Low Cost Embedded Device for Animatronic Control

Dominic Holloman, Computer Engineering

Kevin Worsley, Computer Engineering Mentor: Dr. Mohamed E. Aly

Kellogg Honors College Capstone Project

Animatronics are an integral part of many amusement park rides, museums, and children's toys. The animatronics in amusement parks are large, complex devices costing anywhere from thousands to millions of dollars. The sacrifices made for mass produced children's toys are often seen in the animatronics' features and behaviors. The goal of this project is to create a low cost, entertaining children's animatronic toy capable of responding to the user's emotions. Using commercial off-the-shelf parts (COTS), this project's design allows for visual, physical, and auditory feedback based on the user's emotions.

Objective

Make an autonomous, interactive, children's toy capable of emotional detection and responding with lights, sounds, and animations while keeping the final toy price less than \$75.

Requirements

A sample of the toy's requirements is shown below. Additional requirements (such as "Safety") include: all electronics be concealed within the toy's enclosure and the toy must remain below 40°C.

			F	Requirem	ents				
1.0	The toy :	shall detect e	emotions						
	1.1	The toy sha	all detect fac	ial expression	ons				
		1.1.1	It will have (Computer Vi	ision and exp	pression det	ection.		
			1.1.1.1	Computer V	Vision will be	achieved th	rough a web	camera	
			1.1.1.2	Expression	detecion wil	l be achieve	d through m	achine learn	ing
	1.2	The toy sha	all detect auc	lio events					
		1.2.1	It will have a	a microphon	e.				
2.0	The toy sh	all react bas	ed on input						
	2.1	The toy sha	all have multi	ple reaction	S				
		2.1.1	It will be ach	nieve throug	h preset rea	ctions saved	d on a micro	controller.	
	2.2	The toy sha	all react phys	sically					
		2.2.1	It will move	along one a	xis.				
			2.2.1.1	This will be	achieved wit	th a servo.			
		2.2.2	It will play so	ound effects	3.				
			2.2.2.1	This will be	achieved wit	th a speaker	and a micr	ocontroller.	
		2.2.3	It will display	y lights.					
			2.2.3.1	This will be	achieved wit	th RGB LED	S.		
		2.2.4	It will display	y facial anim	nations.				
			2.2.4.1	1 This will be achieved with an LED Dot Matrix.					
	2.3	The toy sha	all have a de	fault state					
		2.3.1	The toy will	display a "s	leeping" state	e			
			2.3.1.1	This will be	achieved thr	rough anima	tions.		
3.0	The to	y shall be lo	w cost						
		3.1	The toy will	be less than	า \$75				
			3.1.1	The contro	ller board will	l cost less th	an \$15		
			3.1.1	The contro	ller board will	l cost less th	an \$15		

Cost Analysis

A component price breakdown for the current design is shown below. The full toy (not including plastic for 3D printing and PCB price) costs \$50.71. The majority of this cost (19.72%) is due to the Raspberry Pi Zero. The next most expensive items are the servo (11.73%) and webcam (10.81%). The design, when adding an additional \$10 for PCB manufacturing (based on a quote from jlcpcb.com) and \$10 of 3D printer filament (based on 1kg = \$20), the total price of the toy is \$70.71. While the toy's price to manufacture is below \$75, if sold on the market, the price would be greater than \$75. Therefore, this toy design does not meet the price requirement.

This price could be reduced in later variants by redesigning the systems with the highest costs. A price breakdown by system is also shown below. The "Emotional Response" system takes almost a third of the budget. Reworking this system is the most critical when attempting to reduce the price.

If the emotional recognition, master control and sound systems were combined into a single chip (as in the design described in the previous section), the price could further be reduced, as could the PCB area.

Shown below are other, popular children's robotic toys with their initial release price listed beside them. The toy designed for this project includes more functionality for less money.

