CAMPUS MASTER PLAN 2020
CALIFORNIA POLYTECHNIC STATE UNIVERSITY, POMONA
EXECUTIVE SUMMARY
30 SEPTEMBER 2020

2nd draft issued for CPP review, edits and comment
(text, graphics and cover are in progress drafts)
CAL POLY POMONA CAMPUS MASTER PLAN EXECUTIVE SUMMARY

Vision:
Cal Poly Pomona will be the model for an inclusive polytechnic university that inspires creativity and innovation, embraces local and global challenges, and transforms lives.

Values:
• Student Learning & Success
• Academic Excellence
• Experiential Learning
• Inclusive
• Community Engagement
• Social + Environmental Responsibility

Strategic Plan 2018-2023

Fall Conference 2017 Kick-off

Campus Master Planning Process
The Cal Poly Campus Master Plan is the result of a two year collaborative planning process, arising from the strategic planning process. The 2017-2023 Strategic Plan charts a new course for the future of the university with goals and initiatives to achieve this vision. This plan updates the Campus Master Plan adopted in 2002, to provide a road map for development of the physical facilities and infrastructure to support this new course and achievement of the strategic plan goals.

The planning team worked with the Master Plan Advisory Committee and the President’s Cabinet, serving as the Executive Committee. Over the course of almost two years, the planning was advanced through multi-day workshops, open campus forums and focused stakeholder meetings. The Executive Committee was briefed regularly, with working sessions to consider specific issues including instructional space utilization, student housing, proposed project sequencing and the Capital Improvements Plan. The master plan web page includes all committee presentation and workshop materials, including photos and documentation of the campus open houses and focus sessions. Over the course of the master planning effort, over 500 Cal Poly community members, students, faculty and staff, people participated in, and contributed to, the planning process.

Proposed Campus Master Plan 2020-2030

The 2020 Campus Master Plan is proceeding into the required environmental impact review (EIR) process as required by the California Environmental Quality Act (CEQA), which requires state agencies to inform decision makers and the public about the potential environmental impacts of proposed projects, and to reduce those environmental impacts to the extent feasible. This process can take up to one year, and is required to be completed prior to bringing the campus Master Plan to the California State University (CSU) Board of Trustees for approval.

E X E C U T I V E S U M M A R Y

The Proposed Campus Master Plan 2020-2030 graphic in progress and not fully rendered, final plan will include rendered landscape/hardscape.

Proposed Campus Master Plan 2020-2030

Existing Building
Existing Parking Structure
Renovated Building
New Building
New Parking Structure
The Board of Trustees requires that every campus have a master plan showing existing and anticipated facilities necessary to accommodate a specified enrollment at an estimated target date or planning horizon, in accordance with approved educational policies and objectives. Each campus master plan reflects the ultimate physical requirements of academic programs and auxiliary activities during the planning horizon.

Review and revision to the master plan should take place periodically, but not less than every 10 years. When developing a new master plan it is important to ensure that the goals and objectives of available campus planning tools are addressed.

In addition to the Academic and Strategic Plans, the Utility Master Plan (which shall be updated for climate adaptation and resilience plans, the Utility Master Plan (which shall be updated periodically, but not less than every 10 years. When developing a new master plan it is important to ensure that the goals and objectives of available campus planning tools are addressed.

The Cal Poly Pomona campus, once isolated and rural, has been overtaken by the growth of the greater Los Angeles metropolitan area. But the campus still feels isolated with rugged terrain on the west and north campus edges, the Santa Monica Freeway (Interstate 10) on the northern campus boundary and the I-10 ramps to the 57 Freeway on the eastern campus boundary. The San Antonio Community College (Mt SAC) campus borders the Cal Poly Pomona campus on the west, but there is no direct physical connection between the campuses. The southern edge is the only place where the campus is adjacent to City of Pomona and two small residential neighborhoods (west side of University Village and east side of Innovation Village), otherwise the existing land uses are mixed commercial and industrial.

The Kellogg Drive exits from the Santa Monica Freeway provide convenient access to the campus, but are also used by Mt SAC students. Traffic counts suggest that almost half the vehicles using the Kellogg exit/entrance ramps are driving through, not to, the campus. Between 1956 and 1969 the University Quad with the major academic college buildings and the residential life facilities (dormitories, dining hall, health center) were constructed. In 1966, Cal Poly Pomona separated from the San Luis Obispo campus to become California's 16th state college, and university status was granted in 1972.

The Cal Poly Pomona campus, once isolated and rural, has been overtaken by the growth of the greater Los Angeles metropolitan area. But the campus still feels isolated with rugged terrain on the west and north campus edges, the Santa Monica Freeway (Interstate 10) on the northern campus boundary and the I-10 ramps to the 57 Freeway on the eastern campus boundary. The San Antonio Community College (Mt SAC) campus borders the Cal Poly Pomona campus on the west, but there is no direct physical connection between the campuses. The southern edge is the only place where the campus is adjacent to City of Pomona and two small residential neighborhoods (west side of University Village and east side of Innovation Village), otherwise the existing land uses are small commercial and industrial.

The Kellogg Drive exits from the Santa Monica Freeway provide convenient access to the campus, but are also used by Mt SAC students. Traffic counts suggest that almost half the vehicles using the Kellogg exit/entrance ramps are driving through, not to, the campus. Between 1956 and 1969 the University Quad with the major academic college buildings and the residential life facilities (dormitories, dining hall, health center) were constructed. In 1966, Cal Poly Pomona separated from the San Luis Obispo campus to become California's 16th state college, and university status was granted in 1972.

