
A Reliable Control System for Autonomous Robotic Systems
Using Sliding Autonomy and Data Visualization

Ethan Ito, Computer Science
Mentor: Dr. Daisy Tang

Kellogg Honors College Capstone Project

Autonomous robotic systems are widely used in today’s applications. It is challenging to build a
reliable system that gracefully handle various types of unforeseen situations. This project seeks
to solve this issue with controlling robots through the use of sliding autonomy and data
visualization. We applied this approach to a navigation task.

Average Completion Time Average Solution Quality Average Workload

Expected Results Less than 2 Minutes 6 40-60

No Issue
(Average of 3 runs)

1 Minute 8.6 Seconds 8 15

Introduced Object
(Average of 3 runs)

1 Minute 2.6 Seconds 8

28

Laser Error
(Average of 3 runs)

1 Minute 44.6 Seconds 8 26

Overall Average 1 Minute 28.67 Seconds 8 23

The longest completion time was 2 minutes and 2 seconds in a scenario where the robot
encountered an unexpected obstacle. The operator teleoperated the robot around the obstacle
to the goal. The shortest completion time was 1 minute and 9 seconds when there were no
issues and the robot operated autonomously. The difference between the two time extremes is
understandable when the middle ground between operator control and autonomous control is
considered.

I would like to thank my mentor Dr. Daisy Tang, without her help and support this project
would not have been possible. I also appreciate the assistance of Kwang Jun for the localization
algorithm and supporting code.

To validate the system, we have an iCreate robot travel to a position in a predetermined map.
This task was then tested across three different scenarios: when there is no issue, when a new
obstacle is introduced and when there is a laser sensor measurement error. The completion
time, the solution quality and the operator workload are recorded for every test run. Each
scenario was run multiple times and the average of the runs was calculated.

Sliding Autonomy
Sliding autonomy is a control process for robotics. The robot can switch between different
levels of autonomy, creating a sliding scale. In this project there are four modes of operation:
autonomous, semi-autonomous, teleoperation and peer to peer. The sliding autonomy is
implemented with Player[1] to control the robot.

Data Visualization
To enhance situation awareness of the operator, data from three sources are visualized. On the
main screen, we display the robot’s location and it’s path to the goal. The data from the robot’s
laser sensor is displayed in a separate window. The interface is implemented using Qt [2].

Testing

Problem

Figure 1 Figure 2

Approach

Data and Analysis

Completion Time
Definition: the time it takes for the robot to reach the goal measured in seconds.

Solution Quality
Definition: a value from 0 to 8 representing how well the robot completed the task.

Operator Workload
Definition: the workload that the operator encounters during execution using NASA Task Load
Index.

The system preformed above expectations in all scenarios tested. It shows that the system is
able to complete the task using the implemented interface and sliding autonomy. However
improvements can be made to the interface which could result in a decrease in the average
workload. There are many ways to improve the project such as optimizations in the code and
the increase in the scope of the user interface. Other areas of interest would be quick
communication encryption and decryption when handling time sensitive and critical data, and
the management of robots in large numbers.

Conclusion and Future Work
Performance Measurements

Figure 1: iCreate robot
used for testing

Figure 2: User interface
with invalid laser data
alert

Figure 3 Figure 4

Figure 3: Laser Sensor Display

Figure 4: Static map used for
testing.
Black : obstacles
Yellow : grown obstacles
White : empty space

[1] Qt Project : IDE and framework for user interface and robot control code.
[2] Player : Network Server for robot control

Acknowledgements

References

The interface’s design had an effect on the operator workload. The problem that arose was the
robot’s directional orientation. It was thought that the operator could use the laser sensor
display. However it was found that the display did not make much visual sense for navigation
when the operator was not used to the map or the interface. This leads to a higher operator
workload when teleoperating the robot.

Discussion

Figure 5 Figure 6

Figure 5: Robot Control
Interface in autonomous
mode

Figure 6: Robot Control
Interface in semi-autonomous
mode

