Detection of DDoS in SDN Environment Using
Entropy-based Detection

Tamer Omar, Anthony Ho, Brian Urbina,
Department of Electrical and Computer Engineering, California State Polytechnic University, Pomona
Email:tromar @cpp.edu

Abstract—Software-defined networking shifts the current
paradigm of network infrastructures by providing a central
control layer, improves network management, and implements
programmability for flexibility. However, recent studies have
shown the vulnerabilities that emerge within this architecture
that can prove detrimental to the overall network infrastructure.
In this work we analyze the effects of Distributed Denial of Ser-
vice attacks on a software-defined networking environment and
proposes an entropy-based approach to detect these attacks. The
study uses the flexibility of OpenFlow protocol, and an OpenFlow
controller (POX) to mitigate the attacks upon detection. Initially,
through simulation the results of the detection algorithm was
observed, and then implemented into a small-scaled network
test bed, and finally the results of the proposed algorithm were
presented and analyzed.

Index Terms—SDN, OpenFlow, POX, Entropy, DDOS.

I. INTRODUCTION

As technology matures, traditional networking is slowly
transitioning to Software-Defined Networking, or SDN. It is
found that SDN has a lot of benefits because of it provides
programmability in networks, which helps contain operational
costs and enable business growth. However, security is one
of the limiting factor that is preventing real world SDN
deployment. Although SDN is adopted by large web scale
providers like Google, Amazon, and ATT, it is not adopted on a
large scale by enterprises due to the lack of security solutions,
standardization, and low level of maturity of SDN. Using the
granular control provided by SDN, the security solutions need
to be developed as to encourage the adoption and use of SDN.

The current networking paradigm involves switches, routers
and gateways where these networking devices constitute both
logical thinking as well as routing of packets. Traditionally
the network administrator is responsible for configuring and
managing these devices manually and at all times, which
makes it a tedious task. Although these traditional networks
are widely-used and popular, they have several drawbacks.
Traditional networks are not programmable, which means
they are static and inflexible network. They possess little
agility and flexibility during deployment. SDN can remove
the drawbacks of traditional networking. SDN is all about
bringing programmability, automation, and superior control
in the network to increase scalability and flexibility. Unlike
traditional networks, the processing of the packets is not
done by the switches. The architecture of SDN decouples the
network control plane from the data or forwarding plane which
consists of network devices forwarding traffic based on the
control plane policy as shown in Fig[l]

Traditional Networking Software-Defined Networking

Figure 1: Traditional vs Software-Defined Networking

For the control plane and the data plane to communicate,
OF is one of the protocol used to establish the communication
between the separated data plane and control plan in an SDN
environment. The controller is a software running on a server
which acts as the network operating system of the SDN. The
devices in the data use secure transport layer to communicate
securely with the controller using the OF protocol. When a
packet arrives at a switch, the header of the packet is checked
with the fields in the flow entries. If a match is found, then
the corresponding action associated with the flow entry is
executed. Otherwise, the packet is forward to the controller
to make the next decision and processing. The controller will
determine if the packet will be forwarded by the switch, or it
will be dropped. With this in mind, the controller plays a big
role in the SDN.

The logically centralized controller can lead to many se-
curity challenges. Without the controller, the whole SDN
architecture is lost. One of the main reason for a controller to
be become unavailable is due to cybersecurity attacks such as
DDoS. If a DDoS attack is launched, every incoming packets
will be sent to the controller for processing which will exhaust
the computing resources of the controller. Thus, the controller
can become unavailable for processing of legitimate packets.
To address the vulnerabilities in the SDN controller, the goal
of this project is study and utilize a statistical method, Entropy,
to address and recognized the difference between a normal and
malicious network traffic. The effectiveness of attack detection
solution will be studied and realized. The best solution will be
proposed and implemented in our SDN architecture. A server
will be running the POX controller, one client as the malicious
user who be responsible of sending the DDoS attacks, and
another client will be the victim of the attacks.

