

(

C + ‖x − yj‖2)

)}

.

[from (4.10), (4.23)]

Observing the symmetry betweenρ
(3)
i,j andρ

(2)
i,j , we have that asETx/N0 → ∞, Ei/N0 →

∞, andEj/N0 → ∞, ρ
(3)
i,j becomes either empty, all ofS, or the exterior of a circle.

Also, for each pair of relays(yi,yj) with i 6= j, define

ρ
(4)
i,j =

{

x ∈ S : SNR(i,Rx) − 2 lnαi + ln SNR(i,Rx)

> SNR(j,Rx) − 2 ln αj + ln SNR(j,Rx)
}

=

{

x ∈ S :
2EiF2

N0

(

C + ‖yi‖2) − ln αi + ln

(

2EiF2

N0

(

C + ‖yi‖2)

)
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>
2EjF2

N0

(

C + ‖yj‖2) − ln αj + ln

(

2EjF2

N0

(

C + ‖yj‖2)

)}

.

[from (4.10), (4.23)]

Using (4.42), asETx/N0 → ∞, Ei/N0 → ∞, andEj/N0 → ∞, we haveρ(4)
i,j → S or ∅.

Then, we have

σi,j =
{

x ∈ S : P (x,i,Rx)
e < P (x,j,Rx)

e

}

=
{

x ∈ S : αiP̂
(x,i,Rx)
e < αjP̂

(x,j,Rx)
e

}

=

{

x ∈ S :
αi√
2π

· max

(

1
√

SNR(x,i)
exp

{

−SNR(x,i)

2

}

,

1
√

SNR(i,Rx)
exp

{

−SNR(i,Rx)

2

})

<
αj√
2π

· max

(

1
√

SNR(x,j)
exp

{

−SNR(x,j)

2

}

,

1
√

SNR(j,Rx)
exp

{

−SNR(j,Rx)

2

})}

[from (4.41)]

=

{

x ∈ S : max

(

exp

{

−SNR(x,i) − 2 lnαi + ln SNR(x,i)

2

}

,

exp

{

−SNR(i,Rx) − 2 lnαi + ln SNR(i,Rx)

2

})

< max

(

exp

{

−SNR(x,j) − 2 ln αj + ln SNR(x,j)

2

}

,

exp

{

−SNR(j,Rx) − 2 ln αj + ln SNR(j,Rx)

2

})}

=
{

x ∈ S : min
(

SNR(x,i) − 2 lnαi + ln SNR(x,i),

SNR(i,Rx) − 2 lnαi + ln SNR(i,Rx)
)

> min
(

SNR(x,j) − 2 lnαj + ln SNR(x,j),

SNR(j,Rx) − 2 ln αj + ln SNR(j,Rx)
)}

[for ETx/N0, Ei/N0, Ej/N0 sufficiently large]
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=
{

x ∈ S : SNR(x,i) − 2 lnαi + lnSNR(x,i),

> min
(

SNR(x,j) − 2 lnαj + ln SNR(x,j),

SNR(j,Rx) − 2 ln αj + ln SNR(j,Rx)
)}

∩
{

x ∈ S : SNR(i,Rx) − 2 lnαi + ln SNR(i,Rx)

> min
(

SNR(x,j) − 2 lnαj + ln SNR(x,j),

SNR(j,Rx) − 2 ln αj + ln SNR(j,Rx)
)}

=
({

x ∈ S : SNR(x,i) − 2 ln αi + ln SNR(x,i) > SNR(x,j) − 2 lnαj + ln SNR(x,j)
}

∪
{

x ∈ S : SNR(x,i) − 2 ln αi + ln SNR(x,i)

> SNR(j,Rx) − 2 lnαj + lnSNR(j,Rx)
})

∩
({

x ∈ S : SNR(i,Rx) − 2 lnαi + ln SNR(i,Rx)

> SNR(x,j) − 2 ln αj + ln SNR(x,j)
}

∪
{

x ∈ S : SNR(i,Rx) − 2 lnαi + ln SNR(i,Rx)

> SNR(j,Rx) − 2 lnαj + lnSNR(j,Rx)
})

=
(

ρ
(1)
i,j ∪ ρ

(2)
i,j

)

∩
(

ρ
(3)
i,j ∪ ρ

(4)
i,j

)

.