The Cal Poly Pomona campus, once isolated and rural, has been overtaken by the growth of the greater Los Angeles metropolitan area. But the campus still feels isolated with rugged terrain on the west and north campus edges, the Santa Monica Freeway (Interstate 10) on the northern campus boundary and the I-10 ramps to the 57 Freeway on the eastern campus boundary. The San Antonio Community College (Mt SAC) campus borders the Cal Poly Pomona campus on the west, but there is no direct physical connection between the campuses. The southern edge is the only place where the campus is adjacent to City of Pomona and two small residential neighborhoods (west side of University Village and east side of Innovation Village), otherwise the existing land uses are small commercial and industrial.

The Kellogg Drive exits from the Santa Monica Freeway provide convenient access to the campus, but are also used by Mt SAC students. Traffic counts suggest that almost half the vehicles using the Kellogg exit/entrance ramps are driving through, not to, the campus. Between 1956 and 1969 the University Quad with the major academic college buildings and the residential life facilities (dormitories, dining hall, health center) were constructed. In 1966, Cal Poly Pomona separated from the San Luis Obispo campus to become California's 16th state college, and university status was granted in 1972.

The Cal Poly Pomona campus, once isolated and rural, has been overtaken by the growth of the greater Los Angeles metropolitan area. But the campus still feels isolated with rugged terrain on the west and north campus edges, the Santa Monica Freeway (Interstate 10) on the northern campus boundary and the I-10 ramps to the 57 Freeway on the eastern campus boundary. The San Antonio Community College (Mt SAC) campus borders the Cal Poly Pomona campus on the west, but there is no direct physical connection between the campuses. The southern edge is the only place where the campus is adjacent to City of Pomona and two small residential neighborhoods (west side of University Village and east side of Innovation Village), otherwise the existing land uses are small commercial and industrial.

The Kellogg Drive exits from the Santa Monica Freeway provide convenient access to the campus, but are also used by Mt SAC students. Traffic counts suggest that almost half the vehicles using the Kellogg exit/entrance ramps are driving through, not to, the campus. Between 1956 and 1969 the University Quad with the major academic college buildings and the residential life facilities (dormitories, dining hall, health center) were constructed. In 1966, Cal Poly Pomona separated from the San Luis Obispo campus to become California's 16th state college, and university status was granted in 1972.
The ISES Facilities Assessment conducted in 2017-18 found that while the campus was a whole in fair condition, roughly the median for CSU campuses, that rating was driven by the seismic replacement projects (Student Services Building, and Phase I Housing & Dining) completed in late 2018. Deferred maintenance evaluation puts the campus well within the "poor" rating with 57% of existing buildings in, or below, poor condition. The original academic buildings (late 1950’s and 1960’s) are in the worst condition, with systems well beyond normal life. The rating scores for the inspected buildings show that the campus is underfunded relative to the national average for university facilities, and will need over $515 million in renewal work over the next ten years. The assessment states that the past focus on specific systems upgrades is not keeping up with the maintenance needs and recommended looking at "total building" renovation (or replacement) projects.

The master plan outlines a sequence of total building renovation projects, with improved surge space to facilitate vacating whole academic college buildings. This "whole building" approach will allow for upgrades to the building’s structure (seismic) and exterior envelope (energy efficiency), with new building systems (technology, water, HVAC efficiency) and reconfiguration of interior spaces for collaborative workspace and active, hands-on learning-instructional spaces.

Planned building renovation projects include:
- Total renovation of buildings 98, 5, 7, 1, 8, 9
- Major renovation of buildings 94, 6, 43, 76
- Major renovation/additions to Bldg 34, 15, 30, 66

Planned replacement (and demolition) projects include:
- Art/Engineering Annex (Bldg 13)
- Student Health & Wellness Center (Bldg 46)
- Childcare Center (Bldg 116, A, B)
- Student Health & Wellness Center (Bldg 46)
- Phase 1 Student Housing (Bldg 23)
- Phase 2 Student Housing (Bldg 20-23)

Campus Site & Constraints
At 1438 acres (just Campus South acreage), the campus is one of the largest California State University campuses, but much of the acreage is not suitable for campus development or is subject to working within significant constraints. The topography of the campus ranges from lowland flood plain on the southeast, to rolling agricultural hillocks which rise almost 175 ft to the ridge line along the northeastern edge of the campus. Roughly 30% of the campus land has steep slopes and is either natural open space or planted with orchards; almost 40% is developed for campus academic, residential and administrative use with the remaining 30% used by the College of Agriculture.

The original Kellogg ranch residences were set on the hillside for the views and security, while the lowland area made excellent pastures for the horses. Today much of the pasturage is still dedicated and reserved for the Arabians, surrounded by agricultural fields and orchards. The College of Agriculture also uses the original livestock facilities, pens and grazing areas on the west side of the campus, and plants on the moderate slope areas surrounding the campus core. An underground spring flows under the campus and feeds the ponds at the Aratani Japanese garden and the La Cienega Center. The master planning was able to integrate Project Blue, a faculty generated interdisciplinary project which involved students from the colleges of science, agriculture, and environmental design.

