
Encryption Design and Lightweight
Development

Robert Herndon, Computer Engineering
Mentor: Dr. Mohamed El-Hadedy Aly

Kellogg Honors College Capstone Project

Introduction Top Level Design DryGASCON
Encryption is used in everyday life, but it has not been
optimized for small area and low power devices. It is used
to secure communication. This means that other people,
unless they are able to crack the encryption, will be unable
to understand the message. This hardware design process
was done in a team, but encryption is little taught within
our curriculum and I had some background with some prior
experience. This poster plans to show that encryption at its
most basic state is easy to explain and understand when
properly introduced. Our complex approach will modify
how industry secures small networks and how the
encryption can be implemented on any device.

Encryption at its most basic level is taking in data and
manipulating it to be secured during the transfer of the
data through cable or air. The inverse process, decryption,
takes the secured data and reverts it back to the data at the
beginning of the process. Encryption can be processed on a
the physical or the software level, where typically the
software approach is used. However, physical encryption
systems are more secure for data transfer as it uses a
separate processor[1]. The project was focused on design of
a physical system.

Lightweight encryption is the application of encryption and
decryption to be highly portable and secure. However, it is
lightweight because it will take as few resources as needed
to complete the process. While modern encryptions are
strong, they aren’t designed for low power devices, as they
are too large to fit on the devices[2].

The National Institute of Standards and Technology, or NIST,
released a competition in 2019 asking for teams to design
lightweight algorithms. Sébastien Riou submitted
DryGASCON as a design for the competition and the project
used this implementation to create a hardware
encryption[3]. The images on the left show his main design.

1)Key Setup – This process created a capacity and secret
state

2)Optional Static Data – Static data is used to differentiate
the capacity between systems

3)Diversification – A nonce, used only once per key, is
changing the capacity

4)Associated Data – Metadata is mixed in to the state to
diversify the capacity per message

5)Message – In encryption, the cipher text, or encrypted
data is made. In decryption, the data
returns to normal.

6)Tag Generation – Verification stage to verify in a
decryption is properly done, generated
in encryption.

The team designed this entire system, however, individual
parts were split up and designed separately by members.
The parts designed need to be efficient, low power, and low
area. As the model is written in C, which runs procedurally,
the design needed to be abstracted in order to run as the
Hardware Description Language creates parallel
hardware[4]. The plan was to place this encryption
algorithm on two FPGAs and use them to communicate and
send data between two devices.

Image of Sebastians Design

Encryption is not typically in the curriculum for engineers
until graduate level as it is a complex topic to understand
and implement. Being able to explain the process and have
other people understand the basic principles is key to the
design process. The most basic encryption to learn is using
an exclusive or, or XOR, on the data.

To encrypt the data, a specific key is used to act on the data
and change it. In this case, the key is the bottom block. If
the same key is used for the encrypted data, the original
data will be made at the other side of the XOR.

This basic principle of XORing values applies to all
encryptions. Using a key, along with other set data, a
message can be encrypted and decrypted with the same
key and set data. There are specific encryption algorithms
that use separate keys to encrypt and decrypt, but the
concept of reverting data is still used.

While the project is not completely finished, a full
simulation of the system is completed and has been verified
to work. However, when place on the FPGA, the design
does not match the simulation and more work is needed to
fully complete this algorithm. Work is being done to fix the
pieces to be able to run the algorithm on the board. This
simulated system is faster and more secure than the one
Sebastian made for his FPGA as it runs in a shorter time and
uses the static stage. Additional measures that are planned
was drone communication, as it is currently not fully
secured. When properly implemented, this algorithm
should be able to successfully achieve this goal.

Definitions

[1] “What is the difference between hardware vs software-
based encryption for secure USB flash drives?” Kingston
Technologies. Available:
https://www.kingston.com/us/solutions/data-
security/hardware-vs-software-encryption, Accessed on: March
17, 2020.
[2] “Lightweight Cryptography.” NIST. Available:
https://csrc.nist.gov/projects/lightweight-cryptography,
Accessed on: March 20, 2020.
[3] Riou Sebastien, DryGASCON, (2019),
DryGASCON,https://github.com/sebastien-riou/DryGASCON
[4] John Sanguinetti, “Abstraction Levels and Hardware Design.”
EE Times. July 27, 2007. Available:
https://www.eetimes.com/abstraction-levels-and-hardware-
design/, Accessed on: March 20, 2020.

Teaching Encryption

 0011 0011

0101 1010

XOR 0110 1001

Data

Key

Encrypted Data

0011 0011

 0101 1010

XOR
0110 1001

Data

Key

Encrypted Data

References

ConclusionTop Level Hardware

	Encryption Design and Lightweight Development