II. RELATED WORK

As mentioned previously, the most vital component in SDN
is the controller, which resides in the control plane of the
SDN architecture. The separation of the control plane and

data plane in the SDN architecture allows the application
plane to focus on developing network service applications that
can utilize network resources provided by the control plane.
Communication between the controller and forwarding devices
in the data plane is provided by a control-data plane interface
such as OpenFlow(OF), a growing standard within the SDN
community. In order to communicate, both the controller
and forwarding devices (i.e. switches) must support OF. OF
switches contain and utilize what are known as flow tables for
packet lookup and forwarding. The use of flow tables is the
fundamental backbones between the OF switch and controller
relationship. These flow tables contain flow entries which
consists of rules, statistics and actions regarding the packet in
question [1]. Likewise, OF enabled controllers include their
own flow table and flow entries regarding the current state of
the network which OF switches rely on for decision making
events and updating their flow tables based on the out message
sent by the controller.

Typically, an OF switch within a SDN environment will
determine the next path and action for any incoming packets
based on the flow entries within its flow table or wait for the
controller to transmit an output message that updates the flow
table of the switch [2]. This allows network administrators
and developers to construct policies that can be driven by
the controller and implemented through the switches. This
is useful for structures that require a more dynamic network
where mobility and scalability is a core value [3]]. However,
the rise of 5G networks shows promise for SDN as mobile
broadband networks have begun to implement SDN within
their 5G framework to aid in scalability and flexibility [4]].

Nevertheless, the improvements made by SDN also make
way for new security threats. With the separation of the
control and data plane, SDN switches rely on the controller
for forwarding with no additional intelligence. This means
attackers can flood the switches with hundreds of requests
and overload the flow tables. Flow tables within OF switches
are of fixed length and therefore, each flow entry has its own
timeout length which can negatively affect the growth rate of
the flow table, result in frequent overflows [5]. As a result,
the SDN model begins to reach its limitations as network
applications designate stateful processing intelligence to the
controller. Flow states that have real time requirements will
experience latency due to the flow entry timeouts [6].

On the contrary, it is possible to predefine the flow entry
timeout to be short which would be ideal to minimize latency
however, as presented in [S] short flow entry timeouts can
cause flow tables to be congested more rapidly and render
the controller and switch unresponsive. This can be due to
massive influx of request constructed by attackers to overload
the network such as the a DDoS attack, which is primary focus
of this project.

A DDoS attack is a type of cyber-attack that causes a
bandwidth overload using the communication traffic within the
network and can be used to temporarily disable the network
services. Several types of DDoS attacks exist. Direct attacks
which utilize one host within the network generate random
traffic while changing the originating IP address. Reflection
attacks use more than one host that have been infected

with malware programs to be controlled in an attempt to
form a strategic attack on a particular target. Even though
DDoS attacks have become avoidable in traditional network
infrastructure the emergence of software defined networking
has proven vulnerable to this form of attack.

The increase of IoT devices within the past several years
has multiplied and has now become a primary focus for attack
groups [7]]. Therefore, the importance of security within SDN
has become a focal point in network communication research.
Currently, there are several schemes to detect and defend
SDN infrastructures. Most effective techniques thus far are by
utilizing the programmability of SDN and implementing a de-
tection algorithm within initialization of the controller. Using
a statistical approach for the basis of the algorithm provided
researches with a method of detecting certain anomalies within
a cluster of traffic within a network [8]].

III. SYSTEM ARCHITECTURE
A. Network Topology

The network topology is shown in Fig.1 . During a normal
traffic between clients in an SDN network, the first packet
transmitted from one client to another. Initially, the switch
will not have any entry in its flow table as to where it
should forward the incoming packet. The default route will
be forwarding the packet it to the controller. The controller
will dictate the switch to forward the packet to respective
destination port. The controller will also provide an entry rule
in the flow table in the switch for that particular source and
destination. In the future, the packet with the same source
and destination will be automatically forwarded without the
intervention of the controller.

1) Controller Modules : The detection program will run on
POX as stand-alone modules. Multiple modules will be used to
allow the controller to perform different functionalities such as
installing flows, forwarding packets, and validating the DDoS
attacks.

2) L3 Learning Module : This module, L3 learning, is the
most important module in the POX controller. It is a simple
layer 3 learning module that provides connectivity between
the nodes in the network. L3 learning module handles the
incoming packet and maintains a list of bindings ports OVS
the MAC addresses of the connected clients. It utilizes this
information to install the rule that replaces a destination MAC
while forwarding a packet to the destination port. If no binding
is found, the module instantiates ARP requests. Along with
the connectivity, it is integrated with the detection algorithm
to detect a malicious traffic flow.