The goal was to uncover the Lower Kellogg Creek and make it into an outdoor learning environment. The half-acre site includes an outdoor classroom, restoration of the native habitat and ‘Creek Cams’ for wildlife observation, highlights natural resources and sustainability and provides the opportunities for ‘hands on’ learning. In the late 1980s, the CSU Seismic Review Board (SRB) began reviewing the potential impact of the San Jose fault and the result was the CSU Seismic Study and the 1990’s campus master plan that began reviewing the potential impact of the San Jose fault. With evidence of ground movement east and west of the campus, geotechnical studies were undertaken to trace the fault lines through the campus. The mapped faults run through the original campus core, impacting the academic college structures (resulting in the Student Services Building which replaced the Bldg 94 Administration Tower and Registration Building) and the historic dormitories and dining hall (resulting in the Student Housing/Dining replacement project). The master plan includes projects to reinforce and renovate the Seismic Priority #1 (Bldgs 98, 76, 9) and Seismic Priority #2 (Bldgs 5, 9, 25) buildings. New construction and additions are restricted in the seismic zones, making total building renovations preferable to new building replacement projects.

Planned building renovation projects include:
- Total renovation of buildings 98, 5, 7, 1, 8, 9
- Major renovation of buildings 94, 6, 43, 76
- Major renovation/additions to Bldgs 34, 15, 30, 66

* renovations address Seismic Priority #1 Bldgs 98 and 76 and Seismic Priority #2 Bldgs 5, 9 and 25

Campus Conditions Analysis
The update of the campus master plan is informed by data and analyses, including instructional space utilization, facilities conditions assessment, past seismic studies, and review of campus systems and infrastructure (additives, services and central plant capacity including building plans for new replacement, upgrade or expansion).

The ISES Facilities Assessment conducted in 2017-18 found that while the campus was a whole in fair condition, roughly the median for CSU campuses, that rating was driven by the seismic replacement projects (Student Services Building, and Phase I Housing & Dining) completed in late 2018. Deferred maintenance evaluation puts the campus well within the ‘poor’ rating with 57% of existing buildings in, or below, poor condition. The original academic buildings (late 1950’s and 1960’s) are in the worst condition, with systems well beyond normal life. The rating scores for the inspected buildings show that the campus is underfunded relative to the national average for university facilities, and will need over $515 million in renewal work over the next ten years. The assessment states that the past focus on specific systems upgrades is not keeping up with the maintenance needs and recommended looking at “total building” renovation (or replacement) projects.

The master plan outlines a sequence of total building renovation projects, with improved surge space to facilitate vacating whole academic college buildings. This ‘whole building’ approach will allow for upgrades to the building’s structure (seismic) and exterior envelope (energy efficiency), with new building systems (technology, water efficiency) and reconfiguration of interior spaces for collaborative workspace and active, hands-on learning-instructional spaces.

Planned building renovation projects include:
- Total renovation of buildings 98, 5, 7, 1, 8, 9
- Major renovation of buildings 94, 6, 43, 76
- Major renovation/additions to Bldgs 34, 15, 30, 66

Campus Conditions Analysis
The update of the campus master plan is informed by data and analyses, including instructional space utilization, facilities conditions assessment, past seismic studies, and review of campus systems and infrastructure (additives, services and central plant capacity including building plans for new replacement, upgrade or expansion).

The ISES Facilities Assessment conducted in 2017-18 found that while the campus was a whole in fair condition, roughly the median for CSU campuses, that rating was driven by the seismic replacement projects (Student Services Building, and Phase I Housing & Dining) completed in late 2018. Deferred maintenance evaluation puts the campus well within the ‘poor’ rating with 57% of existing buildings in, or below, poor condition. The original academic buildings (late 1950’s and 1960’s) are in the worst condition, with systems well beyond normal life. The rating scores for the inspected buildings show that the campus is underfunded relative to the national average for university facilities, and will need over $515 million in renewal work over the next ten years. The assessment states that the past focus on specific systems upgrades is not keeping up with the maintenance needs and recommended looking at “total building” renovation (or replacement) projects.

The master plan outlines a sequence of total building renovation projects, with improved surge space to facilitate vacating whole academic college buildings. This ‘whole building’ approach will allow for upgrades to the building’s structure (seismic) and exterior envelope (energy efficiency), with new building systems (technology, water efficiency) and reconfiguration of interior spaces for collaborative workspace and active, hands-on learning-instructional spaces.
The analysis of Fall 2017 and Fall 2018 classroom utilization showed a continuation of past utilization trends, which appear to be driven more by growing enrollment, than by the quarter-to-semester transition. The quarter-to-semester transition for rooms were scheduled with the similar average section enrollment and seat occupancy. In 2017 the peak scheduled hours (over 80% of rooms scheduled) were 10AM to 5PM, with more intensive utilization on Tuesday/Thursday. But in recent years U-hour has been reduced to either M/W or T/Th and Friday. The classroom schedules (at right) show the increasing portion of the day approaching full occupancy, with over 80% of rooms scheduled. The level of utilization presents challenges when another section is needed, or is a closed (for repairs, etc.), as well as accommodating the continuing enrollment growth.

Enrollment Analysis & Projections

The enrollment analysis and projection evaluated Cal Poly Pomona’s enrollment for the past 20 years, and at state and western regional demographics projections for the next 10 years. The potential for an economic or pandemic related enrollment dip, a conservative approach to correlate to state economic trends). Over the next ten years, the enrollment analysis supported headcount increasing as much as 2%, and FTE increasing by 33% to 30,803 FTE.

