Screening of Magnetic Nanoparticles for Magnetic Hyperthermia Application by Finite Element Method Jose Hernandez-Romero, Chemical and Materials Engineering

	I. Introduction										
	Attainability of large alternating magnetic field (AMF) heating rates is essential for a magnetic fluid to be used in various applications that require localized heating in a controllable manner.										
•	In recent years, the application of magnetic nanoparticles (MNPs) has sparked great inter for the application of large alternating magnetic fields (AMF) in drug delivery and many cancer treatments.										
•	Currently, radiation therapy has been the standard treatment for cancer since the discover of X-rays by Roentgen ^[1] .										
•	Radiation therapy is typically used in combination with surgeries or chemotherapies, and success is dependent on the tumor's radio-resistance and normal tissue toxicity, which determines the appropriate dosage to administer for treatment ^[1] .										
•	Alternatively, for solid tumors, chemotherapy has been used most effectively as a second method to surgery and radiation therapy ^[2] .										
•	Magnetic hyperthermia involves elevating the temperature of a tumor region to approximately 42-46°C for an extended period of time, from which it may induce apopto in cancer cells ^[3] .										
•	As MNPs are injected into a tumor site and an AMF field is applied, the magnetic energy i converted to heat via relaxation losses allowing the cancer cells to be damaged with mini injury to the normal tissue ^[4] .										
•	Eddy currents, hysteresis, and resonance losses are negligible to the heat generation in MNPs due to the small size of particles (< 15 nm) ^[5] .										
•	Specific loss power (SLP), which is the heat generated per unit mass of MNPs, and the MN concentration, helps govern the temperature enhancement induced by the MNPs ^[3] .										
	Magnetic parameters that govern the heating efficiency of the magnetic nanoparticles include the magnetic anisotropy (K), saturation magnetization (M _s), and the size of the MNPs.										
	II. Objective										
n h dis Tra	this study, a 3D thermo-fluid model in COMSOL Multiphysics was generated to analyze the ermal effect of localized heating by six different magnetic nanoparticles on the temperatu stribution of a liver tumor. Furthermore, the relationship between particle dosage and the action of tumor damage was investigated.										
	III. 3D Model and Mathematical Formulation										
•	Specific Loss Power (SLP): $SLP = \mu_0 \pi \chi_0 f \frac{2\pi f \tau_R}{1 + (2\pi f \tau_R)^2} H^2$										
)	Effective Relaxation Time: $\tau_{R} = \frac{(\tau_{N} * \tau_{B})}{(\tau_{N} + \tau_{B})}; \tau_{N} = \tau_{0} e^{\frac{KV_{m}}{k_{B}T}} \text{ and } \tau_{B} = \frac{3\eta V_{H}}{k_{B}T}$ 20										
)	Pennes' Bioheat Equation: 10^{nm}										
/	$D_i c_i \frac{1}{\partial t} + v \cdot (-\kappa_i v r_i) = \rho_b c_b \omega_b (r_b - r_i) + Q_i + Q_i$										
,	Navier-Stokes Equation: $\rho_b c_b \left(\frac{\partial T_b}{\partial t} + v_z \frac{\partial T_b}{\partial z}\right) = \nabla \cdot (k_b \nabla T_b) + Q$ $0 \qquad \text{mm}$										

The Finite Element Method was used to solve the bioheat transport equation, where a system of equations was obtained as a function of temperature

12 injection sites were made depicting magnetic nanoparticles each with a 0.1 mm radius

A blood vessel was placed in the center of the model with a 0.5 mm radius and 30 mm height

The MNPs were set at a volume concentration of 0.1 with a particle radius of 0.1 mm and an initial particle dosage of 0.5 kg/m³ was used

The time of interest for each study was 1500 seconds, and a Normal mesh type was used

