

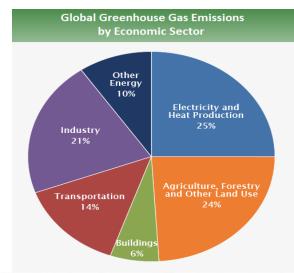
Generating Electricity from Ocean Waves

By: Arya Joshi

Faculty Advisor: Dr. Carlos Castro

Objective:

- Introduce method of generating power from shoreline "swashbackwash" cycle
 - Manufacture a miniature energy generation device
 - Design a custom unidirectional wind turbine
 - Select optimal nosecone and airfoil type
 - Test prototype power output in controlled environment

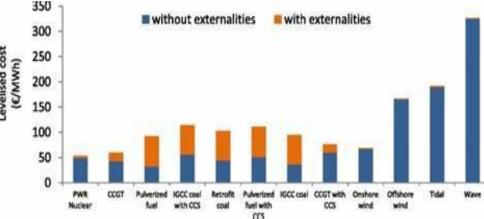


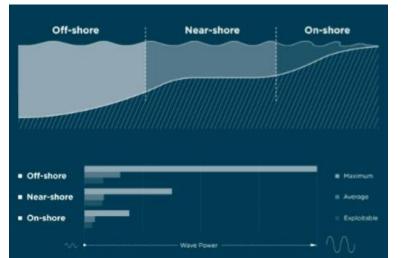
Background: Green Energy – Climate Dilemma

- 4 °C global temperature rise expected at current CO₂ emission rates
- 25% of CO₂ emissions from energy generation

Renewable Energy:

- Major intermittency problem
 - Ex. wind speeds change, sun sets at night
- Solution: Diversifying portfolio of <u>affordable</u> renewable energy fuels





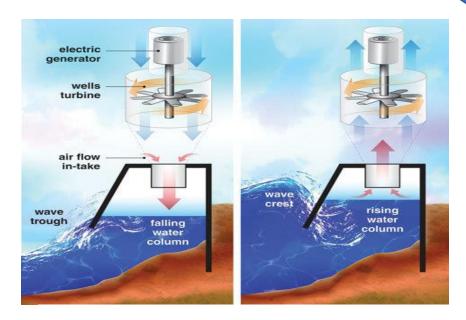
Background: Ocean Wave Energy

- Traditional methods costly:
 - Use of strong, anticorrosive material (cement, concrete)
 - Construction in deep waters
 - Ocean depth > 0.5 x wavelength
- Solution Proposal:
 - Use cheaper materials for build (ex. plastic)
 - Construction in shallow waters
 - Anticipation: reduced cost compensates for lower power output

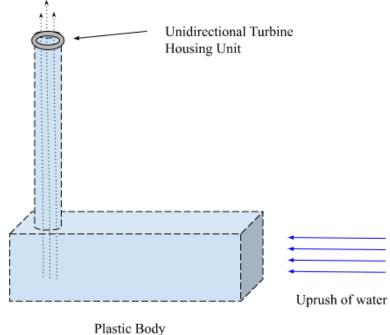
Design Concept

- Stationary shoreline oscillating water column (OWC)
 - Similar to industrial OWCs

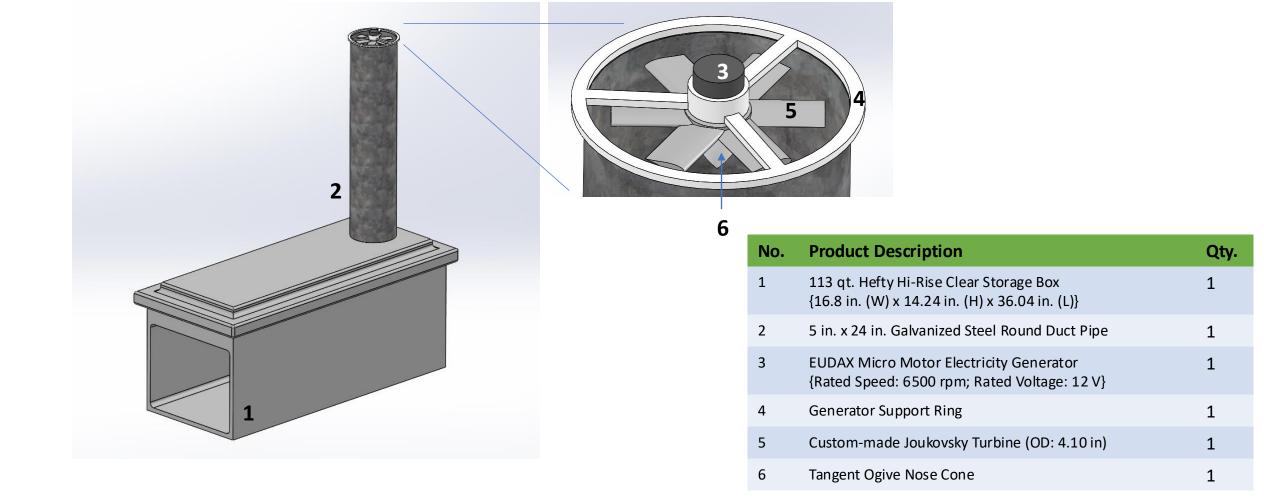
Theory:


Swash

- Water enters chamber at certain flowrate
- Air inside chamber compressed, creating pressure gradient with open environment
- Air flows out through pipe, spinning unidirectional turbine

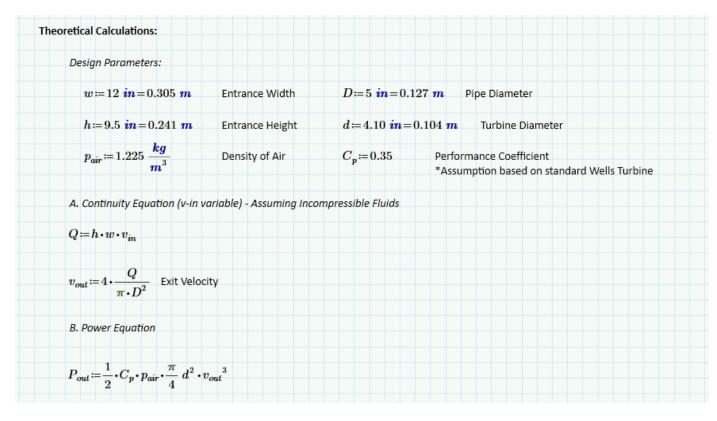
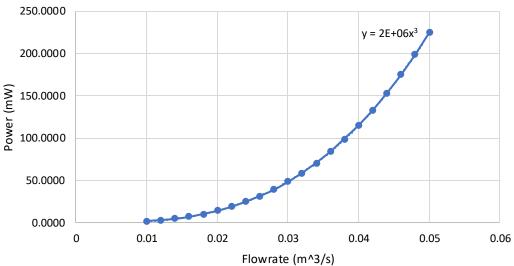

Backwash

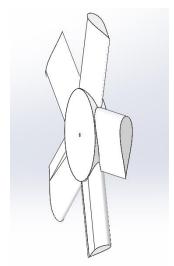
Water recedes at certain flowrate Vacuum is created within chamber Air flows in through pipe, spinning unidirectional turbine

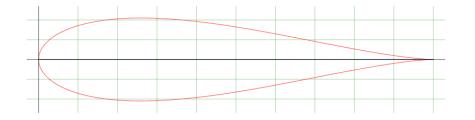

Repeat

Prototype Design

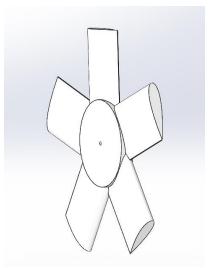
Supporting Calculations

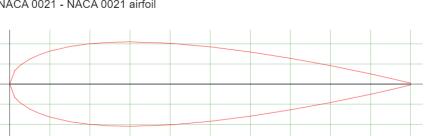



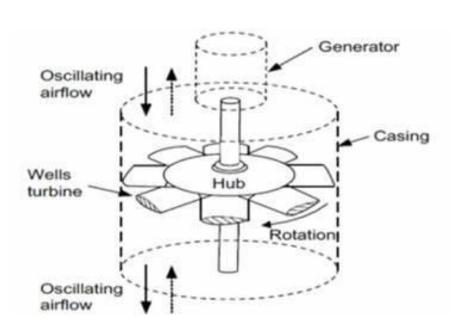

Figure 8: Theoretical Power Output at Various Flow Rates


Unidirectional Turbine Design

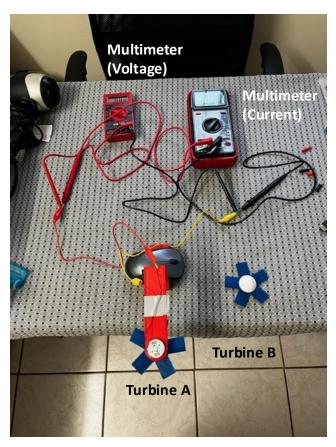
- Designed a fitting Wells Turbine (fixed pitch blades)
- Conducted comparison study of suitable airfoil types