Independent of the demographics, over the last twenty years, Cal Poly Pomona has experienced significant growth, with occasional enrollment dips (which appear to correlate to state economic trends). Over the next ten years, the enrollment analysis supported headcount increasing by as much as 2%, and FTE increasing by 33% to 30,803 FTE.

<table>
<thead>
<tr>
<th>Year</th>
<th>Fall Students</th>
<th>Spring Students</th>
<th>Total Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>22,273</td>
<td>22,273</td>
<td>44,546</td>
</tr>
<tr>
<td>2018</td>
<td>22,273</td>
<td>22,273</td>
<td>44,546</td>
</tr>
</tbody>
</table>

The utilization findings confirm that Cal Poly Pomona’s classrooms are highly utilized, achieving 88% of the CSU target utilization. Cal Poly’s high section fill (seat occupancy) makes efficient use of faculty resources and is preferable to scheduling more class sections with lower enrollment. But this strategy relies on being able to schedule classes during the more popular times and days, which could make it difficult to raise utilization much higher.

The analysis also observed that while classroom utilization is 88%, the total classroom (lecture) FTE’s taught exceeds the CSU FTE capacity for the campus, and continue to increase year-over-year. How was this possible? Further analysis of institutional space utilization (classroom/lecture rooms, and class labs) mapped to the California State University (CSU) target system. Cal Poly Pomona’s space database. Course data was provided by Cal Poly Pomona for the Fall 2017 quarter with actual enrollment (post drop-date) and analyzed to inform the semester conversion planning. Then the analysis was return with the Fall 2018 semester data after the conversion.

Institutional Space Analysis

The update of the master plan was informed by analysis of instructional space utilization (classroom/lecture rooms, and class labs) mapped to the California State University (CSU) system targets. Cal Poly Pomona’s space database. Course data was provided by Cal Poly Pomona for the Fall 2017 quarter with actual enrollment (post drop-date) and analyzed to inform the semester conversion planning. Then the analysis was return with the Fall 2018 semester data after the conversion.

Classroom Scheduling & Quarter-Semester Conversion

The classroom utilization analysis summary:

- **CSU Measures**
 - **Target**:
 - Room Hours: 53 hours/week
 - Seat Occupancy: 66%
 - Weekly Seat Hours: 34 hours
 - **Average**:
 - Room Hours: 39 hours/week
 - Seat Occupancy: 77%
 - Weekly Seat Hours: 30.50

The utilization findings confirm that Cal Poly Pomona’s classrooms are highly utilized, achieving 88% of the CSU target utilization. Cal Poly’s high section fill (seat occupancy) makes efficient use of faculty resources and is preferable to scheduling more class sections with lower enrollment. But this strategy relies on being able to schedule classes during the more popular times and days, which could make it difficult to raise utilization much higher.

The analysis also observed that while classroom utilization is 88%, the total classroom (lecture) FTE’s taught exceeds the CSU FTE capacity for the campus, and continue to increase year-over-year. How was this possible? Further analysis of institutional space utilization (classroom/lecture rooms, and class labs) mapped to the California State University (CSU) system targets. Cal Poly Pomona’s space database. Course data was provided by Cal Poly Pomona for the Fall 2017 quarter with actual enrollment (post drop-date) and analyzed to inform the semester conversion planning. Then the analysis was return with the Fall 2018 semester data after the conversion.

But this growth trend could be tempered by the state demographic trend downward, and since the last dip in enrollment was 10 years ago, a correction may be overdue. So, taking into account the demographic trend downward, and since the last dip in enrollment was 10 years ago, a correction may be overdue.

Instructional Space Analysis

The update of the master plan was informed by analysis of instructional space utilization (classroom/lecture rooms, and class labs) mapped to the California State University (CSU) system targets. Cal Poly Pomona’s space database. Course data was provided by Cal Poly Pomona for the Fall 2017 quarter with actual enrollment (post drop-date) and analyzed to inform the semester conversion planning. Then the analysis was return with the Fall 2018 semester data after the conversion.

The utilization findings confirm that Cal Poly Pomona’s classrooms are highly utilized, achieving 88% of the CSU target utilization. Cal Poly’s high section fill (seat occupancy) makes efficient use of faculty resources and is preferable to scheduling more class sections with lower enrollment. But this strategy relies on being able to schedule classes during the more popular times and days, which could make it difficult to raise utilization much higher.

The analysis also observed that while classroom utilization is 88%, the total classroom (lecture) FTE’s taught exceeds the CSU FTE capacity for the campus, and continue to increase year-over-year. How was this possible? Further analysis of institutional space utilization (classroom/lecture rooms, and class labs) mapped to the California State University (CSU) system targets. Cal Poly Pomona’s space database. Course data was provided by Cal Poly Pomona for the Fall 2017 quarter with actual enrollment (post drop-date) and analyzed to inform the semester conversion planning. Then the analysis was return with the Fall 2018 semester data after the conversion.

The utilization findings confirm that Cal Poly Pomona’s classrooms are highly utilized, achieving 88% of the CSU target utilization. Cal Poly’s high section fill (seat occupancy) makes efficient use of faculty resources and is preferable to scheduling more class sections with lower enrollment. But this strategy relies on being able to schedule classes during the more popular times and days, which could make it difficult to raise utilization much higher.