Component Price Breakdown					
Item	Description	Quantity	Cost	% of Cost	
Ř-78E5.0-1.0	DC DC CONVERTER 5V 5W	1	\$3.26	6.43%	
MCP1825ST-3002E/D	B IC REG LINEAR 3V 500MA	1	\$0.51	1.01%	
CR1206-JW-201ELF	RES SMD 200 OHM 5% 1/4W	3	\$0.30	0.59%	
CR1206-JW-102ELF	RES SMD 1K OHM 5% 1/4W	3	\$0.30	0.59%	
CR1206-JW-103ELF	RES SMD 10K OHM 5% 1/4W	3	\$0.30	0.59%	

Design

During the design phase, each system was physically prototyped on a breadboard and its functionality was confirmed. Initially, the emotional recognition, master control and sound systems were to be implemented on an FPGA+ARM processor. Due to out-of-date drivers from the manufacturer, a new system was designed using a Raspberry Pi Zero as the machine learning processor and 8-bit PIC microcontrollers as the peripheral controllers. A PIC18F4321 acts as the main processor, controlling the RGB LEDs, servo, LED Dot Matrix, microphone and interfacing with the Raspberry Pi Zero. A secondary PIC12F1822 is used as a Direct Digital Frequency Synthesis (DDFS) audio controller, creating sinusoidal signals for audio output. This PIC12F is controlled by the PIC18F. The final circuit is shown below.

After designing and prototyping each system, a PCB was routed. To reduce costs, this circuit was implemented on a 3.75" x 3.75" two-layer PCB. To reduce heat, a small heatsink was created using vias for the TIP-120 IC used as an audio amplifier. The final PCB (with and without power/ground planes visible) is shown below.

Once the PCB was routed, a 3D model of the toy was created for 3D printing. The first version is shown below.

housing

CR1206-JW-104ELF	RES SMD 100K OHM 5% 1/4W	1	\$0.10	0.20%
CR2512-JW-100ELF	RES SMD 10 OHM 5% 1W	2	\$0.90	1.77%
TIP120	TRANS NPN DARL 60V 5A	4	\$2.56	5.05%
PIC18F4321-I/P	IC MCU 8BIT 8KB FLASH	1	\$3.47	6.84%
PIC12F1822-I/P	IC MCU 8BIT 3.5KB FLASH	1	\$1.10	2.17%
1825910-6	SWITCH TACTILE SPST-NO	1	\$0.10	0.20%
BC548CTA	TRANS NPN 30V 0.1A	1	\$0.22	0.43%
ŠR215C104KAA	CAP CER 0.1UF 50V X7R	6	\$1.20	2.37%
FG14X7R1H334KNT06	CAP CER 0.33UF 50V X7R	2	\$0.64	1.26%
FG24X7R1H224KNT06	CAP CER 0.22UF 50V X7R	2	\$0.58	1.14%
3968	General Purpose Speaker 3W	1	\$4.95	9.76%
Raspberry Pi Zero	-	1	\$10.00	19.72%
609-3243-ND	CONN HEADER VERT 10POS 2.54MM	5	\$1.40	2.76%
CMA-4544PF-W	MICROPHONE COND ANALOG	1	\$0.77	1.52%
LED Dot Matrix	-	1	\$1.99	3.92%
PJ-037B	CONN PWR JACK 2.5X5.5MM	1	\$0.58	1.14%
12V 1A power supply	-	1	\$2.78	5.48%
COM-12021	LED RGB STRIP - 1M (price 5")	1	\$1.27	2.50%
169	SERVOMOTOR RC 5V	1	\$5.95	11.73%
USB Webcam	-	1	\$5.48	10.81%
TOTAL			\$50.71	100.00%

	System Price	vn		
System		Cost	% of Cost	
Dot Ma	ıtrix	\$1.99	3.92%	
Emotio	n Recognition	\$15.48	30.53%	
Master	Control	\$5.37	10.59%	
Microp	Microphone		3.33%	
Movem	Movement		11.73%	
Power	Power		16.11%	
RGB LED Control		\$3.49	6.88%	
Sound	Sound		16.90%	
TOTAL		\$50.71	100.00%	

\$120

Future Work

Due to COVID-19, work has been delayed on this project. The next steps for this design include another design pass through for the toy's CAD model to make it more appealing to children, finish the emotional

response coding, and to assemble a full prototype.

In later iterations, the price will be reduced through redesign- the three microcontrollers can be swapped for a singular microcontroller, the microphone circuit can be simplified, and the speaker circuit can be simplified. The webcam can also be switched with a custom circuit which may be less expensive. Another improvement could be to shrink the PCB by reducing spacing between components and using only surface mount components. After thermal analysis of the original PCB design, an alternate, smaller version can be created if the thermal requirement is met by the original design.