Candidate A:

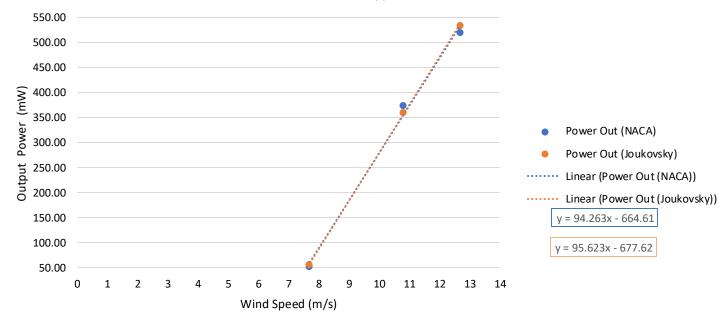

Joukovsky f=0% t=21% - Joukowski 21% symmetrical airfoil



Candidate B:



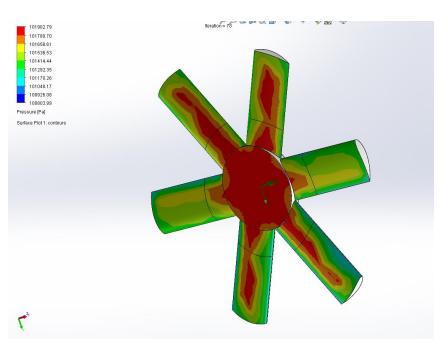
NACA 0021 - NACA 0021 airfoil

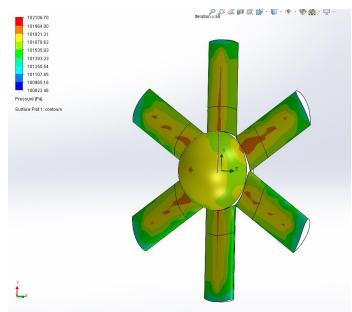

Power Output Analysis w/ Varying Airfoils

Experimental Setup

Table 1A: Correlation between Wells Turbine Airfoil Types and Power Output Components at Variable Wind Speeds						
Trial	Airfoil Type	Windspeed (m/s)	Angular Velocity (RPM)	Voltage (V)	Current (mA)	Power Output (mW)
N1	NACA 0021	7.7	2519	4.33	12.30	53.26
N2	NACA 0021	10.8	4008	6.92	54.10	374.37
N3	NACA 0021	12.7	4531	7.86	66.10	519.55
J1	Joukovsky	7.7	2577	4.35	13.00	56.55
J2	Joukovsky	10.8	4028	6.78	53.20	360.70
J3	Joukovsky	12.7	4541	7.82	68.20	533.32

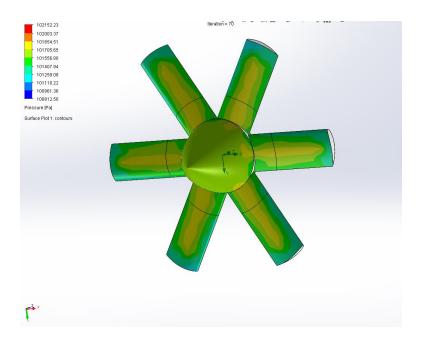
Graph 1B: Power Output at Various Windspeeds with Different Wells Turbine Airfoil Types


Turbine Nose Cone Static Analysis


• Parameters:

Wind Speed: 30 m/s

• Wind Direction: Z-axis

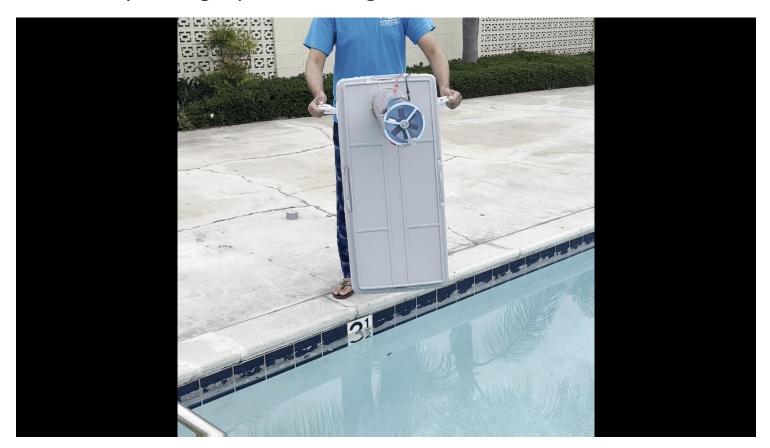

• Cd = $2 \times Fd / (0.5 \times p \times A \times v^2)$

Drag Coefficients for Various Wells Turbine Nose Cone Geometries

Nose Geometry	Drag Coefficient
Flat (control)	0.983
Blunt	0.685
Tangent Ogive	0.585