The analysis also observed that while classroom utilization is 88%, the total classroom (lecture) FTE’s taught exceeds the CSU FTE capacity for the campus, and continue to increase year-over-year. How was this possible? Further analysis of institutional space utilization (classroom/lecture rooms, and class labs) mapped to the California State University (CSU) system targets. Cal Poly Pomona’s space database. Course data was provided by Cal Poly Pomona for the Fall 2017 quarter with actual enrollment (post drop-date) and analyzed to inform the semester conversion planning. Then the analysis was return with the Fall 2018 semester data after the conversion.
Of the 158 classrooms, over 60% have 31-50 seat capacity, and these rooms, along with some of the smaller classrooms, provide the most opportunity for right-sizing. Only 22 classrooms (14%) have more than 60 seat capacity, so unsurprisingly, the greatest need was for rooms with 51-60, 61-70, 71-80, and 121-199 seats. If classrooms were correctly sized and scheduled, the total number of rooms could be reduced, from 158 to 136, and reconfigured (three smaller rooms become 1-2 larger rooms) to better meet Cal Poly’s needs while also demonstrating improved utilization.

Classroom Demand Projection

The graph above illustrates the current classroom demand compared to the existing classrooms. The same analysis was run with the 33% projected growth in FTEs (per enrollment projections) and the results were similar in terms of the size of rooms needed. But the overall number of rooms needed increased, and demand changes from 132 room to 182 rooms. The need continues to be greatest for larger rooms, over 51 seats.

Class Lab Utilization

Cal Poly Pomona has 156 scheduled class labs. Average weekly room hours are close to the CSU lab utilization targets but the % of occupied seats/stations average 117% suggesting the seat/station counts may not be accurate (even though they match the CSU reports). Overall lab utilization averages 24.8 Weekly Seat Hours which is 125% of the CSU lab utilization target for upper division labs (which are 2/3 of all Cal Poly labs). A more detailed analysis should look at the lab classifications (lower or upper division) and consider whether the assignment of these spaces needs to be adjusted.

Class Lab Utilization

Cal Poly Pomona has 156 scheduled class labs. Average weekly room hours are close to the CSU lab utilization targets but the % of occupied seats/stations average 117% suggesting the seat/station counts may not be accurate (even though they match the CSU reports). Overall lab utilization averages 24.8 Weekly Seat Hours which is 125% of the CSU lab utilization target for upper division labs (which are 2/3 of all Cal Poly labs). A more detailed analysis should look at the lab classifications (lower or upper division) and consider whether the assignment of these spaces needs to be adjusted.

Three colleges have the majority of the lab space: Science, Engineering and Environmental Design (although Agriculture would be the largest if outdoor facilities and fields were included).

Laboratory Demand Analysis

Laboratory demand analysis looked at the current lab utilization, including the seat/station occupancy (over 117%) to assess the additional space needed to meet the current lab FTE’s. Engineering shows the greatest shortfalls between existing use and actual need. Since Engineering is the largest college and the fastest growing program, this demand will continue to exceed the facilities available. The master plan meets this need with the new Engineer- ing Graduate School Building (replacing the Art & Engineering Annex) and with a total renovation of the Engineering buildings (Bldgs 9, 94) and internal lab expansion (Bldg 17). Significant new lab space is also needed in Science and Environmental Design. Studios in the Science Lab building could be converted to science labs with the relocation of the architecture program into the CLA building.
CAM POLY POMONA CAMPUS MASTER PLAN EXECUTIVE SUMMARY

CAMPUSS master Plan 2020

During the planning several themes emerged, which connected with the strategic plan values and set the goals for specific projects (like the annual rose float entry) and internships (Childcare Center, Innovation Village enterprises and off campus partners). Projects to enhance the co-curricular experience and support student engagement in "learning-by-doing" on campus include:

• Rose Float LA (under construction near the campus east entry)
• Renovations in Kellogg and Darlene May Gymnasium buildings (ADA)
• New Childcare Center to relocate and replace the existing center, expanding child care capacity and enhancing early education program integration to support praxis requirements and student teaching internships.
• Future Mixed-Use P3 Development of the southwest corner of Innovation Village to include Innovation and Outreach functions (entrepreneurial programs, business incubator space; as well as space for CPP Development, Alumni functions, and student entrepreneurship projects).

Residential Experience

The residential student experience has been demonstrated to increase student engagement; and increased engagement correlate closely to support student success with higher rates of persistence and graduation. Cal Poly Pomona has housing units near every year, demonstrating how much students and their families value the on-campus residential experience. The on-campus master plan projects to integrate The Student Housing and Residence Halls in two phases. These traditional dormitories were built on the hillside above the academic core, while residential student experience has been demonstrated to increase student engagement; and increased engagement correlates closely to support student success with higher rates of persistence and graduation. Cal Poly Pomona has housing units near every year, demonstrating how much students and their families value the on-campus residential experience. The on-campus master plan projects to integrate The Student Housing and Residence Halls in two phases. These traditional dormitories were built on the hillside above the academic core, while

Projects to enhance and expand the student on-campus residential experience include:

• Student Housing & Dining Replacement Phase 1 (opened in 2019) to be completed with the demolition of the two dorm buildings in the worst condition (aka the greens), project replaces 660 beds and adds 320 new beds.
• Student Housing Replacement Phase 2 to complete replacement of the original brick dorms on the hill (aka the reds, to be demolished), replaces 700 beds and adds 140 new beds.
• Student Housing Expansion Phase 3 adding 860 new beds for a net increase of 1440 beds to the campus.