Thus, combining the asymptotic results forρ
(1)
i,j , ρ

(2)
i,j , ρ

(3)
i,j , andρ

(4)
i,j , as ETx/N0 → ∞,

Ei/N0 → ∞, andEj/N0 → ∞, the internal boundary ofσi,j consists of circular arcs

and line segments. Applying (4.22) completes the proof. �

Extended Proof of Lemma 4.4.5.For the upper bound, we have

U

(

3

2
, 2, z

)

=
1

Γ
(

3
2

)

∫ ∞

0

e−ztt1/2 (1 + t)−1/2 dt

=
1

Γ
(

3
2

)

∫ ∞

0

√

t

1 + t
e−ztdt

≤ 1

Γ
(

3
2

)

∫ ∞

0

e−ztdt

=
1

Γ
(

3
2

)

[

−e−zt

z

]∣

∣

∣

∣

∞

t=0

=
1

zΓ
(

3
2

) .
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For the lower bound, we note that

0 < z < 1

⇒ 0 < z < 4

⇒ 0 <
√

z < 2

⇒ 0 > −√
z > −2

⇒ 1 > 1 −√
z > −1

⇒
(

1 −√
z
)2

< 1

⇒ 1 −
(

1 −√
z
)2

> 0 (4.44)

and that

t ≥ (1 −√
z)

2

√
z (2 −√

z)

⇒ t ≥ (1 −√
z)

2

(1 − (1 −√
z)) (1 + (1 −√

z))

⇒ t ≥ (1 −√
z)

2

1 − (1 −√
z)2

⇒ t
(

1 − (1 −√
z)2
)

≥
(

1 −√
z
)2

[from (4.44)]

⇒ t ≥
(

1 −√
z
)2

+ t
(

1 −√
z
)2

⇒ t

1 + t
≥
(

1 −√
z
)2

⇒
√

t

1 + t
≥ 1 −√

z. [since0 < z < 1] (4.45)

Then, we have

U

(

3

2
, 2, z

)

=
1

Γ
(

3
2

)

∫ ∞

0

√

t

1 + t
e−ztdt

≥ 1

Γ
(

3
2

)

∫ ∞

(1−
√

z)2√
z(2−

√
z)

√

t

1 + t
e−ztdt [since0 < z < 1]

≥ 1

Γ
(

3
2

)

∫ ∞

(1−
√

z)2√
z(2−

√
z)

(1 −√
z)e−ztdt [from (4.45)]

=
1 −√

z

Γ
(

3
2

)

[

−e−zt

z

]∣

∣

∣

∣

∞

t=
(1−

√
z)2√

z(2−
√

z)

=
1 −√

z

zΓ
(

3
2

) exp

{

− z(1 −√
z)2

√
z(2 −√

z)

}
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=
1

zΓ
(

3
2

)

(

1 −√
z
)

exp

{

−
√

z(1 −√
z)2

2 −√
z

.

}

�

Extended Proof of Theorem 4.4.6.As an approximation toP (x,i,Rx)
e given in (4.15), define

P̂ (x,i,Rx)
e =

1

2
−
(

Di

√
πN0/ETx

8σ (σ2 + BiN0/ETx)
3/2

)

(

2σ2 (σ2 + BiN0/ETx)

Γ(3/2) · DiN0/ETx

)

(4.46)

=
1

2
− 1

2

(

1 +
1

2σ2Lx,iETx/N0

)−1/2

. [from (4.14)] (4.47)

For any relayyi, let αi =
P

(x,i,Rx)
e

P̂
(x,i,Rx)
e

. Using Lemma 4.4.5, it can be shown that

lim
ETx/N0→∞

αi = 1. (4.48)

Specifically, let

z =
DiN0/ETx

2σ2 (σ2 + BiN0/ETx)
(4.49)

and note thatz → 0 asETx/N0 → ∞. Then, we have

lim
ETx/N0→∞

P
(x,i,Rx)
e

P̂
(x,i,Rx)
e

= lim
ETx/N0→∞

1
2
− zσ

√
π

4
√

σ2+BiN0/ETx

· U
(

3
2
, 2, z

)

1
2
− zσ

√
π

4
√

σ2+BiN0/ETx

(

1
zΓ(3/2)

)

[from (4.15), (4.46), (4.49)]

≥ lim
ETx/N0→∞

1
2
− zσ

√
π

4
√

σ2+BiN0/ETx

(

1
zΓ(3/2)

)

1
2
− zσ

√
π

4
√

σ2+BiN0/ETx

(

1
zΓ(3/2)

) [from Lemma 4.4.5]

= 1.