B. Non-Functional Requirements

1) Interface Requirements : 1- OF Protocol: Provides a
medium for the SDN controller to direct traffic along the
switches within the network. 2- Northbound API’s:Allow the
SDN controller to communicate between services and applica-
tions running over the network owing to programmatic nature
of SDN. 3- Southbound API’s: Allow the SDN controller to
communicate between the network devices within the network.
4- Python 2.7: Programs and modules created for the POX
controller will require Python 2.7 since that is the fundamental

Figure 2: Network Topology

2) Software Quality Attributes : The correctness of this
study depend upon the accuracy of our Entropy based ap-
plication that will detect a DDoS attack. For this purpose,
the Entropy based application will be trained in the SDN
environment, so that we came find necessary constant value for
our Entropy’s threshold. The second attribute is availability, ,s
long as the network is up and running, this service would be
also be available continuously monitoring the network for any
anomalies. The last attribute is usability, when a DDoS attack
is detected, a simple notification will appear within the server
that is responsible for running the POX controller. It will not
involve using complex application for monitoring purposes.
No specific training of the user is needed for using this system.

C. Software Requirement Specifications

The system uses a Raspberry Pi as OVS which has at least
two host connected to it. The following software are required:

POX Software Defined Network Controller: The core of the
SDN architecture is the controller. POX controller will be used
to setup our SDN. It is one of the most widely used SDN for
early-stage development across various platforms.

Mininet: Mininet is a network emulator that will create a
virtual SDN network, running real kernel, and switch on a
single machine within a matter of seconds. Custom topologies
can be written in Python. One of the main feature is that
it utilizes SDN. With OF protocol, the controller can be
programmed to simulate any kind of network scenario.

Open vSwitch (OVS): This is a multilayer virtual switch that
leverages OF and OVS database management protocol. Using
OVS for virtual networking is considered the core element
of any SDN deployment. In addition, Mininet uses OvS to
forward packets across the interfaces and operates using the
OF protocol.

Wireshark: Wireshark is a packet analyzer used to capture
network packets and extract as details regarding incoming
and outgoing traffic within a network. Just as multimeters are
used to understand troubleshoot circuits, Wireshark is used to
troubleshoot network and security problems, debug protocol
implementation and understand how network protocols work.

Ubuntu: Ubuntu is an open-source Linux-based operating
system. It will be used to run our simulator network, Mininet.

Python 2.7: Python is a high-level dynamic programming
language that allow us to deploy custom typologies on Mininet
and develop Entropy based detection module for our POX
controller.

Python Scapy: Scapy allows users to create a custom
packet with Python. Users can send a packet within a specific
structure or manipulation so that it can be tested on how a
particular machine or network will respond to that particular
type of packet.

IV. SYSTEM DESIGN
A. System Architecture

During a normal traffic between clients in a SDN network,
the first packet transmitted from one client to another. Initially,
the switch will not have any entry in its flow table as to
where it should forward the incoming packet. The default route
will be forwarding the packet to the controller. The controller
will dictate the switch to forward the packet to respective
destination port. The controller will also provide an entry rule
in the flow table in the switch for that particular source and
destination. In the future, the packet with the same source
and destination will be automatically forwarded without the
intervention of the controller.

B. Controller Modules

The detection program will run on POX as stand-alone
modules. Multiple modules will be used to allow the controller
to perform different functionalities such as installing flows,
forwarding packets, and validating the DDoS attacks.

1) L3 Learning Module : This module, L3 learning, is the
most important module in the POX controller. It is a simple
layer 3 learning module that provides connectivity between
the nodes in the network. L3 learning module handles the
incoming packet and maintains a list of bindings between the
OVS ports and the MAC addresses of the connected clients.
It utilizes this information to install the rule that replaces a
destination MAC while forwarding a packet to the destination
port. If no binding is found, the module instantiates ARP
requests. Along with the connectivity, it is integrated with the
detection algorithm to detect a malicious traffic flow.