Mentor: Dr. Huseyin Ucar Kellogg Honors College Capstone Project

CPP Student RSCA Conference 2022

ssion							V. Conclusion
Table 1: Physical and Magnetic Properties of Magnetic Nanoparticles ^[5,6,7] .							 A two-dimensional model of the temperature profile illustrated that the temperature decreased abruptly at the center of the tumor,
Magnetic Nanoparticle	Saturation Magnetizatio n, Ms [kA/m]	Magnetic Anisotrop y, K [kJ/m ³]	Specific Heat Capacity , c _{MNP} [J/kg·K]	Mass Densit , ρ _{ΜΝΙ} [kg/m]	y Therma Conduct ₃ y, k _{MNI} [W/m·ł	al ivit Power, SLP (] [W/m ³]	 where the blood vessel is located. The cooling effect of the blood vessel was dependent on the blood velocity; thus, a higher blood velocity intensifies the cooling effect and thermal gradient of the tumor's temperature.
Magnetite	446	9	670	5180	528	1.2×10 ⁹	 Maghemite magnetite and iron platinum achieved maximum
Maghemite	414	4.7	746	4600	528	9.25×10 ⁸	temperatures of $12 \ 13^{\circ}$ C $12 \ 76^{\circ}$ C and $14 \ 14^{\circ}$ C respectively, which
Cobalt Ferrite	425	180	700	4907	528	4.65×10 ⁸	satisfies the desired temperature for magnetic hyperthermia
Barium Ferrite	380	300	650	5280	528	3.03×10 ⁸	treatment.
Iron Platinum	1140	206	327	15200) 528	2.2×10 ⁹	 In contrast, the cobalt ferrite, barium ferrite, and Fe₉Ti₃ MNPs
Fe ₉ Ti ₃	922.939	41	550	87664	528	2.5×10 ⁹	achieved a slightly lower maximum temperature of 39.71°C, 38.75°C,
						and 39.23°C, respectively.	
Table 2	Physical and	l Physiologi Health	cal Prope y Tissue.	erties o	f Liver Tum	or and	increased as well.
Material (Liver)	Specific Heat Capacity [J/kg·K]	Mass Density [kg/m ³]	Therm Conduct [W/m	al ivity ·K]	Frequency actor [1/s]	Activation Energy [J/mol]	 Maghemite, magnetite, and iron platinum achieved approximately 100% of tumor damage within a shorter treatment time and lower dosage when compared to the results of cobalt ferrite, barium ferrite, and Fe₉Ti₃.
Tumor	132	21500	71.0)	7.39×10 ³⁹	2.577×10 ⁵	• Administering maghemite magnetite and iron platinum over cohalt
Healthy Tissue	3540	1079 0.52 7.39×10		7.39×10 ³⁹	2.577×10 ⁵	ferrite, barium ferrite, or Fe ₉ Ti ₃ would be optimal to achieve greater heat dissipation, a larger fraction of tumor damage, and shorter	
							treatment duration.
Table	e 3: Physical a	nd Physiolo	gical Pro	perties	of Blood V	/essel.	 In an effort to validate the results provided in this study, a parametric mesh convergence study was conducted.
Specific Heat Capacity [J/kg·K]	Mass Dens [kg/m ³]	Mass Density [kg/m ³]		Cond [S	trical uctivity /m]	Relative Permittivity	 Based on the results, there was no large deviation among the temperature values leading to the conclusion that either mesh size
3300	1100	0.543		0.667		1	was an appropriate choice.
Arterial Blood	Blood	d Metabolic Heat		Blood		letabolic Heat	 It was determined that the Normal mesh size used for this study was appropriate in producing an accurate set of results for both temperature and the fraction of damage
Temperature	, Perfusion Ra	ite, Source, Q _i [i =		Perfusion Rate,		Source, Q _i [i =	
T _b [K]	$\omega_{\rm b}$ [i = 1]	= 1] 1]		$\omega_{\rm b}$ [i = 2]		2]	
310.15 0.0095 5790 0.003 700		700	temperature and the naturn of damage.				
Surface: Temperature (degC)							VI. References

