Maximizing Storage Density of Steel Pipes: Optimization Modeling

Katrina Gumushian, Industrial Engineering
Research Partners: Justice Cortez, Marlon Gaytan Jr.
Mentors: Dr. Ellips Masehian, Dr. Payam Parsa
Kellogg Honors College Capstone Project

Abstract

 of space utilization as the key performance metric.
Background

 company allowed the use of real size storage parameters and is an ongoing study in order to compare the performance of the model with the current practice.

Mathematical Model

 The width of each strip is calculated based on the width of the pipe pallets and accounting for the necessary lateral clearances on both side of the rack, which are meant for forklift maneuvering and accessibility
 (unallocated adjacent strips) on the opposite side will have a rectangular shape with a maximal area, which is ideal for future utilization in comparison to the utilization of random racks storage or using FIFO.

The variables and parameters of the model are defined as follows:

```
x i,j,k number of pipe batches of length type i (=1,2,\ldots,L) and diameter type j(=1,2,\ldots,D) stored in strip k(=1,2,\ldots,S)
zi,j,k
{ l if the pipe of length type i and diameter type j is stored on strip k
0 otherwise
number of different lengths of pipes
number of different outer diameters of pipes
```



```
lengths (in feet) of pipes of length type i type
width of the storage lot
quantity of pipes of type i,j in one batch
number of pipes of type i,j needed to be stored
Minimize }\quad\begin{array}{ll}{\mp@subsup{\textrm{z}}{1,1,1}{}}&{+}\\{\mp@subsup{\textrm{z}}{1,2,1}{}}\\{+\ldots+}
```


Figure 1: Stacking of pipes in the storage yard

Figure 2: Schematic illustration of the way the pipes are stored in the storage yard. The ot is divided into S strips with equal widths, which incorporates the necessary aisle clearance for forklifts.

 corresponding variable $x_{i, j, k}$ should be at least equal to 1 and at most the maximum number of pipe racks of type i, j. Finally, the last constraint defines the type of decision variables (general integers and binary integers).

Model Solution \& Analysis

The stated Mixed Integer Programming (MIP) model belongs to the NP-hard class of problems, which means the solution space grows exponentially with the increase of the number of variables. The accuracy can be verified using a small-size problem described as follows:

We assume there is an 11 yard by 24 yard lot, and there are numerous lumbers to be stored on the lot in consecutive rows and in a single layer (they are not stored at height). The widths of lumbers are equal to 1 yard and an additional yard of aisle clearance is needed between rows (two half-yard clearances for each for of lumber on both sides). As a result, each strip would have a width of 2 yards and the length of the lot (24 yards), which will be divided into $S=12$ strips of 2 yard width. The width of the lot is $W=11$ yards. The lumbers come at four different lengths of $1,2,3$ and 4 yards, and divided into $S=12$ strips of 2 yard width. The width of the lo
the supply of each lumber type is $7,11,9$, and 8 , respectively

For simplicity sake, the i and j indices in the model are combined into one index, as we do not have different types of a certain lumber size. The decision variables will then be $x_{1, k}, x_{2, k}, x_{3, k}$, and $x_{4, k}$, representing respectively the number of lumbers of lengths $1,2,3,4$ yards allocated to strip k, and their respective binary variables $z_{1, k}, z_{2, k}, z_{3, k}$, and $z_{4, k}$ indicate whether or not a lumber of length i is allocated to strip k. Also, $q_{1}=q_{2}=q_{3}=q_{4}=1$ which means the lumbers are not put on top each other, and the supply parameters are $s_{1}=6, s_{2}=11, s_{3}=10$, and $s_{4}=8$.

The model was coded and solved in the Lindo ${ }^{\mathrm{TM}}$ software. A graphical illustration of the obtained solution is depicted in Figure 3, which shows that the model preferred to stack the lumbers mostly in strips with lower numbers and left the last three strips unused, opposed to a suboptimal allocation which utilizes the lot improperly

Figure 3: (a) Lindo output solution of the MIP model; (b) A suboptimal solution that utilizes the lot improperly. The red, blue, green and yellow colors represent lumbers of utilizes the lot improperly. The red, blue,
length $1,2,3$ and 4 yards, respectively.

Conclusion

The increase in warehousing costs has drawn attention to storage optimization as a possible solution to alleviate some of the challenges tied with meeting increasing demand. This project proposed and MIP model to optimize
 The model assumes that the yard can be divided into an equal number of strips (or bands) with no cross aisles. The objective function seeks to minimize the total area occupied for storing the pipes.

For future optimization, pick time could be considered to account for travel time and operational cost. The Travelling Salesman Problem (TSP) could be used as a basis for optimizing the route that a single resource would take on
 optimal layout would need to consider the benefit of adding cross-aisle lanes through which resources can travel. Although this strategy would reduce available space for storage, it increases the ability to minimize travel time.

