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Emerging super-resolution fluorescence microscopy techniques (e.g. PALM and STORM) are of growing significance in 
biophysical research as they enable high resolution imaging of live cells. Key structures imaged by these techniques 
include the cytoskeleton, membranes, and mitochondria. Recent theoretical work confirms that the experimentally 
achievable image acquisition rate and resolution of these techniques is limited by the performance of both the physical 
imaging system and the rejection algorithm used to distinguish single-fluorophore images from multi-fluorophore (overlap) 
images. Better rejection algorithms may therefore yield faster and more accurate experiments in addition to faster image 
analysis.

An effective and representative method of benchmarking rejection algorithm performance is needed to determine the 
“optimal” rejection algorithm. To benchmark a rejection technique, a set of simulated images is generated and then 
analyzed by the rejection algorithm. Previously, photon counts per molecule were arbitrary simulation parameters; 
however, selecting photon counts from an exponential distribution is more realistic (the time an activated molecule 
spends in its excited state is exponentially distributed). The constraints (or lack thereof) placed on exponentially 
distributed photon counts greatly effect rejection algorithm performance. We found that imposing a minimum photon 
count of approximately half the mean photon count per molecule was necessary to obtain realistic and meaningful 
rejection algorithm performance characteristics. Our benchmarking results show that rejection algorithms (ellipticity tests) 
based on principal components perform better than rejection algorithms based on curve fits. (Ellipticity is used to infer the 
presence of multiple closely-spaced activated fluorophores.) Since rejection performance is a key factor in super-
resolution microscopy techniques, improved rejection algorithm characterization is an important step towards robust and 
powerful STORM/PALM image processing tools for widespread use in biophysical research.

•PALM/STORM Process

• Not all the molecules in a crowded image are “on” at the 
same time.

• When blurs don’t overlap you can localize molecules with 
sub-pixel resolution

• If 2 close molecules are “on” at the same time, 
PALM/STORM fail: so discard that image.

• Repeat this process, randomly switching different 
molecules on and off.  Build up image.

•Rejection Algorithms

•Abstract:

Input images

If it thinks there’s 1 molecule present:
Estimate the center of bright spot

Record molecular position

• Given an image with m activated molecules in a bright spot: 
fm = fraction of m molecule images accepted by filter.

• We want f1 = 1, and other fm to be small

• A good filter can spare you the hassle of doing position estimates on overlap data (2+ molecules)

Reject 
image?

Discard image if it thinks 
there are 2+ molecules

300 nm
300 nm

•Rejection Algorithms (cont.)

• A rejection algorithm's f1 value and f2(r) curve can be used to compare its performance to other 
rejection algorithms.

• To determine f1 and f2(r), the rejection algorithm was applied to simulated diffraction-limited 
images of 2 molecules

Assume a general separation-dependent 
acceptance probability, f2

f2(0) = 1, if we don't use overall 
intensity in rejection criteria 

•Simulation Method
Effective pixel size:  72nm, 120nm (scaled to object plane)

16 subpixel displacements

r:  0 to λ/2

θ(r):  0° to 45°

# photons/molecule : Drawn from an exponential distribution with mean 
(<N>) of 1000 photons or 3000 photons

Only analyze bright spots with a minimum photon count of 700 or 2000

About 38000 cases, 300 images per case to average over noise 
Generate images with:
I = I0*PSF(r) + Poisson Noise

r/λ

f2(r/λ)
f2 increases with 
increasing molecular 
separation

f2 doesn't go to zero at 
large molecular 
separations

Simulation results vs. Ideal 
curve: Non-ideal effects?

•Ellipticity Rejection Algorithm: least squares curve fitting

Infer ellipticity from a, b, c.

Reject bright spot if ellipticity exceeds 15%, i.e. if:

   semi-major axis – semi-minor axis        > 0.15
0.5*(semi-major axis + semi-minor axis)

Fit bright spot intensity profile (via Levenberg-Marquadt) to:

vs.

•What's in the tail?

r/λ

f2(r/λ)

• We removed some images from analysis based on photon count/molecule to see which images comprise 
the tail

• Width of curve nearly independent of photon count threshold and pixel size
 

•Ellipticity Rejection Algorithm: Principal Components

Infer ellipticity from 

Compute 2nd moments of bright spot: Ixx, Iyy and Ixy

Reject bright spot if ellipticity exceeds 10%

Much faster than nonlinear fitting!

•Conclusions and acknowledgments
We have established a methodology that enables meaningful benchmarks and comparisons 

among very different approaches to rejection
Rejection algorithms based on principal components are better than rejection algorithms 

based on curve fits

The “tail” of the f2 curve, and its implications for localization precision, need to be studied.
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•Results: Principal components vs. Least squares fitting

• Both have similar widths, but principal components rejects more at large separations

• Principal Components is less sensitive to background noise
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