sion								V. Conclusion	
Table 1: Physical and Magnetic Properties of Magnetic Nanoparticles ^[5,6,7] .								 A two-dimensional model of the temperature profile illustrated that the temperature decreased abruptly at the center of the tumor, 	
Magnetic Nanoparticle	Saturation Magnetizatio n, Ms [kA/m]	Magnetic Anisotrop y, K [kJ/m ³]	Specific Heat Capacity , C _{MNP} [J/kg·K]	Mass Density , ρ _{ΜΝΡ} [kg/m ³]	Conduc y, k _M [W/m	nal Ctivit NP SL (W/)	fic s er, n ³ 1	 where the blood vessel is located. The cooling effect of the blood vessel was dependent on the blood velocity; thus, a higher blood velocity intensifies the cooling effect and thermal gradient of the tumor's temperature. 	
Magnetite	446	9	670	5180	528	3 1.2×	.09	 Maghemita magnetite and iron platinum achieved maximum 	
Maghemite	414	4.7	746	4600	528	3 9.25×	10 ⁸	topporatures of 42.42°C 42.76°C and 44.44°C respectively, which	
Cobalt Ferrite	425	180	700	4907	528	3 4.65×	10 ⁸	catisfies the desired temperature for magnetic hyperthermia	
Barium Ferrite	380	300	650	5280	528	3.03×	10 ⁸	treatment.	
Iron Platinum	1140	206	327	15200	528	3 2.2×	.09	 In contrast, the cobalt ferrite, barium ferrite, and Fe₉Ti₃ MNPs 	
Fe ₉ Ti ₃	922.939	41	550	87664	528	3 2.5×	.09	achieved a slightly lower maximum temperature of 39.71°C, 38.75°C,	
Table 2: Physical and Physiological Properties of Liver Tumor and Healthy Tissue.								 and 39.23°C, respectively. As the particle dosage was increased, the fraction of tumor damage increased as well. 	
Material (Liver)	Specific Heat Capacity [J/kg·K]	Mass Density [kg/m ³]	Thermal Conductivity [W/m·K]		Frequency Factor [1/s]		on /]	 Maghemite, magnetite, and iron platinum achieved approximately 100% of tumor damage within a shorter treatment time and lower dosage when compared to the results of cobalt ferrite, barium ferr and Fe₉Ti₃. 	
Tumor	132	21500	71.0	7	7.39×10 ³⁹	2.577×2	05	• Administering maghemite, magnetite, and iron platinum over cobalt	
Healthy Tissue	3540	1079	0.52		7.39×10 ³⁹	2.577×2	.0 ⁵	ferrite, barium ferrite, or Fe_9Ti_3 would be optimal to achieve great heat dissipation, a larger fraction of tumor damage, and shorter	
								treatment duration.	
Table	3: Physical ar	nd Physiolo	gical Pro	perties	of Blood	Vessel.		mesh convergence study was conducted	
Specific Heat Capacity [J/kg·K]	Mass Densi [kg/m ³]	ity Condu [W/	ermal El uctivity Con /m·K]		rical ctivity m]	Relative Permittivity		 Based on the results, there was no large deviation among the temperature values leading to the conclusion that either mesh size 	
3300		U.		0.667				was an appropriate choice.	
Temperature	Perfusion Pa	ivietable		Blood Dorfusion Data			eat i = _	• It was determined that the Normal mesh size used for this study was	
	$-\omega$ [i = 1]		1]	$\frac{1}{(1-2)}$				appropriate in producing an accurate set of results for both	
310 15	0 0095	5	790	0 0	03	700		temperature and the fraction of damage.	
510.13				0.0		,00]		
urface: Temperature (degC)								VI. References	