2) DDoS Detection Algorithm: The design of the detection
algorithm is based on three main inputs which are flow entries,
packet counts, and Entropy calculations. This design is written
in Python (2.7) and will be implemented within the POX
controller as an additional module. It will also feature an
alerting mechanism. If an attack is detected, a SMS notification
will be sent to an administrator indicating that the SDN has
been breach.

3) Flow Classification: Flows are sequence of packets that
share similar characteristics. The characteristics are source IP
address, destination IP address, source port number, destina-
tion port number,and protocol type. This flow classification
information can be extracted from the header of each packet.
Each incoming flow based on TCP and UDP protocol usually
contain these information. In a SDN architecture, the OVS has
a flow table that contains multiple flow entries. Each entry has
its own rule, this rule allows the switch to know how to handle
each incoming packet. An example would be a client trying
to communicate with other clients, and to communicate a
packet is sent to the switch. The incoming packets are grouped
together to form flows. The incoming flows will navigate

through the OVSs to find the rule associated with the entry
flow. If there is no match, the switch will generate and send a
packet to the controller to acquire a new flow rule. Then, the
controller will implement a new flow rule in the flow table so
that the OVS can handle any new flows.

With that in mind, attacks or malicious users can exploit the
flow rule by sending a large amount flows that are not pre-
sented in the OVSs flow table. These new flows will consume
the OVS because the controller have to handle and establish
new rules for these incoming flows. This will overload the
controller and possibly disrupt the entire network. Such attack
is known as DDoS. Understanding the flow classification
allows us to design an algorithm to identify DDoS attacks
from normal traffic through classifying these malicious flows
and normal flows. Let’s consider O, an observation sequence
of different flows F' that injects to an interface ¢ of the OVS.
Assume X is a malicious flow if the total number of packets
within this flow is lower than a certain threshold. The threshold
is predefined through data mining of flow classification. If X
is a normal flow, then the total number of packets within this
flow is equal to or greater than the threshold. X is defined as
follows:

(D

o

Yo i 1 # of packets > Threshold
B 0 # of packets > Threshold

C. DDoS Detection with Entropy-based Algorithm

Shannon Entropy [9]] is an important concept for under-
standing the design of entropy-based detection algorithm.
Entropy measures uncertainty or randomness associate with a
random variable [10]]. In our case, the random variable is the
destination address. The entropy-based detection is similar to
algorithm used in [[11]]. To collect packets for entropy analysis,
a fixed window size is defined. Incoming packets need to
be divided into two small groups (windows) based on the
elapsed-time or the number of incoming packets. For each
window, the packets are classified into groups that based on
their destination IP address. All of these incoming packets will
be coming from different source addresses. The destination
IP addresses will be monitored for every new flow. These
monitored flows are grouped into windows. Each window
contains a hash table or a dictionary of two columns. The first
column will state all the IP addresses, and the second column
will show the number of times it has occurs. The window
equation can be calculated as shown in equation 2.

Wwindow == (Xla Y1)7 (X27 1/2)a (X37 Y3)a teey (Xla Y;) (2)

Where ¢ denotes each unique element in the window and n
is the number of all IP destination addresses for each window.
Then, the probability of each unique IP destination address
can be calculated with Equation 3.

P =Yi/n 3)

Each window is calculated as shown in equation 4. The en-
tropy will compare to the predefined threshold. If the entropy
value is larger than the predefined threshold, this will indicate

that there is no attack. Any value lower than the predefined
threshold will indicate that there is a possibility of an attack. If
an attack is not detected, the entropy threshold will be updated
to current calculated entropy to prevent further false analysis.
This allows the detection algorithm to dynamically adjust to
the nature of traffic flow.