We also have

lim
ETx/N0→∞

P
(x,i,Rx)
e

P̂
(x,i,Rx)
e

= lim
ETx/N0→∞

1
2
− zσ

√
π

4
√

σ2+BiN0/ETx

· U
(

3
2
, 2, z

)

1
2
− zσ

√
π

4
√

σ2+BiN0/ETx

(

1
zΓ(3/2)

) [from (4.15), (4.46), (4.49)]
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≤ lim
ETx/N0→∞

1
2
−
(

zσ
√

π

4
√

σ2+BiN0/ETx

)(

1

zΓ( 3
2)

)

(1 −√
z) exp

{

−
√

z(1−√
z)

2

2−√
z

}

1
2
−
(

zσ
√

π

4
√

σ2+BiN0/ETx

)

(

1
zΓ(3/2)

)

[from Lemma 4.4.5]

= lim
ETx/N0→∞

1
2
−
(

σ
√

π

4
√

σ2+BiN0/ETx

)(

1

Γ( 3
2)

)

(1 −√
z) exp

{

−
√

z(1−√
z)

2

2−√
z

}

1
2
−
(

σ
√

π

4
√

σ2+BiN0/ETx

)

(

1
Γ(3/2)

)

=

1
2
− σ

√
π

4
√

σ2

1
2
− σ

√
π

4
√

σ2

= 1.

Let

Zk =
1

2σ2Lx,k

; gk

(

N0

ETx

)

=

√

1 +
ZkN0

ETx

− 1 =

(

Zk

2

)

N0

ETx

+ O
(

(

N0

ETx

)2
)

(4.50)

where the second equality in the expression forgk is obtained using a Taylor series. Then,

σi,j =
{

x ∈ S : P (x,i,Rx)
e < P (x,j,Rx)

e

}

=
{

x ∈ S : αiP̂
(x,i,Rx)
e < αjP̂

(x,j,Rx)
e

}

=

{

x ∈ S : αi

(

1

2
− 1

2

(

1 +
1

2σ2Lx,iETx/N0

)−1/2
)

< αj

(

1

2
− 1

2

(

1 +
1

2σ2Lx,jETx/N0

)−1/2
)}

[from (4.47)]

=

{

x ∈ S : αi

(

1 −
(

1 +
ZiN0

ETx

)−1/2
)

< αj

(

1 −
(

1 +
ZjN0

ETx

)−1/2
)}

[from (4.50)]

=







x ∈ S : αi



1 − 1
√

1 + ZiN0

ETx



 < αj



1 − 1
√

1 +
ZjN0

ETx











=







x ∈ S : αi





√

1 + ZiN0

ETx
− 1

√

1 + ZiN0

ETx



 < αj





√

1 +
ZjN0

ETx
− 1

√

1 +
ZjN0

ETx
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=











x ∈ S :
αi

(√

1 + ZiN0

ETx
− 1
)
√

1 +
ZjN0

ETx

αj

(
√

1 +
ZjN0

ETx
− 1
)√

1 + ZiN0

ETx

< 1











=















x ∈ S :

αi

(

(

Zi

2

)

N0

ETx
+ O

(

(

N0

ETx

)2
))

√

1 +
ZjN0

ETx

αj

(

(

Zj

2

)

N0

ETx
+ O

(

(

N0

ETx

)2
))

√

1 + ZiN0

ETx

< 1















[from (4.50)]

=











x ∈ S :
αi

(

Zi

2
+ O

(

N0

ETx

))
√

1 +
ZjN0

ETx

αj

(

Zj

2
+ O

(

N0

ETx

))√

1 + ZiN0

ETx

< 1











=







x ∈ S :
αi

αj

·
1

4σ2Lx,i
+ O

(

N0

ETx

)

1
4σ2Lx,j

+ O
(

N0

ETx

) ·

√

√

√

√

1 + N0/ETx

2σ2Lx,j

1 + N0/ETx

2σ2Lx,i

< 1







. [from (4.50)]

SinceS is bounded, we have, forETx/N0 → ∞, that

σi,j →







x ∈ S :

(

1
4σ2Lx,i

)

(

1
4σ2Lx,j

) < 1







[from (4.35), (4.48)]

=

{

x ∈ S :
1

4σ2Lx,i

<
1

4σ2Lx,j

}

= {x ∈ S : Lx,j < Lx,i}
= {x ∈ S : ‖x − yj‖ > ‖x − yi‖} . [from (4.35), (4.48), (4.23)]

Thus, forETx/N0 → ∞, the internal boundary ofσi,j becomes the line equidistant from

yi andyj . Applying (4.22) completes the proof. �

Extended Proof of Lemma 4.4.7.Using a Taylor series, we have

(1 + ǫ)1/2 = 1 +
1

2
ǫ +

∞
∑

n=2

(−1)n−1(2n − 2)!