Projects which also enhance student engagement and the residential campus experience include:

• New Student Health & Wellness Center (to be built on the site of the Childcare Center relocated near the farm store) replaces the original Health Center on the University Drive Hillside. The new center will be located central to student housing and across from the Bronco Recreation & Intramural Campus (BRIC) for integrated wellness and academic advising. The new center will support expanded capacity for health services to serve the campus community.
• Renovation of the multi-use fields, increasing the number of fields and adding support/restroom facilities.
• New competition venue for Track & Field and Soccer, with related support space.
• Future Softball facility (will be need to meet Title IX requirements as the number of female students increases)
• Future expansion of the BRIC’s primary building to meet growing campus needs (requires demolition of Darlene May Gym and relocation of women’s facilities to the Kellogg Gym and the new field house in Innovation Village)

Students also told the planners that they valued the campus a living laboratory with opportunities to get involved in projects (like the annual rose float entry) and internships (Childcare Center, Innovation Village enterprises and off campus partners). Projects to enhance the co-curricular experience and support student engagement in "learning-by-doing" on campus include:

• Rose Float LA (under construction near the campus east entry)
• Renovations in Kellogg and Darlene May Gymnasium buildings (ADA)
• New Childcare Center to relocate and replace the existing center, expanding child care capacity and enhancing early education program integration to support praxis requirements and student teaching internships.
• Future Mixed-Use P3 Development of the southwest corner of Innovation Village to include Innovation and Outreach functions (entrepreneurial programs, business incubator space; as well as space for CPP Development, Alumni functions, and student entrepreneurship projects).

Cal Poly Pomona: a living laboratory with opportunities to get involved in projects (like the annual rose float entry) and internships (Childcare Center, Innovation Village enterprises and off campus partners). Projects to enhance the co-curricular experience and support student engagement in "learning-by-doing" on campus include:

• Rose Float LA (under construction near the campus east entry)
• Renovations in Kellogg and Darlene May Gymnasium buildings (ADA)
• New Childcare Center to relocate and replace the existing center, expanding child care capacity and enhancing early education program integration to support praxis requirements and student teaching internships.
• Future Mixed-Use P3 Development of the southwest corner of Innovation Village to include Innovation and Outreach functions (entrepreneurial programs, business incubator space; as well as space for CPP Development, Alumni functions, and student entrepreneurship projects).
The Polytechnic Approach

The campus is a living laboratory for learning by doing and applying their research. This approach is expressed through the academic, research, and community buildings where learning, teaching, and research overlap.

The PolytechniC approach

This approach is also supported by projects described previously. New Engineering Graduate Building to support this growing program and facilitate expansion of engineering facilities. IARB will provide surge space on the upper floors of the Campus Center Replace Admin (Bldg 1). College of Environmental Design (Bldg 7); and College of Letters, Arts & Social Sciences (Bldg 5); Science (Bldg 8), Agriculture (Bldg 2), and Engineering (Bldg 5). Engineering Graduate Building to support the growing program and facilitate expansion of engineering facilities. (Bldg 17) and relocated of major facilities and equipment from the Art/Eng Annex to facilitate demobilization (with sharrows for bikes). The master plan envisions the eventual closure of Voorhis Circle and PS #1.

Redesign of Red Gum, Olive and Eucalyptus Lanes as pedestrian or multi-modal malls which prioritize pedestrians while providing accessible routes campus-wide. Projects relocate high-traffic uses and parking areas to reduce vehicle access and incorporate safer bike/scooter lanes, and provide designated pick-up/drop-off zones.

Projects improving space for learning by doing include:

- CLA Transformation vacates Bldg 98 buttressing the CLA Transformation vacates Bldg 98 (interior reconfiguration of vacated space in Bldg 17) and relocation of major facilities and equipment from the Art/Eng Annex to facilitate demobilization with an efficient structure for seismic reinforcing, with an efficient building in place (with sharrows for bikes). The master plan envisions the eventual closure of Voorhis Circle and PS #1.

- New Bronco Mobility Hub to connect campus buses with all transportation modes including Foothill Transit (FT) buses, bike facilities, e-scooters, and a designated drop-off/pick-up zone for ride-sharing apps.

- Extending the Ped/Bike-way north to the University Drive loop, and south to connect with the South Campus Drive bike lanes, San Jose Regional Bike Trail and Valley Drive cycle track.

- Adding a HAWK beacon on South Campus Drive to facilitate safe crossing of the Ped/Bike-way and FT use to facilitate bus turns and in the Bronco Mobility Hub.

- Converting Red Gum and Eucalyptus Lanes to pedestrian and bike lanes and improving access and safety (including lighting) and establish new signage standards.

- Connectivity is Critical

Connectivity is key to orientation, wayfinding and ease of circulation for a safe and universally accessible campus. Students want to be actively involved in projects where they can apply knowledge and learn skills to enhance the campus, especially in the area of sustainability. The master plan integrates project opportunities on the hillside where re-purposed dorm buildings will be demolished (reds and greys). This area is ideal for projects to engage this ecosystem including storm water management and daylighting of natural springs (Project Blue), multi-use trails (hiking, biking, horse riding) and riparian/ecosystems or other recreational and community building activities. Projects improving space for learning by doing include:

- CLA Transformation vacates Bldg 98 buttressing the CLA Transformation vacates Bldg 98 (interior reconfiguration of vacated space in Bldg 17) and relocation of major facilities and equipment from the Art/Eng Annex to facilitate demobilization with an efficient structure for seismic reinforcing, with an efficient building in place (with sharrows for bikes). The master plan envisions the eventual closure of Voorhis Circle and PS #1.