e=> —PilogP; 4)
i=0

The entropy-based algorithm is designed to detect an inter-
nal attack. The attacker and the victim are located within the
internal SDN. The attacker has the options of attacking the
controller or clients within the network. In either scenario, the
attack is most likely to have a spoofed source IP addresses.
Therefore, the incoming packets will not match the flow table
so it will be forward to the controller. With this algorithm
implemented, the controller can determine if the network is
under attack through the drop in the entropy value due to
the large number of packets containing the same destination
address. The perfect example of such attack is UDP flooding.
In a normal network, traffic is expected to spread out to
every client in the network. During a DDoS attack, the number
of packets destined for a targeted host will rise immediately
and the entropy value decrease. A decrease in the entropy is
an indication that the network may be under attack. It is vital
to have a fast and responsive detection because attackers could
severely disrupt network service and possibility loss of data.
To determine suiting window size , Oshima et al. [11]] proposal
is used based on entropy computation through calculating
entropy in small size windows. Their study proposed a window
size ranging from 50 to 5000 and concluded that window
width of 50 and 500 successfully detect DoS/DDoS attacks.
As proposed by Oshima et al., a window size of 50 is used
for this research. The detection algorithm includes a function
that collects incoming flow from the OVS. The flows will be
stored in a file which will calculate the total number of packets

for every destination IP in the current interval.

D. Entropy Based Detection Algorithm

Algorithm 1 shows the Entropy Based Detection Algorithm.
The input, new packet in, correspond to a new packet that has
arrive with a new source address. The destination IP address
is also examined to see if it has an existing instance in the
window. If it does exist, the count for that IP address will
incremented. If the window gets full, the entropy is computed
and then compared with the threshold. If the computed value
for an entry is higher than the threshold for five consecutive
counts, it will be classified as an attack.

E. Port Mitigation Technique

In order to prevent an attack after it has been detected we
used the flexibility of the OpenFlow Protocol to mitigate the
attack by modifying the flow-table of our OVS switch to output
the incoming traffic from the attacker to a non-existing port.
With the Pox controller, all incoming and outgoing traffic is
analyzed using the flow table of the controller which keeps

Algorithm 1 Entropy Based Detection Algorithm
1: Function ENTROPY
2: Collect flow from switch and store in a file.
3: Calculate total number of packets for every destination ip
in current interval.
4: Declare global variables
5: End Function
6: Function COLLECT_STATISTICS
7: Calculate the probability using, P; = X;/ Zf\io X; where,
P; =Probability of i*" destination ip, X; =Packet count on ith
destination ip, N =Total number of destination ip
8: Calculate entropy of network using, H(S;) =
>, —PlogP;, where, H(S;) is the Entropy of j,
switch
9: Calculate the difference between above calculated & normal
entropy value
10: End Function
11: Function ENTROPY_DETECTION
12: Compare the above calculated diff with predefined
threshold value.
13: if dif f > threshold then

14: Increment DDoS detected count
15: if DDoS detected count > min DDoS detected in particular
window then

16: Generate alert of DDoS attack
18: else

19: Increment program counter.
20: end if
21: end function

Algorithm 2 Port Mitigation
1: Function MITIGATION
2: Collect Port and DPID of current flow
3: Confirm Attack is occurring
4: Collect Port and DPID of Attack
5:if current — low = attack — flow then
6: Create new flow entry with attack parameters
7: Update new flow entry output_action where, output —
action = portg
10: Send new flow entry to OVS switch
11: else
12: Do nothing
13: end if
14: end function

track of the ingress ports and switch ID or DPID. These two
parameters can also be used to modify any flow entry and
implement an action for the flow entry. Algorithm 2 shows the
port mitigation technique used to defend the network against
attacks.

After detection of an attack the detection algorithm will
collect the DPID and Port number associate with the attack and
store it in a list. Then, the mitigation algorithm will analyze
current traffic flow and compare its associated port number
and DPID with the collected attack parameters. If a match
occurs a new flow entry will be created to install a new action
for that associated attack location. This action will drop any

Table I: Traffic Flow

Simulated Traffic Normal Multiple Multiple
Victims @ 25% Victims @ 50%
attack rate attack rate
Packet Type UDP
Traffic Interval 0.5 sec 0.125 sec 0.03 sec
Traffic Rate 2 packets/sec 8 packets/sec 33.3 packets/sec

traffic incoming or outgoing to this particular attack location.

V. SIMULATION AND TEST RESULTS

Mininet is used to emulate the network with POX as the
controller platform. The detection program will be a stand-
alone module integrated within the L3 Learning module. This
will allow the controller to perform additional functionalities
such as installing flows and validating DDoS attacks. In this
testbed, OF-switch is used to simulate the behavior of an edge
switch in a SDN network. The Mininet network comprises a
victim node that is the destination for both normal traffic and
attack traffic generated from a client within the SDN network.
By using Mininet, we can attack a virtual host and analyze the
results of our detection algorithm. The client’s IP addresses are
assigned incrementally from 10.0.0.1.