Manufacturing

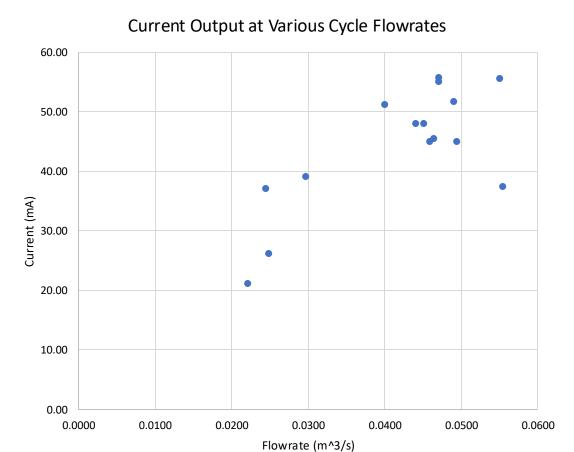
- Key Considerations
 - Body composition: Clear Polycarbonate
 - Lightweight, relatively cheap
 - Inert, resistive to corrosion
 - Duct Pipe composition: 5 in. (0.127 m.) Galvanized Steel
 - Corrosion resistant
 - Lightweight, relatively cheap
 - Assumed appropriate size (torque speed balance)
 - Generator selection
 - Low starting torque
 - Custom Materials
 - 3D printed easy manufacturability
 - Jigsaw to cut container
 - Epoxy resin as adhesive, silicone sealant for air-tightness



Beach Attempt

Testing

- Tested power output at swimming pool
 - Voltage, current data collected from multimeter
 - Flowrate measured by timing dip/rise from green line

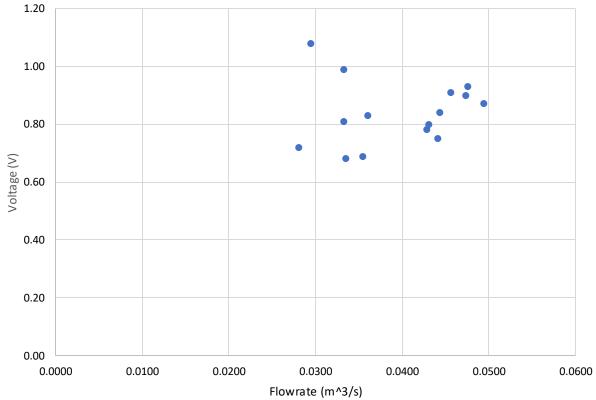


Results

Pool Test Current Data

Full Cycle Current Output at Various Flowrates:						
Trial	Cycle Time (s)	Flowrate (m ³ /s)	Current (mA)			
1	3.51	0.0221	21.20			
2	3.13	0.0248	26.20			
3	2.61	0.0297	39.20			
4	3.18	0.0244	37.10			
5	1.94	0.0400	51.20			
6	1.58	0.0491	51.8			
7	1.65	0.0470	55.1			
8	1.72	0.0451	48.1			
9	1.4	0.0554	37.4			
10	1.41	0.0550	55.6			
11	1.76	0.0440	48			
12	1.65	0.0470	55.8			
13	1.69	0.0459	45.1			
14	1.67	0.0464	45.6			
15	1.57	0.0494	45.1			