- New Bronco Mobility Hub to connect campus buses with all transportation modes including Foothill Transit (FT) buses, bike facilities, e-scooters, and a designated drop-off/pick-up zone for ride-sharing apps.

- Extending the Ped/Bike-way north to the University Drive loop, and south to connect with the South Campus Drive bike lanes, San Jose Regional Bike Trail and Valley Drive cycle track.

- Adding a HAWK beacon on South Campus Drive to facilitate safe crossing of the Ped/Bike-way and FT use to facilitate bus turns and in the Bronco Mobility Hub.

- Converting Red Gum and Eucalyptus Lanes to pedestrian and bike lanes and improving access and safety (including lighting) and establish new signage standards.

- Connectivity is Critical

Connectivity is key to orientation, wayfinding and ease of circulation for a safe and universally accessible campus. Students want to be actively involved in projects where they can apply knowledge and learn skills to enhance the campus, especially in the area of sustainability. The master plan integrates project opportunities on the hillside where re-purposed dorm buildings will be demolished (reds and greys). This area is ideal for projects to engage this ecosystem including storm water management and daylighting of natural springs (Project Blue), multi-use trails (hiking, biking, horse riding) and riparian/ecosystems or other recreational and community building activities.
CAL POLY POMONA CAMPUS MASTER PLAN EXECUTIVE SUMMARY

The reality is that everyone commutes to campus, whether it be daily, weekly or at the start of the semester. The campus has to be welcoming and accessible by multiple modes of transportation. The proposed new Bronco Mobility Hub will facilitate multi-modal connectivity between the on-campus shuttles and local/regional buses and Metrolink shuttles to encourage transit use. Increased rider-share will also be supported by the Foothills Trans Citis Plan providing free (or low) fare use of public transportation for the campus community. The Mobility Hub also acts as a transit user-activated (HAWK) beacon on S Campus Dr providing low cost (or free) use of public transportation for the campus community. The Mobility Hub also acts as a transit user-activated (HAWK) beacon on S Campus Dr.

Mobility Center welcoming visitors with maps/guides, CPP bookstore and cafe satellite, satellite Police Station to serve the west side of campus home -base for vehicle share/loan programs (cars, bikes, e-scooters) and EV charging facilities for buses turning in and out new user-activated (HAWK) beacon on S Campus Dr for the Foothills Trans Citis Plan and to replace the Hub to the replace the parking lot to the Mobility Hub facility and to eliminate overflow parking lots on the campus edge.

Eucalyptus Lane multi-modal mall is designed to slow vehicles going to the Childcare Center or bookstore. Students will be flooding across this mall from new student housing & dining hall (left into the campus. The master plan provides for the relocation of the Childcare Center and bookstore facility and associated parking to reduce vehicle traffic on this mall.

The planned total building renovation of the CLA structure, with seismic reinforcing, new exterior skin, and courtyard enclosure is a much more sustainable approach than replacement with a new building (esp when considering embodied carbon). This facility will provide surge space to support the planned total or major renovation of ten academic college buildings (which date to the early 1960’s). These projects provide a unique opportunity to improve the efficiency of all building systems and the building envelope providing surge space to support the planned total or major renovation of ten academic college buildings (which date to the early 1960’s). These projects provide a unique opportunity to improve the efficiency of all building systems and the building envelope (conserving water and energy) to substantially reduce the campus carbon footprint.

Sustainability in All Aspects

The planning process addressed the integration of sustainability in the master plan, understanding that all decisions must be environmentally, financially, socially, and technically sustainable to be consistent with Cal Poly Pomona’s values and commitments. Over twenty stakeholder groups participated in the sustainability forum, asking for renewed leadership and commitment to carbon neutrality goals. As a result, the Sustainability Task Force was reformed and tasked with the 2023 update of the 2010 Climate Action Plan.

Students want sustainability to be visible on campus, and these master plan projects further that goal.

New photo voltaic (PV) solar panel shade structures to generate renewable energy on campus include:
• BSC Terrace Expansion PV canopy
• Student Health & Wellness Center PV shade canopy over entry plaza and wellness garden
• Engineering Graduate Building, PV shade canopy over project work space (on Engineering Quad)

Roof-top PV on new buildings including:
• CLA (over atrium)
• new housing Phase I and II
• new parking structures

Sites for two larger PV arrays (included in the CPP) are currently being studied.

New gateway elements will identify the campus entrance and improve wayfinding while adding traffic control at University- and Kellogg crossings and improve pedestrian crossings and cyclist safety. Reduction of traffic on Kellogg Drive will allow the campus to implement a ‘road diet’ reducing road width and lanes to add pedestrian improvements (median sidewalk, lighting, cross- walk) and extending the bike lanes.

The 2020 Climate Action Plan Update is building on the goals set by the 2009 Climate Action Plan.

CAP Energy Benchmark Goals
1. 10% reduction in existing building energy usage
2. New Net Zero buildings
3. 5% reduction in building plug loads
4. 100% renewable electricity to be generated on campus
5. 50% reduction in emissions associated with natural gas

CAP Water Benchmark Goals
1. 50% storm water management on site
2. Eliminate potable water use for landscaping
3. Reduce irrigation water use by 40% in new buildings
4. Reduce irrigation water use by 35% in existing buildings

CAP Waste Reduction Goals
1. 50% reduction in solid waste

Students want sustainability to be visible on campus, and these master plan projects further that goal.