CU	ssion							V. Conclusion			
	Table 1: Phys	sical and Mag	netic Prope	erties of N	Magneti	c Nanopa	 A two-dimensional model of the temperature profile illustrated that the temperature decreased abruptly at the center of the tumor, 				
e	Magnetic Nanoparticle	Saturation Magnetizatio n, Ms [kA/m]	Magnetic Anisotrop y, K [kJ/m ³]	Specific Heat Capacity , C _{MNP}	Mass Density , ρ _{ΜΝΡ} [kg/m ³ 1	Conduc y, k _{MI} [W/m	nal Specific Loss tivit Power, NP SLP ⋅K]	 where the blood vessel is located. The cooling effect of the blood vessel was dependent on the blood velocity; thus, a higher blood velocity intensifies the cooling effect and thermal gradient of the tumor's temperature. 			
	Magnetite Maghemite Cobalt Ferrite Barium Ferrite	446 414 425 380	9 4.7 180 300	670 746 700 650	 5180 4600 4907 5280 	528 528 528 528 528	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	 Maghemite, magnetite, and iron platinum achieved maximum temperatures of 42.43°C, 42.76°C, and 44.44°C, respectively, which satisfies the desired temperature for magnetic hyperthermia treatment. 			
	Iron Platinum Fe ₉ Ti ₃	1140 922.939	206 41	327 550	15200 87664	528 528	2.2×10 ⁹ 2.5×10 ⁹	 In contrast, the cobalt ferrite, barium ferrite, and Fe₉Ti₃ MNPs achieved a slightly lower maximum temperature of 39.71°C, 38.75°C, and 39.23°C, respectively. 			
e	Table 2	: Physical and	Physiologi Health	cal Prope y Tissue.	erties of	Liver Tur	 As the particle dosage was increased, the fraction of tumor damage increased as well. 				
	Material (Liver)	Specific Heat Capacity [J/kg·K]	Mass Density [kg/m ³]	Therm Conduct [W/m	al Vity Factor [1/ K]		Activation Energy [J/mol]	 Maghemite, magnetite, and iron platinum achieved approximately 100% of tumor damage within a shorter treatment time and lower dosage when compared to the results of cobalt ferrite, barium ferrite, and Fe₉Ti₃. 			
	Tumor Healthy Tissue	132 3540	21500 1079	71.0 0.52) 7 . 7	7.39×10 ³⁹ 7.39×10 ³⁹	2.577×10 ⁵ 2.577×10 ⁵	 Administering maghemite, magnetite, and iron platinum over cobalt ferrite, barium ferrite, or Fe₉Ti₃ would be optimal to achieve greater heat dissipation, a larger fraction of tumor damage, and shorter 			
Table 3: Physical and Physiological Properties of Blood Vest								 In an effort to validate the results provided in this study, a parametric mesh convergence study was conducted. 			
	Specific Heat Capacity [J/kg·K] 3300	Mass Densi [kg/m ³] 1100	ty Cond [W/ 0.	ermal uctivity /m·K] 543	Electrical Conductivity [S/m] 0.667		Relative Permittivity 1	 Based on the results, there was no large deviation among the temperature values leading to the conclusion that either mesh size was an appropriate choice. 			
	Arterial Blood Temperature, T _b [K] 310.15	Blood Perfusion Ra ω _b [i = 1] 0.0095	ate, Metabo Source	Metabolic HeatBloodSource, Q_i [i =Perfusion Rat1] ω_b [i = 2]57900.003		od I on Rate, = 2] 03	Metabolic Heat Source, Q _i [i = 2] 700	 It was determined that the Normal mesh size used for this study was appropriate in producing an accurate set of results for both temperature and the fraction of damage. 			
	Surface: Temperature (degC)										

1. Spirou, S., Basini, M., Lascialfari, A., Sangregorio, C., & Innocenti, C. (2018). Magnetic Hyperthermia and Radiation Therapy: Radiobiological Principles and Current Practice +. Nanomaterials, 8(6), 401. doi: 10.3390/nano8060401. **2.** Giustini, Andrew J., et al. "Magnetic Nanoparticle Hyperthermia In Cancer Treatment." Nano LIFE, vol. 01, no. 01n02, 2010, pp. 17–32. US National Library of Medicine National Institutes of Health, doi:10.1142/s179398441000067. **3.** Habib, A. H., et al. "Evaluation of Iron-Cobalt/Ferrite Core-Shell Nanoparticles for Cancer Thermotherapy." Journal of Applied Physics, vol. 103, no. 7, 2008, doi:10.1063/1.2830975. 4. Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, J. Phys. D 36, R167 2003. **5.** Rosensweig, R.e. "Heating Magnetic Fluid with Alternating Magnetic Field." Journal of Magnetism and Magnetic Materials, vol. 252, 2002, pp. 370–374., doi:10.1016/s0304-8853(02)00706-0. 6. Habib, A.H., Ondeck, C.L., Chaudhary, P., Bockstaller, M.R., & McHenry, M.E. (2008). Evaluation of iron-cobalt/ferrite coreshell nanoparticles for cancer thermotherapy. Journal of Applied Physics, 103. doi: 10.1063/1.2830975. **7.** Maenosono and S. Saita, IEEE Trans. Magn. 42, 1638 (2006). **VII. Acknowledgements**

The author would like to extend his gratitude to his faculty advisor, Dr. Huseyin Ucar, who has been an outstanding mentor throughout this research. Dr. Ucar's guidance, patience, encouragement, and understanding of the material has served a pivotal part in the success of this research. The author would also like to express his sincere gratitude to his family for their continued support, advice, and encouragement as he advanced through his undergraduate studies and research. He would also like to thank the CPP Student RSCA Conference for the opportunity to showcase his research.