For this research, three hosts are implemented, one OVS,
and controller in the physical testbed. Typical networks consist
of thousands of devices; however due to resources limitation
the previous testbed is build to emulate the similar scenarios
in large networks. To develop and validate the effectiveness of
our solution in a real time environment, we created a virtual
network with these exact constraints to better represent our
testbed. Scapy is used to generate UDP packets with varying
payloads and traffic interval. To fulfill our test case scenario,
the time interval for the simulated traffic is defined. If an attack
traffic has 25% rate, then the traffic interval of 0.025 seconds.
For a normal traffic, it will have an interval of 0.1 seconds.

The simulations and evaluations were performed on multi-
ple platforms. The main platform used to test our detection
algorithm is iOS environment set up on a 1.4 GHz Intel Core
i5 processor and a memory of 4GB RAM. Normal Traffic
Simulation is used to determine the average entropy for a
normal traffic, we launched three different traffic patterns.

Normal traffic is defined as traffic with long duration flows
as compared to attack traffic which has short duration’s flows
with small numbers of packets. The goal is to determine the
average normal entropy value for a network consisting of four
nodes. A traffic was launched on the network with a traffic
interval of 0.5 seconds. The traffic rate is defined by (1/0.5
= 2 packets/sec). Table 1 summarizes the specifications of all
simulated traffic scenarios. In Figure 3, the chart describes
how the entropy varies during the traffic. The lowest threshold
captured during this traffic flow is 0.884 with the highest point
captured at 0.900. The average entropy value of this small
network is 0.892.

For attack traffic simulation with multiple victims, the
topology and parameters remain the same as the one use to
simulate the normal traffic. The only difference is the traffic
interval and rate. For the multiple victim attack, we tested
a 25% attack rate. The attack traffic interval is defined by

Figure 3: Entropy: Normal Traffic

Entropy
0.905
0.9
0.895
=
o
£ oas9
c
wi
0.885
0.88
0.875
1 2 3 4 5
Window - 50 Packets
Figure 4: Entropy: Multiple Victims Attack Traffic
Entropy
0.61
0.6
0.59
& 0.58
2
£ 057
0.56
0.55
0.54
1 2 3 4 5
Test Runs

(Normal Traffic x 25% = 0.125 sec) with a traffic rate at 8
packets/sec. In this multiple victim attack scenario, the traffic
interval of 0.125 sec will generate 8 packets a second per house
along with 2 packets/sec being generate for legitimate traffic.
As expected, the attack was detected. For further analysis,
we increased the attack to 50% to see how fast our detection
algorithm is able detect the attack.

As expected, the algorithm detects the attack under 10
seconds. The 25% attack rate is detected at 9.71 seconds. With
a higher traffic rate of 33 packets/sec, the attack is detected
at 5.14 seconds. The entropy value for both test scenarios are
approximately the same which can be noticed on Figure 4. The
25% attack rate has a slightly higher consist entropy levels
ranging from 0.601 to 0.597. As for the 50% rate, the lowest
threshold captured is at 0.566.

For attack traffic with single victim, the traffic interval for
50% attack rate on multiple victims is set at 0.03 seconds. To
generate the same amount of attack traffic for the single victim
scenario, the interval is at 0.08 seconds. In this attack scenario,
the specification is shown in Table 1. In this single victim
attack scenario, the attack is detected within 5.55 seconds
while 2 packets/sec were generating for legitimate traffic.

The results confirm the effectiveness of the detection al-
gorithm. The average detection rate of a DDoS attack is
determined within three to ten seconds. It is safe to say
that the algorithm performs very well in distinguishing the

difference between a normal and attack traffic. It is important
to remember that this simulation is specifically designed for
the used test-bed. In a real scenario, the network and its traffic
will grow. If so, the threshold must be adjusted accordingly
to avoid false positive detection.

