
References

Introduction

Objective

Materials and Methods

Summary/Future Works

Results Code Breakdown
Software-Defined Networking (SDN) is an approach to networking that 
uses software-based controllers or application programming interfaces 
(APIs) to communicate with underlying hardware infrastructure and direct 
traffic on a network. SDN is the concept of functional separation, which 
divides the network into three layers: the application layer, control layer, 
and infrastructure layer. The application layer hosts various network 
services such as intrusion detection systems and load balancers, all 
implemented as software applications. These applications communicate 
with the control layer, which houses the SDN controller software 
responsible for centrally managing policies and traffic flows. The 
infrastructure layer consists of physical switches that forward network 
traffic based on instructions received from the controller. SDNs are gaining 
popularity but are at risk to Distributed Denial of Service (DDoS) Attacks. 
Few methods have been found for fighting against the attacks. In many 
methods, the primary controller will be replaced with a second or third 
one, but this is costly. As users in a network send messages to each other it 
is critical that the message content can go host to host without any 
interception of information. A cost-efficient solution is required to 
circumnavigate any potential attack to ensure safe and secure transfer of 
data between hosts. 

This project explores the implementation of a Software-Defined 
Networking (SDN) topology using Mininet to demonstrate the principles of 
centralized network control and programmability. The OpenFlow protocol 
is used, where switches within the network are controlled by a central SDN 
controller. The topology incorporates switches, hosts, and a controller, 
creating an environment for efficient data packet forwarding. With the 
threat of a DDOS attack viable cost-efficient solutions of defense must be 
explored as well. Once the network is set up it is necessary to incorporate 
a detection and mitigation system into the existing network infrastructure.

The diagram below is the structure of the virtual network that I created:

Methods:

Install Mininet: I began by installing Mininet on a virtual machine using VirtualBox and 
Ubuntu. This involves updating the package repository, installing necessary dependencies, 
cloning the Mininet repository, and running the installation script.
Set Up the Topology: After installing Mininet, I proceeded to set up the network topology 
by creating Python script. This script utilizes the Mininet library to define the topology, 
including switches, hosts, and their connections. The topology script creates a network 
with three switches and six hosts interconnected in a predefined manner.
Test Data Transmission: With the network topology configured, I conducted tests to 
ensure proper data transmission within the network. I utilized the Mininet command-line 
interface (CLI) to ping between hosts, send traffic, measure bandwidth using iperf, and 
display network information using various commands such as net, dump, nodes, and 
links.
Wireshark Setup: I installed and configured Wireshark to capture and analyze packet 
transfer within the SDN network. I installed Wireshark on the virtual machine using the 
Linux terminal. I started Wireshark and selected the appropriate network interface for 
packet capture and began capturing packets while running the Mininet script to simulate 
network traffic.
Analysis with Wireshark: I analyzed captured packets in Wireshark to gain insights into 
network behavior, traffic patterns, and protocol usage. I also interpreted the results to 
evaluate network performance and identify any anomalies or issues.
Code Explanation: I provided an explanation of the Python script used to define the 
network topology. The explanation breaks down the script into its components, including 
importing required modules, defining the topology creation function, adding controllers, 
switches, and hosts, establishing links between them, starting the network and CLI, and 
stopping the network.

Summary:
The "dump" command in the Mininet CLI provided comprehensive insights into the configuration and status of the Software-Defined 
Networking (SDN) topology. Detailed information about the network components, including six hosts, three Open vSwitch (OVS) switches, 
and a controller, was retrieved. Each host was assigned a unique IP address within the subnet 10.0.0.0/24, along with specific interface 
details such as Ethernet interface (eth0) configurations and associated Process IDs (PIDs). Similarly, the OVS switches were configured with 
loopback interfaces (lo) and specific connectivity interfaces (e.g., s1-eth1) to facilitate communication between switches and hosts. 
Additionally, information regarding the SDN controller (c0), including its IP address (127.0.0.1) and port number (6653), was provided, 
highlighting its crucial role in establishing communication with network devices. The successful pinging test further validated the network 
connectivity within the topology, with each ping operation resulting in response messages containing pertinent packet statistics. Analysis 
using Wireshark confirmed bidirectional communication between hosts through the exchange of ICMP echo request and reply packets, thus 
affirming the successful establishment of network connectivity. Together, these results underscore the effectiveness and reliability of the 
implemented SDN topology in facilitating seamless communication between network components.
Future Works:
The future plan is to develop several virtual Controllers and created DDoS attacks to one of the controllers. Also implement an auto system 
such that the upcoming suspicious packets were detected and redirected to a honeypot while the secondary Controller can automatically 
replace the primary one without any interruption, or the interruption is limited to the least situation. This plan can be put into action by 
creating multiple python scripts that interface with each other. 

