
Facial Emotion Detection via Convolutional 
Neural Network for Embedded Platforms

Kevin Worsley, Computer Engineering 
Mentor: Dr. Mohamed El-Hadedy (Aly)

Kellogg Honors College Capstone Project

Objective
The objective of this project was to design a Convolutional 
Neural Network (CNN) to detect a variety of facial 
expressions and provide a signal to a PIC microcontroller 
indicating its decision. This network would run on an 
embedded device for portability in its enclosure.

Convolutional Neural Networks
There are a wide variety of neural network architectures 
used in modern computing, but a CNN is best suited to 
identify patterns in samples, and extrapolating those 
patterns to make classifications. This led to its 
implementation in the project as an image classifier.

A CNN will take in a predefined input, usually an image, 
and pass it into a convolutional layer. The layer will iterate 
over the sample, filtering groups of pixels and constructing 
a new sample based on these filter results. The filter is 
generated randomly at first, but becomes more accurate 
as the model trains. It then passes through an activation, 
which serves to remove any negative values that may have 
been generated in the convolution. Negative values 
indicate no pattern, so they are of no use going forward. 
There may be a batch normalization, which reduces the 
variance of the sample, which serves to simplify training 
and reduce noise. The sample then passes through a max 
pooling layer, where the generated feature map is shrunk 
down, reducing its dimensions. This can help reduce noise, 
and ensure the sample going forward contains the most 
relevant pattern information. This cycle is then repeated, 
often many times, during training, changing parameters to 
experimentally increase accuracy.

Once convolution completes, the model is flattened, 
which reduces its patterns to a fully connected (dense) 
format. This allows the model to begin training as the 
layers become smaller and smaller. The output layer will 
have units equal to the amount of classifications, and a 
softmax activation will be used. The final units represent 
each possibility the model is designed to detect, and 
softmax activation returns the most confident result. 

Model Results and Structure

Performance

Experimental Models
For this application, 25 different models were constructed, 
using TensorFlow as the underlying structure, and Keras to 
construct the model’s layers. Each model was trained and 
evaluated for its loss value, a measure of how poorly the 
model performed. Accuracy was also measured in the 
training and validation phases of the model. Training and 
validation are important to separate, as in training the 
model sees the same data over and over. Validation is a 
brand new data set, and tests the model on data it’s never 
seen before, which gives a better idea of the model’s 
performance in a real world situation. Model 19 is a more 
common CNN architecture, while Model 20 is a modified 
version of the Xception model, implemented with 
separable convolution [2], a divide-and-conquer approach 
to convolution operations.

Model 
Number

Train 
Accuracy

Validation 
Accuracy

Validation 
Loss

17 0.6704 0.7038 0.7588

19 0.7100 0.7295 0.6985

20 0.6462 0.9146 0.6328

Classification Results

Implementation on Embedded Device

Model 19 Model 20

Grey images are what the model receives, in the 48x48x1 
greyscale format. Model 19 was used for these results.

The model, once trained, was then converted to the 
TensorFlow Lite format. The model’s weights are 
compressed and converted to a lightweight format, which 
enables the model to be run with far less computing 
resources needed than its standard format, without loss of 
accuracy. Model 19 was chosen as the most accurate 
model, and was deployed on the device.

This model was implemented on the Raspberry Pi Zero W, 
a small embedded computing platform. The device 
features an ARM11 processor clocked at 1 GHz, with 512 
MB of LPDDR2 SDRAM. [3] The device’s small size and low 
power draw made it an appealing choice, as well as its full 
integration with a Python environment for ease of 
development.

The system uses OpenCV to handle camera inputs, as well 
as its implementation of a Haar Cascade face detector [4] 
to identify the user’s face in the captured image. The 
resulting Region of Interest (ROI) is then preprocessed by 
scaling it to the appropriate size, as well as changing its 
color space to greyscale. The image is then invoked in the 
TensorFlow Lite interpreter, and a classification is 
generated. The classification code is then sent over to the 
PIC via the GPIO output pins.

Conclusion

[2]

[1]

The most relevant performance metric is wallclock time, 
how long it takes the Raspberry Pi to perform specific 
tasks with respect to the entire system, not just CPU time.

References

The system performs with sufficient accuracy to 
accomplish its objective in a real world environment. It 
functions as a key module of a larger project, and provides 
a low-cost, performance-conscious solution to a common 
application of computer vision and machine learning 
implementation.

[1] A. Dertat, “Applied Deep Learning- Part 4: Convolutional Neural 
Networks,” TowardsDataScience.com, 08-Nov-2017. [Online]. Available: 
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-
networks-584bc134c1e2. 

[2] O. Arriaga, P. G. Plöger, and M. Valdenegro, “Real-time Convolutional Neural Networks 
for Emotion and Gender Classification,” ICRA 2018.

[3] M. Hawkins, “Introducing the Raspberry Pi Zero W,” Raspberry Pi Spy. [Online]. 
Available: https://www.raspberrypi-spy.co.uk/2017/02/introducing-the-raspberry-pi-zero-
w/.

[4] “Cascade Classifier,” OpenCV. [Online]. Available: 
https://docs.opencv.org/3.4/db/d28/tutorial cascade classifier.html. 

Operation Time Elapsed (avg)
Import libraries 39.45 s
Load cascade detector 660 ms
Load TF interpreter 75 ms
Capture image 500 ms
Locate face, preprocess 1.42 s
Classification 3.68 s

We can see the most time consuming operation was the 
TensorFlow Lite interpreter, which achieved an admirable 
3.68 seconds for the classification, given the heavy 
hardware constraints and complexity of its neural network.


	Facial Emotion Detection via Convolutional Neural Network for Embedded Platforms

