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Background 

     It is well known that the constant-pressure heat capacity, Cp, diverges (increasing without limit) at the 
critical point of gas-liquid coexistence line. However, it is not clear how Cp behaves at other temperatures 
and pressures away from criticality. In this study, for a Lennard-Jones potential, the isotherms of Cp, at 
reduced temperatures T* = 1.6 and 3.0 along a range of densities (for reduced densities ρ* from 0.1 to 
0.36), was examined.  
 
     The Lennard-Jones Potential is a mathematical model that is used to estimate the interaction potential 
between two molecules.  The curve for a simple Lennard-Jones fluid is shown below in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    The Lennard-Jones potential has been used in the past to model quite accurately many different realistic 
gases.  The relation for a Lennard-Jones potential is shown below.   
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     Where u is the potential, ɛ is the well depth, r is the distance between particles and σ is the van der 
Waals radius. 
     In this study, we use the Ornstein Zernike (OZ) integral equation, shown below, to model the heat 
capacity behavior of the Lennard-Jones fluid. 
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     Where ρ is density, and h, C, and γ are probability functions showing different aspects of the colloidal 
structure.  
     However, since there are too many unknowns in the OZ integral equation, an additional closure relation 
must be used therefore, in this study, the zero-separation (ZSEP) closure relation, which satisfies the zero-
separation theorems on the cavity functions, is used.   
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     The internal energy of a fluid can be expressed utilizing molecular dynamics using the following 
relation.  
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     Where U is the potential energy, u is the Lennard-Jones Potential, and g is the radial distribution 
function. 
     This, along with the previous relations, can be used to model the heat capacity behavior of a Lennard-
Jones fluid, as is done in this study.  This study is the result of the first time that integral equations (IET) 
have been used to search for heat capacity maxima, as insofar, only molecular dynamics simulations (MD) 
and equation of states (EOS) considerations have been used. 
 
     Interestingly, in the literature, at the isotherm T* =3.0, maxima or minima are not observed in the 
temperature density curve. Yet, at the isotherm T* = 1.6, a clearly defined maxima of Cv and Cp are 
observed at the density value ρ* near 0.3. 

Objective 

     To verify if there are maxima in heat capacity behavior for realistic industrial fluids. 

Experimental Procedure: 

     This project was performed using FORTRAN code based on iterative calculations based on the Picard 
method to solve for the OZ equation.  Once the equation was solved, the outputs were checked for certain 
thermodynamic consistencies shown below. If the equation was not found to be consistent, then new 
variables were entered for the ZSEP closure, and the program was re-run. Once the equation was found to 
be consistent, values of Cv and Cp were calculated using excel. 

Results 

     As can be seen above in Figures 2 and 3, there are local maxima for both the constant pressure and 
constant volume heat capacity at around the reduced density value ρ*=0.3.   In order to explain why this 
phenomena may exist, the g-distribution function, a function of density with respect to radius, was 
calculated using the integral equation technique and is plotted below in Figure 4. 

Figure 2: Heat Capacity Cv behavior along the 
isotherm T*=1.6 

Figure 3: Heat Capacity Cp behavior along the 
isotherm T*=1.6 

     This shows that at the same reduced density at which the heat capacity maxima is found, at ρ* ≈ 0.3, 
there is a minimum in the peak of the g-distribution function.  This gives rise to potential structural reasons 
as to why the maxima that have been found exist.  By looking at Equation 4, one can see that as the g-
distribution function becomes lower, there is a result of a higher heat capacity as the second term becomes 
less negative. 

Figure 4: g-distribution function of multiple 
densities along T*=1.6  

Conclusions 

     We find that there are actually heat capacity maxima for realistic industrial fluids and that the maxima 
are found in the same area as found in the literature using molecular dynamics and equations of state, yet 
this data has been found using Integral Equations, which are a less expensive way to compute fluid 
properties than molecular dynamics.    
     The critical point for a Lennard-Jones fluid is at T* = 1.326 and ρ* = .316.  It is well known that heat 
capacity diverges to infinity near the critical point and this heat capacity maxima may be because of the 
proximity to the critical point. 
     It is also important to note that when there are heat capacity maxima, at that same density there are 
lower peaks in the g-distribution function, which gives rise to the interesting notion that heat capacities 
are related to how particles in a fluid are arranged. 

Future Considerations 

     In the literature, heat capacity maxima at other conditions have been found, for these cases 
integral equations can be used to verify these maxima as well as to potentially search for new heat 
capacity maxima.   
     Also, as there is not currently experimental verification because of the difficulty associated with the  
low temperature of around 192 K, experiments can be run to further verify these maxima and see if 
they occur in real life. 
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Figure 1: Potential curve for common Lennard-
Jones fluids 