22n−1(n − 1)!n!
ǫn = 1 +

1

2
ǫ − 1

8
ǫ2 + . . . (for |ǫ| < 1)

We have

1 +
1

2
ǫ − 1

8
ǫ2 ≤ (1 + ǫ)1/2 ≤ 1 +

1

2
ǫ [from a Taylor series]

⇒ 1

1 + 1
2
ǫ
≤ (1 + ǫ)−1/2 ≤ 1

1 + 1
2
ǫ − 1

8
ǫ2
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⇒
1 −

(

1
1+ 1

x
− 1

2x2

)

(

1
1+ 1

y
− 1

2y2

)

1
x

+ 1
y

≤
1 −

(

1 + 2
x

)−1/2
(

1 + 2
y

)−1/2

1
x

+ 1
y

≤
1 −

(

1
1+ 1

x

)

(

1
1+ 1

y

)

1
x

+ 1
y

⇒
(

xy

x + y

)(

1 −
(

x2

x2 + x − 1
2

)(

y2

y2 + y − 1
2

))

≤ Lx,y

≤
(

xy

x + y

)(

1 −
(

x

x + 1

)(

y

y + 1

))

⇒
(

xy

x + y

)

(

x − 1
2

) (

y2 + y − 1
2

)

+ x2
(

y − 1
2

)

(

x2 + x − 1
2

) (

y2 + y − 1
2

) ≤ Lx,y

≤
(

x + y + 1

x + y

)(

x

x + 1

)(

y

y + 1

)

.

Now, note that forx, y sufficiently large
(

x − 1
2

) (

y2 + y − 1
2

)

+ x2
(

y − 1
2

)

(

x2 + x − 1
2

) (

y2 + y − 1
2

) ≥ (x − 1) (y2 + y − 2) + (x2 − 1) (y − 1)

(x2 + x) (y2 + y)

=
(x − 1)(y − 1)(x + y + 3)

xy(x + 1)(y + 1)
.

Thus, we have
(

x − 1

x + 1

)(

y − 1

y + 1

)(

x + y + 3

x + y

)

≤ Lx,y ≤
(

x + y + 1

x + y

)(

x

x + 1

)(

y

y + 1

)

.

[for x, y sufficiently large]

Now taking the limit asx → ∞ andy → ∞ (in any manner) givesLx,y → 1. �

Extended Proof of Theorem 4.4.8.As an approximation toP (x,i,Rx)
e given in (4.18), define

P̂ (x,i,Rx)
e =

1/2

SNR(x,i)
+

1/2

SNR(i,Rx)
. (4.51)

For any relayyi, let αi =
P

(x,i,Rx)
e

P̂
(x,i,Rx)
e

. Using Lemma 4.4.7, it can be shown that

lim
ETx/N0 → ∞,

Ei/N0→∞

αi = 1. (4.52)

Then, we have

σi,j =
{

x ∈ S : P (x,i,Rx)
e < P (x,j,Rx)

e

}

=
{

x ∈ S : αiP̂
(x,i,Rx)
e < αjP̂

(x,j,Rx)
e

}
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=

{

x ∈ S :
αi

SNR(x,i)
+

αi

SNR(i,Rx)
<

αj

SNR(x,j)
+

αj

SNR(j,Rx)

}

[from (4.51)]

=

{

x ∈ S : αi ·
N0 ‖x − yi‖2

ETx
+ αi ·

N0

(

C + ‖yi‖2)

Ei

< αj ·
N0 ‖x − yj‖2

ETx
+ αj ·

N0

(

C + ‖yj‖2)

Ej

}

[from (4.8), (4.23)]

=

{

x ∈ S : αi ‖x − yi‖2 + αi

(

C + ‖yi‖2) ETx/N0

Ei/N0

< αj ‖x − yj‖2 + αj

(

C + ‖yj‖2) ETx/N0

Ej/N0

}

=
{

x ∈ S : αi

(

‖x‖2 − 2 〈x,yi〉 + ‖yi‖2)− αj

(

‖x‖2 − 2 〈x,yj〉 + ‖yj‖2)