For the results when on the Mininet CLI using the "dump" command, detailed information about the network components within the 
Software-Defined Networking (SDN) topology was retrieved, providing insights into the configuration and status of the network. The 
output revealed the presence of six hosts, three Open vSwitch (OVS) switches, and a controller within the network topology. Each host 
was assigned an IP address within the subnet 10.0.0.0/24, with specific interface information provided for each host. For instance, host 
details included the presence of an Ethernet interface (eth0) configured with the IP address 10.0.0.1. Additionally, a Process ID (PID) was 
associated with each host, indicating the unique identifier assigned to the process within the system. The output further included the 
configuration of the OVS switches within the network. Each switch was assigned a loopback interface (lo) with the IP address 127.0.0.1, as 
well as a specific interface (s1-eth1) for connectivity within the network topology. These interfaces facilitate communication between 
switches and hosts, enabling the forwarding of data packets based on the controller's instructions. Moreover, information pertaining to 
the SDN controller (c0) was provided, including its IP address (127.0.0.1) and port number (6653), which are essential for establishing 
communication between the controller and network devices. All this data establishes connection between the different components.

The conducted pinging test was aimed to validate the successful establishment of network connectivity within the implemented 
Software-Defined Networking (SDN) topology using Mininet. The primary measure used to assess the success of the network connectivity 
was the ability to ping between hosts, as well as the corresponding packet statistics observed during the process. Successful ping 
responses were observed, indicating the establishment of network connectivity. Each successful ping operation resulted in a response 
message with statistics, including the size of the packet (64 bytes), the source IP address (10.0.0.6), the ICMP sequence number, the time 
to live (TTL) value (64), and the round-trip time (RTT) in milliseconds (5.93 ms). These response messages confirmed the successful 
transmission of ICMP echo requests and replies between hosts, validating the integrity of the network connectivity. Furthermore, packet-
level analysis using Wireshark further confirmed the successful ping operation by capturing and analyzing ICMP protocol packets 
exchanged between the source and destination hosts. Wireshark logs revealed the presence of ICMP echo request and reply packets,
confirming bidirectional communication between hosts and providing additional evidence of successful network connectivity 
establishment.

This code is written in Python and uses the Mininet library to create a virtual network 
topology. Here is an explanation of each part of the code.

Importing required modules:
from mininet.net import Mininet
from mininet.node import Controller, OVSSwitch, RemoteController
from mininet.cli import CLI
This code imports necessary classes from the Mininet library. It includes the Mininet class 
for creating the network, Controller class for specifying the controller for the network, 
OVSSwitch class for creating Open vSwitch switches, and CLI for the command-line 
interface to interact with the network.

Defining the topology creation function:
def create_topology():

net = Mininet(controller=Controller, switch=OVSSwitch)
This function create_topology() initializes a Mininet object net by specifying the controller 
and switch types. In this case, it uses the Controller and OVSSwitch classes.

Adding a controller:
c0 = net.addController('c0')
This line adds a controller to the network with the name 'c0'. The controller will be 
responsible for managing the switches in the network.

Adding switches and hosts:
s1 = net.addSwitch('s1')

h1 = net.addHost('h1')
This code adds three switches (s1, s2, s3) and six hosts (h1, h2, h3, h4, h5, h6) to the 
network. Switches are the devices that route traffic between hosts, and hosts are the end 
devices (e.g., computers) that generate or receive traffic.

Linking hosts to switches:
net.addLink(h1, s1)
This code establishes links between the hosts and switches. Each host is connected to one 
switch using the addLink() method.

Linking switches together:
net.addLink(s1, s2)
This code establishes links between the switches. The switches are interconnected to 
form the network topology using the same addLink() method.

Starting the network and CLI:
net.start()
CLI(net)
The net.start() method starts the Mininet network, and the CLI(net) function opens a 
command-line interface that allows you to interact with the network. You can use the CLI 
to ping hosts, test connectivity, and run other commands.

Stopping the network:
net.stop()
The net.stop() method is called to stop the Mininet network and clean up the virtual 
network resources.

Sherwin Sathish, Electrical and Computer Engineering
Mentor: Dr. Tamer Omar

RSCA 2024


	Slide Number 1