Average Flow Rate: 0.0417 m³/s **Average Current:** 44.167 mA



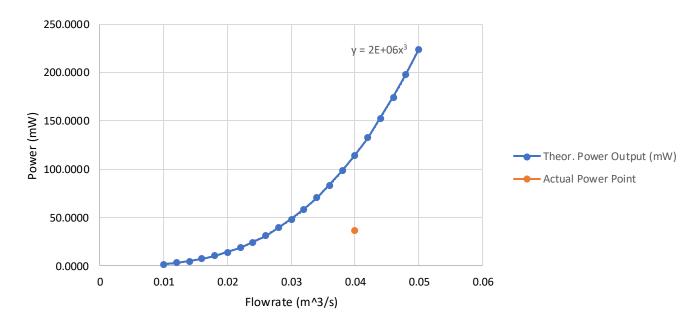
Results

Pool Test Voltage Data

Full Cycle Voltage Output at Various Flowrates:					
Trial	Cycle Time (s)	Flowrate (m^3/s)	Voltage (V)		
1	2.19	0.0354	0.69		
2	2.32	0.0334	0.68		
3	2.33	0.0333	0.99		
4	2.63	0.0295	1.08		
5	1.75	0.0443	0.84		
6	2.15	0.0361	0.83		
7	2.76	0.0281	0.72		
8	2.33	0.0333	0.81		
9	1.76	0.0440	0.75		
10	1.8	0.0431	0.8		
11	1.81	0.0428	0.78		
12	1.57	0.0494	0.87		
13	1.64	0.0473	0.9		
14	1.7	0.0456	0.91		
15	1.63	0.0476	0.93		

Average Flow Rate: 0.3955 m³/s

Average Current: 0.838 V


Concluding Notes

- Device able to generate power, albeit a small amount
 - Power Output: 37 mW @ ~0.04 m³/s
 - Theoretical: 114.79 mW
 - (32.23% of theoretical)

- Causes for Low Power Output:
 - Air leaking
 - Human error when timing

Comparing Theoretical and Actual Power Output at Corresponding Flow Rates

Future Work

- Increase entrance width for greater flow rate
- Design for optimal turbine size (gear ratio)
- Increase prototype weight for beach application

Acknowledgements

Special thanks to ...

Dr. Carlos Castro (faculty advisor)
Family (executional support)
Projects Hatchery (sponsor)

References

- 1. Astariz, S., Vazquez, A., & Iglesias, G. (2015). Evaluation and comparison of the levelized cost of tidal, wave, and offshore wind energy. Journal of Renewable and Sustainable Energy, 7(5).
- 2. Environmental Protection Agency (EPA) IPCC. (2014). *Greenhouse Gas Emissions*. Global Greenhouse Gas Emissions Data. Retrieved April 24, 2023, from https://climatechange.chicago.gov/ghgemissions/global-greenhouse-gas-emissions-data
- 3. Leeenna. (2015, May 6). *Chapter 7 Upper Section Physical Geography*. SlideShare. Retrieved April 24, 2023, from https://www.slideshare.net/LEEENNA/s3-ge-slides-11-coasts-gw1
- 4. National Oceanic and Atmospheric Administration . (2022, October 24). Water Power Technology. NOAA Celebrates 200 Years of Science, Service, and Stewardship. Retrieved April 24, 2023, from https://celebrating200years.noaa.gov/magazine/wave_energy/wavepowerside.html
- 5. S. P. da Silva, L., Pesce, C. P., Morishita, H. M., & Gonçalves, R. T. (2019). Nonlinear analysis of an oscillating water column wave energy device in frequency domain via statistical linearization. *Volume 9: Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology*. https://doi.org/10.1115/omae2019-96727
- 6. Texas A&M University. (n.d.). What is Wave Energy? Theory of Wave Energy & Availability. Retrieved April 24, 2023, from https://waveenergyconversiontamu15.weebly.com/theory-of-wave-energy--availability.html
- 7. University Corporation of Atmospheric Research. (n.d.). *Center for Science Education*. Predictions of Future Global Climate . Retrieved April 24, 2023, from <a href="https://scied.ucar.edu/learning-zone/climate-change-impacts/predictions-future-global-climate#:~:text=Climate%20models%20predict%20that%20Earth%27s%20global%20average%20temperature,gas%20levels%20continue%20to%20rise%20at%20present%20levels.

Pool Calculations

Pool Full Cycle Calculations:
Total Flow Rate Calculation - Sample (Trial 1, Current Data)
$w := 0.305 \ m$ $h := 0.241 \ m$ $l := 0.52705 \ m$
$V := w \cdot h \cdot l = 0.039 \ m^3$
$t_d\!\coloneqq\!2.44\;s$ Dip Time
$t_r\!\coloneqq\!1.07\;s$ Rise Time
$V_{cycle}\!\coloneqq\!2\!\cdot\!V\!=\!0.077m{m}^3$ Total volume displacement in a given cycle
$T\!\coloneqq\! t_d\!+\!t_r\!=\!3.51~s$ Total Cycle Time
$Q_t \coloneqq \frac{V_{cycle}}{T} = 0.022 \; \frac{\boldsymbol{m}^3}{\boldsymbol{s}}$