VI. CONCLUSION

Using the Open vSwitch software developed for OF protocol
proved simplicity in programming and integrating Linux-based
hardware into an OF switch. Additionally, the POX controller
proved to be simple and effective in establishing a test bed
for the Entropy-based detection and mitigation algorithm.
During integration, testing, and hardware deployment phase,
the accuracy of the proposed algorithm was presented in
detecting a generated DDoS attack on single and multiple
victims. The attack was detected and mitigated within 3 to
10 seconds of the entropy value reaching 0. Once mitigated
traffic continued to flow normally without disturbance from
the attacker(s). The flexibility that SDN provides to the overall
realm of networking has been proven to aid in programmability
and management for network administrators. Even though this
new paradigm leaves room for vulnerabilities, the flexibility
of SDN provides network administrators with new techniques
to protect and expand current and future networks.

REFERENCES

[1] S. Azodolmolky, Software Defined Networking with OpenFlow, 2012.
[2] R. Yang, Jun Bi, and Guofei Gu, “Guest editorial: Software defined
networking,” China Communications, vol. 11, no. 2, pp. i-ii, Feb 2014.
[31 A. Y. Ding, J. Crowcroft, S. Tarkoma, and H. Flinck, “Software
defined networking for security enhancement in wireless mobile
networks,” Computer Networks, vol. 66, pp. 94 — 101, 2014,
leonard Kleinrock Tribute Issue: A Collection of Papers by his
Students. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1389128614001133
[4] X. Liang and X. Qiu, “A software defined security architecture for sdn-
based 5g network,” in 2016 IEEE International Conference on Network
Infrastructure and Digital Content (IC-NIDC), Sep. 2016, pp. 17-21.
[5] Y. Qian, P. Bhattacharya, W. You, and K. Qian, “Security threat analysis
of sdn switch flow table,” in 2018 27th International Conference on
Computer Communication and Networks (ICCCN), July 2018, pp. 1-2.
[6] T. Dargahi, A. Caponi, M. Ambrosin, G. Bianchi, and M. Conti, “A sur-
vey on the security of stateful sdn data planes,” IEEE Communications
Surveys Tutorials, vol. 19, no. 3, pp. 1701-1725, thirdquarter 2017.
[71 Y.-J. Lee, N.-K. Baik, C. Kim, and C.-N. Yang, “Study of detection
method for spoofed ip against ddos attacks,” Personal and Ubiquitous
Computing, vol. 22, no. 1, pp. 35-44, Feb 2018. [Online]. Available:
https://doi.org/10.1007/s00779-017-1097-y
[8] P. M. Ombase, N. P. Kulkarni, S. T. Bagade, and A. V. Mhaisgawali,
“Dos attack mitigation using rule based and anomaly based techniques
in software defined networking,” in 2017 International Conference on
Inventive Computing and Informatics (ICICI), Nov 2017, pp. 469-475.
[9] L. Li, J. Zhou, and N. Xiao, “Ddos attack detection algorithms based
on entropy computing,” in Information and Communications Security,
S. Qing, H. Imai, and G. Wang, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pp. 452-466.
S. M. Mousavi and M. St-Hilaire, “Early detection of ddos attacks
against sdn controllers,” in 2015 International Conference on Comput-
ing, Networking and Communications (ICNC), Feb 2015, pp. 77-81.
S. Oshima, T. Nakashima, and T. Sueyoshi, “Early dos/ddos detection
method using short-term statistics,” in 2010 International Conference
on Complex, Intelligent and Software Intensive Systems, Feb 2010, pp.
168-173.

[10]

(11]

http://www.sciencedirect.com/science/article/pii/S1389128614001133
http://www.sciencedirect.com/science/article/pii/S1389128614001133
https://doi.org/10.1007/s00779-017-1097-y

	Introduction
	Related Work
	System Architecture
	Network Topology
	Controller Modules
	L3 Learning Module

	Non-Functional Requirements
	Interface Requirements
	Software Quality Attributes

	Software Requirement Specifications

	System Design
	System Architecture
	Controller Modules
	L3 Learning Module
	DDoS Detection Algorithm
	Flow Classification

	DDoS Detection with Entropy-based Algorithm
	Entropy Based Detection Algorithm
	Port Mitigation Technique

	Simulation and Test Results
	Conclusion
	References

