Lithium-Ion Batteries

Steve Issakhanian, Chemical Engineering Mentor: Dr. Lloyd Lee Kellogg Honors College Capstone Project

Battery Basics

Lithium-Ion Battery

- Battery components: anode,
 - cathode, salt bridge, & electrolyte solution
- Electron flows from anode to cathode which induces electricity
- The reverse process charges the battery

Chemistry ♣ Anode: LiC₆ \rightleftharpoons C₆ + Li⁺ + e⁻ ♣ Cathode: CoO₂ + Li⁺ + e⁻ \rightleftharpoons LiCoO₂

♦ Overall: LiC₆ + CoO₂ \implies C₆ + LiCoO₂
♦ Overcharging: LiCoO₂ \implies Li⁺ + CoO₂ + e⁻
♦ Over discharging Li⁺ + e⁻ + LiCoO₂ \implies Li₂O + CoO

Electric Double Layer

- The EDL is the layer of charged particles that stack on electrodes
- There are multiple models of the EDL: Hemholtz & Guov-Chapman model
- The relationship which describes the Hemholtz EDL: $\frac{\partial^2 \varphi}{\partial x^2} = \frac{\rho(x)}{\varepsilon_1 \varepsilon_0}$
- * Where φ is the electric potential, x is the distance from the electrode, $\rho(x)$ is the charge density as a function of distance from the electrode, ε_0 is the permittivity of a vacuum, and ε_1 is the relative permittivity of the solution
- The density function is described by: $\rho(x) = \sum n_1 z_i e = \sum n_1^0 e z_i \exp(\frac{-z_i e \varphi}{kT})$ Where n_1^0 is the concentration of ion I in the bulk solution, e is the unit charge of an electron, z_i is the charge on ion I, k is the Boltzmann constant, and T is the temperature

The figure above is a model of Helmholtz and Guoy-Chapman theories respectively.

Relationships Used to Collect Data

Poisson-Boltzmann equation (for electrostatic potentials)
Debye-Huckel inverse shielding length $\kappa^2 \equiv \frac{4\pi e^2}{\varepsilon_m kT} \sum_j z_j^2 \rho_j$ Bjerrum Length $B_z \equiv \frac{e^2}{\varepsilon_m kT} |z_+ z_-| \Leftrightarrow$ lonic Strength $I \equiv \frac{1}{2} \sum_j z_j^2 \rho_j$

$$\nabla^2 \Psi_c(r) = -\frac{4\pi}{\varepsilon_m} \sum_i z_j e \rho_j \exp[-\beta z_j e \Psi_c(r)] \qquad \nabla^2 \Psi_c(r) = \kappa^2 \Psi_c(r)$$

$$\kappa^2 = 4\pi B \sum_j z_j^2 \rho_j \qquad \kappa^2 = \frac{8\pi e^2 I}{\varepsilon_m kT} = 8\pi B I, \quad or \quad \kappa = \sqrt{8\pi B} \sqrt{I}$$

Monte-Carlo Data

Extracted data from charts from papers and reports using Monte-Carlo method

Density Profiles (M) vs. Z (nm)

Base code to MATLAB Used for all calculations

- in project
- Fortran
 - ... Calculaet Debye Inverse Length kappa for NaCl Solutions real*4 M,k,kappa,kappa2,Ionic dimension M(6),d(6),c(6),rhop(6),rhom(6) data M/0.1,0.2,0.32,0.50,0.80,1.2/ data d/1.000115,1.00519,1.00998,1.0708,1.02865,1.04365/

open (15,file='kappa.txt',status='unknown')

	Input data		
e= 1.6	0206e-19	!Coulomb of unit electron	
em= 78	.358*111.2e-12	<pre>!permittivity of water at 25oC.</pre>	C^2/(N.m^2
k= 1.3	8054e-23	Boltzmann constant. J/K	
т= 298	1.15	!Kelvin	
zp=1.	0	Valence cation	

