

Composite Material Testing and Analysis

Daniel Chen, Mechanical Engineering

Mentor: Dr. Todd D. Coburn

Kellogg Honors College Capstone Project

CAL POLY POMONA

Goals:

- Experimentally test a carbon fiber composite material using a 4 \bullet point bend test
- Extract material properties from experimental data \bullet
- Use classical lamination theory to compare stresses in the sample lacksquareto theory
- Use the values obtained by experiment and theory to validate the \bullet

Figure 1. Sample Geometry

Four Point Bend Tests:

- Requires test fixture as shown in Figure 2
- Uses a simpler sample geometry
- Used instead of a tension test for testing brittle material where the number of flaws exposed to the testing stress is related to the strength of the material
- A four point bend test provides a uniform load distribution over a section of the sample

Experiment:

Layup large sheet of CFRP prepreg made with 16 layers

Hyperworks Finite Element Analysis software

Hyperworks Finite Element Analysis:

- Hyperworks Suite by Altair:
 - Hypermesh pre processing
 - **Optistruct Solver**
 - Hyperview post processing
- Created a simulation as representative of the experiment as possible (Figure 3)
- Input material properties found to validate the results of the composite FEA solver

- 2. Cut 6 samples in the dimensions shown in Figure 1, 3 in the 0° direction and 3 in the 90° direction
- 3. Conduct a four point bend test on the sample using a Bluehill Instron machine and record the data

Data:

4 Point Bending Test Data Summary						
	[in]	[in]	[lbs]	[in]		
1	0.129	0.788	399.50	0.564		
2	0.132	0.781	422.08	0.624		
3	0.134	0.776	428.96	0.570		
4	0.131	0.768	419.10	0.576		
5	0.135	0.779	434.58	0.545		
6	0.134	0.775	412.31	0.566		
Average	0.132	0.776	416.99	0.570		

Figure 2. Four Point Bend Test

Classical Lamination Theory (CLT):

- Developed to analyze the stresses in laminates
- Laminates behave dissimilarly to isotropic material because of the anisotropic properties of the lamina and coupling effects due to the stacking sequence of the laminate
- In classical lamination theory, layers are assumed to deform by developing the strains and curvatures in the mid-plane ply
- Using the equations to the right, the stresses in each layer can be found

$\begin{bmatrix} \mathbf{N} \\ \mathbf{M} \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B} & \mathbf{D} \end{bmatrix} \begin{bmatrix} \varepsilon^0 \\ \kappa \end{bmatrix}$	
$\mathbf{A} = \sum^{N} \mathbf{Q}^{*} \left(z_{j} - z_{j-1} \right)$	
$\mathbf{B} = \frac{1}{2} \sum_{j=1}^{N} \mathbf{Q}^{*} \left(z_{j}^{2} - z_{j-1}^{2} \right)$	
$\mathbf{D} = \frac{1}{3} \sum_{N}^{N} \mathbf{Q}^* \left(z_j^3 - z_{j-1}^3 \right)$	
$\begin{bmatrix} N_x \end{bmatrix} \mathbf{c}^{t/2} \begin{bmatrix} \sigma_x \end{bmatrix}$	
$\begin{cases} N_{y} \\ N_{xy} \end{cases} = \int_{-t/2} \{ \sigma_{y} \\ \tau_{xy} \end{cases} dz$	
$\begin{cases} \mathbf{M}_{x} \\ \mathbf{M}_{y} \\ \mathbf{M}_{xy} \end{cases} = \int_{-t/2}^{t/2} \begin{cases} \mathbf{O}_{x} \\ \mathbf{\sigma}_{y} \\ \mathbf{\tau}_{xy} \end{cases} z dz$	
CLT Equations	

Comparison of Flexural Strength:

Flexural Strength

Example Graph from Bluehill software:

Experimental Results

Sample	Total Force	Flexural Strength	
	[lbs]	[psi]	
1	399.50	131645.79	
2	422.08	139086.27	
3	428.96	141353.12	
4	419.10	138105.21	
5	434.58	143205.80	
6	412.31	135868.98	
Avg	416.99	137410.37	

Load v. Extension

There is a 6.0% error between CLT and the experimental results and a 3.4% error between FEA and experimental resutls. The Hyperworks FEA is an accurate but conservative estimate of the material's strength.

Comparison of Flexural Strength

SpaceX Reported	Average Experimental	Classical Lamination	Finite Element Analysis
Strength [ksi]	Strength [ksi]	Theory Stress [ksi]	Stress [ksi]
111.0	137.4	129.1	142.1

Extension [in]