< αj

(

C + ‖yj‖2) ETx/N0

Ej/N0
− αi

(

C + ‖yi‖2) ETx/N0

Ei/N0

}

=
{

x ∈ S : (αi − αj) ‖x‖2 + 2αj 〈x,yj〉 − 2αi 〈x,yi〉 + αi ‖yi‖2 − αj ‖yj‖2

< αjC + ‖yj‖2 ETx/N0

Ej/N0
− αiC + ‖yi‖2 ETx/N0

Ei/N0

}

=

{

x ∈ S :
(αi − αj) ‖x‖2

2
+ 〈x, αjyj〉 − 〈x, αiyi〉 +

αi ‖yi‖2

2
− αj ‖yj‖2

2

<
αj

(

C + ‖yj‖2)

2
· ETx/N0

Ej/N0
− αi

(

C + ‖yi‖2)

2
· ETx/N0

Ei/N0

}

=

{

x ∈ S : 〈x, αjyj − αiyi〉

<
αj

(

C + ‖yj‖2)

2
· ETx/N0

Ej/N0

− αi

(

C + ‖yi‖2)

2
· ETx/N0

Ei/N0

+
(αj − αi) ‖x‖2

2
+

αj ‖yj‖2

2
− αi ‖yi‖2

2

}

.

Now, for any relayyk, let

Gk = lim
ETx/N0 → ∞,

Ek/N0→∞

Ek/N0

ETx/N0
.

Using (4.52), Table 4.1 considers the cases ofGi andGj being zero, infinite, or finite non-

zero; for all possible combinations, the internal boundaryof σi,j is linear. Applying (4.22)

completes the proof. �
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Chapter 5

Conclusion

This thesis considered three communications problems in the areas of network cod-

ing and wireless sensor networks. The main contributions are now summarized and possi-

ble directions for future research are discussed.

Chapter 2 formally defined the routing capacity of a network and showed that it is

rational, achievable, and computable. While it is known that the (general) coding capacity

of a network it not necessarily achievable, it would be interesting to study these properties

for the general coding capacity as well as for the linear coding capacity. In particular, the

existence of a general algorithm for finding the coding capacity of network would be sig-

nificant. Similarly, determining a more efficient algorithmfor finding the routing capacity

than that presented in this thesis would be of practical importance. Relations between the

routing, linear, and general coding capacity of a network (such as when one is strictly larger

than another) would also provide theoretical insight into network coding.

Chapter 3 formally defined the uniform and average node-limited coding capac-

ities of a network and showed that every non-negative, monotonically non-decreasing,

eventually-constant, rational-valued function on the integers is the node-limited capacity

of some network. An immediate method of extending the average coding capacity defini-

tion would be to use a weighted sum of coding rates. The weighting coefficients would

allow preference to be given to specific source messages. Determining properties of the

weighted node-limited capacity would parallel the work in this thesis. It would also be

of theoretical interest to determine whether or not the node-limited coding capacity of a

network can have some irrational and some rational values, or some achievable and some

95
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unachievable values.

Chapter 4 gave an algorithm that determines relay positionsand sensor-relay as-

signments in wireless sensor networks. Communications were modeled using path loss,

fading, and additive white Gaussian noise, and the algorithm attempted to minimize the

probability of error at the receiver. Analytic expressions, with respect to fixed relay posi-

tions, describing the sets of locations in the plane in whichsensors are (optimally) assigned

to the same relay were given for both amplify-and-forward and decode-and-forward relays

protocols, in some instances for the case of high transmission energy per bit. Numerical

results showing the output of the algorithm, evaluating itsperformance, and examining

the accuracy of the high power approximations were also presented. To enhance the re-

lay placement algorithm, the system model used for the wireless sensor network could be

extended. The inclusion of multi-hop relay paths would provide a more realistic setting.

Incorporating more sophisticated diversity combining techniques would also improve the

network performance and increase the applicability of the algorithm. Much of the analysis

of these this thesis holds for higher order path loss; thus, extending the model to allow the

path loss exponent to be a function of distance would more closely approximate real-world

situations. Including power constraints and allowing relays to use different gains are also

interesting problems. Introducing priorities on the sensor nodes would add more gener-

ality to the model. Finally, exploiting correlation between the sensors would be a natural

extension and would improve system performance.