New photo voltaic (PV) solar panel shade structures to generate renewable energy on campus include:
• BSC Terrace Expansion PV canopy
• Student Health & Wellness Center PV shade canopy over entry plaza and wellness garden
• Engineering Graduate Building, PV shade canopy over project work space (on Engineering Quad)

Roof-top PV on new buildings including:
• CLA (over atrium)
• new housing Phase I and II
• new parking structures

Sites for two larger PV arrays (included in the CPP) are currently being studied.

New gateway elements will identify the campus entrance and improve wayfinding while adding traffic control at University- and Kellogg crossings and improve pedestrian crossings and cyclist safety. Reduction of traffic on Kellogg Drive will allow the campus to implement a ‘road diet’ reducing road width and lanes to add pedestrian improvements (median sidewalk, lighting, cross- walk) and extending the bike lanes.

The 2020 Climate Action Plan Update is building on the goals set by the 2009 Climate Action Plan.

CAP Energy Benchmark Goals
1. 10% reduction in existing building energy usage
2. New Net Zero buildings
3. 5% reduction in building plug loads
4. 100% renewable electricity to be generated on campus
5. 50% reduction in emissions associated with natural gas

CAP Water Benchmark Goals
1. 50% storm water management on site
2. Eliminate potable water use for landscaping
3. Reduce irrigation water use by 40% in new buildings
4. Reduce irrigation water use by 35% in existing buildings

CAP Waste Reduction Goals
1. 50% reduction in solid waste

Students want sustainability to be visible on campus, and these master plan projects further that goal.

New photo voltaic (PV) solar panel shade structures to generate renewable energy on campus include:
• BSC Terrace Expansion PV canopy
• Student Health & Wellness Center PV shade canopy over entry plaza and wellness garden
• Engineering Graduate Building, PV shade canopy over project work space (on Engineering Quad)

Roof-top PV on new buildings including:
• CLA (over atrium)
• new housing Phase I and II
• new parking structures

Sites for two larger PV arrays (included in the CPP) are currently being studied.

New gateway elements will identify the campus entrance and improve wayfinding while adding traffic control at University- and Kellogg crossings and improve pedestrian crossings and cyclist safety. Reduction of traffic on Kellogg Drive will allow the campus to implement a ‘road diet’ reducing road width and lanes to add pedestrian improvements (median sidewalk, lighting, cross- walk) and extending the bike lanes.

The planned total building renovation of the CLA structure, with seismic reinforcing, new exterior skin, and courtyard enclosure is a much more sustainable approach than replacement with a new building (esp when considering embodied carbon). This facility will provide surge space to support the planned total or major renovation of ten academic college buildings (which date to the early 1960’s). These projects provide a unique opportunity to improve the efficiency of all building systems and the building envelope (conserving water and energy) to substantially reduce the campus carbon footprint.

All of these projects should pursue LEED of EB for existing buildings, and all new buildings should be designed to meet the Net Zero Building challenge (energy use < < energy generated) which was a campus goal in the Climate Action Plan.
Acknowledgments

We wish to thank the Master Plan Committee members and Cal Poly Pomona staff for their participation in the master planning process. Over the course of two years, the master plan engaged with over 500 individuals for input and feedback.

Planning Consulting Team: Ayers Saint Gross Planners & Architects
SPURLOCK Landscape Architects
Fehr & Peirs Transportation Engineers
KPFF Civil Engineers
IMEG Systems Engineers
Capital Projects Group Cost Estimators

Executive Summary

revised on: 4/30/2020 - 2nd draft issued for CPP review

additional materials are available on the CPP Master Plan web page:
https://www.cpp.edu/fpm/pdc/master-plan-2018

Master Plan Executive Committee

- President: Sotya M. Coley
- Provost & VP Academic Affairs: Sylvia Aya
- CFO, VP Admin, Finance, & Strategic Development: Daniele Manning
- VP Student Affairs: Lea Jarnagin
- Interim Special Assistant for Student Success: Reginald Baylock
- VP Information Technology, CIO: John W. McGuthry
- VP University Advancement: Daniel Montpieda
- Executive Director Foundation, Inc.: Danielle Manning
- Chief of Staff: Nicole A. Hawkes

Master Plan Advisory Committee

- ASI, Student Government: Farris Hamza, Itzia Salinas
- Academic Planning & Student Success: Sep Easkandari, Terri Gomez
- Deans: Lisa Kessler, Joseph Rencis
- Student Life & Housing: Julie Shen
- Academic Senate: Meredith Kelley
- Alumni & Advancement: Chris Chaier, Megan Stang
- Dean of Students: Monica Kelley
- Campus Health & Wellbeing: Doug Nelson
- Disability Resource Center: Leticia Gutierrez-Lopez
- Institutional Risk & Emergency Management: Luz Rossa Millar
- Institutional Research & Assessment: Tracee Passaggi
- Police & Security: Aaron Nelson
- Planning & Budgeting: Darro Robinson, Peter Deutsch
- Public Relations: Whitney Fields
- Transportation & Parking: John Lloyd
- Transportation & Planning: Danny Wu
- Athletics: Mike Biglino, Danny Wu
- Facilities Planning & Management: Brian Swanson
- Campus Planning: Jim Wurst, HMC Architects
- Facilities Management: Dan Johnson
- George Law
- Campus Consulting Architect: Julie Tsang
- Facilities Planning & Management: George Law
- Campus Planning: Richard Farmer
- Facilities Management: Jesse Ochoa

18